Annals of Nuclear Medicine

, Volume 8, Issue 4, pp 245–251 | Cite as

Assessment of dopamine metabolism in brain of patients with dementia by means of18F-fluorodopa and PET

  • Masatoshi Itoh
  • Kenichi Meguro
  • Takehiko Fujiwara
  • Jun Hatazawa
  • Ren Iwata
  • Kiichi Ishiwata
  • Toshihiro Takahashi
  • Tatsuo Ido
  • Hidetada Sasaki
Original Article

Abstract

By means of positron emission tomography (PET) and18F-fluorodopa (FDOPA), a study was initiated to analyze the cerebral dopamine (DA) metabolism of 32 subjects including those with AD/ SDAT and vascular dementia (VD, multi-infarct type). A semiautomated irregular ROI drawing routine to identify the striatum was developed that interactively defined the PET threshold pixels referring to the count histograms and location of the corresponding pixels. A comparative study by five examiners showed significant improvement in the area size definition and count linearity particularly for low contrast objects. The graphical plot was employed to calculate the FDOPA influx rate (Ki) for the ROI data with cerebellar radioactivity as an input function. The striatal Ki value was found to be relatively stable and did not show signs of a significant age-related change. The vascular patients had smaller Ki to the striatum than the aged control. Although the mean Ki of AD/SDAT was almost compatible with that of age-matched normals, their Ki was more scattered with higher and lower Ki cases. The multiple regression analysis revealed that the Ki could be predicted by age and the mini-mental state (MMS) performance (r2 = 0.590, p < 0.01 for AD/ SDAT, r2 = 0.401, and p < 0.05 for VD). MMS was found to be a more dominant factor than age. We conclude that dopamine metabolism became disturbed as dementia became progressively severe.

Key words

Neurotransmission PET dementia DOPA metabolism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Scatton B, Zivkovic B. Neuroleptics and the limbic system.In Psychopharmacology of the limbic system. Trimble MR & Zarifian E (eds.), Oxford, Oxford University Press, pp. 174–197, 1984.Google Scholar
  2. 2.
    Salamone JD. Behavioral pharmacology of dopamine system: a new synthesis.In The mesolimbic dopamine system: from motivation to action. Willner P, Scheel Krueger J (eds.), Chichester, John Wiley & Sons, pp. 599–614, 1991.Google Scholar
  3. 3.
    Mayeux R, Stem Y, Spanton S. Heterogeneity in dementia of the Alzheimer type: evidence of subgroups.Neurology 35: 453–461, 1985.PubMedGoogle Scholar
  4. 4.
    Chui HC, Teng EL, Henderson V, Moy AC. Clinical subtypes of dementia of the Alzheimer type.Neurology 35: 1544–1550, 1985.PubMedGoogle Scholar
  5. 5.
    Nahmias C, Garnett ES, Firnau G, Lang A. Striatal dopamine distribution in Parkinsonian patients during life.J Neurolog Sci 69: 223–320, 1985.CrossRefGoogle Scholar
  6. 6.
    Leenders KL, Palmer AJ, Quinn N, Clark JC, Firnau G, Garnett ES, et al. Brain dopamine metabolism in patients with Parkinson’s disease measured with positron emission tomography.J Neurol Neurosurg Psychiat 49: 853–860, 1986.PubMedCrossRefGoogle Scholar
  7. 7.
    Adam MJ, Abeysekera B, Ruth TJ, Grierson JR, Pate BD. Synthesis of 6-(F-18)L-fluoro-dopausing F-18 labeled acetyl hypofluorite.J Nucl Med 26: P125, 1985.Google Scholar
  8. 8.
    Watanuki S, Ishii K, Orihara H, Fukuda H, Matsuzawa T. Status of multi-ring high-resolution positron emission tomography system PT931. CYRIC Annual Report 1986: 250–244, 1986.Google Scholar
  9. 9.
    Patlak CS, Blasberg RG. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations.J Cereb Blood Flow Metabol 5: 584–590, 1985.Google Scholar
  10. 10.
    Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data.J Cereb Blood Flow Metabol 3: 1–7, 1983.Google Scholar
  11. 11.
    American Psychiatric Association.Diagnostic and Statistical Manual of Mental Disorders. DSM-III-R. Washington DC, Amer Psychiat Ass, pp. 103–122, 1987.Google Scholar
  12. 12.
    Hachinski VC, Iliff LD, Zilka E, DuBoulay GH, McAllister VL, Marshall J, et al. Cerebral blood flow in dementia.Arch Neurol 32: 632–637, 1975.PubMedGoogle Scholar
  13. 13.
    Tanaka Y, Tarumizu T.Handbook on Statistics on PC, III. Tokyo, Kyoritsu Shuppan Inc., pp. 1–15, 1986.Google Scholar
  14. 14.
    Firnau G, Sood S, Chirakal R, Nahmias C, Garnett ES. Metabolites of 6-[18F]fluoro-L-dopa in the human blood. JNucl Med 29: 363–369, 1988.PubMedGoogle Scholar
  15. 15.
    Melega WP, Hoffman JM, Luxen A, Nissenson CHK, Phelps ME, Barrio JR. The effects of carbidopa on the metabolism of 6-[F-18]fluoro-L-dopa in rats, monkeys and humans.Life Sci 47: 149–157, 1990.PubMedCrossRefGoogle Scholar
  16. 16.
    Hoshi H, Kuwabara H, Leger G, Cumming P, Guttman M, Gjedde A. 6-[18F]fiuoro-L-DOPA metabolism in living human brain: A comparison of six analytical methods.J Cereb Blood Flow Metab 13: 57–69, 1993.PubMedGoogle Scholar
  17. 17.
    Rapoport SI. Positron emission tomography in Alzheimer’s disease in relation to disease pathogenesis: a critical review.Cerebrovasc Brain Metab Rev 3: 297–335, 1991.PubMedGoogle Scholar
  18. 18.
    Meyer JS, Terayama Y, Takashima S. Cerebral circulation in the elderly.Cerebrovasc Brain Metab Rev 5: 122–146, 1993.PubMedGoogle Scholar
  19. 19.
    Heiss WD, Szelies B, Kessler J, Herholz K. Abnormalities of energy metabolism in Alzheimer’s disease studied with PET.Ann NY Acad Sci 640: 65–71, 1991.PubMedGoogle Scholar
  20. 20.
    Kuwabara Y, Ichiya Y, Otsuka M, Masuda K, Ichimiya A, Fujishima M. Cerebrovascular responsiveness to hyper-capnia in Alzheimer’s dementia and vascular dementia of the binswanger type.Stroke 23: 594–598, 1992.PubMedGoogle Scholar
  21. 21.
    Carlsson A, Winblad B. Influence of age and time interval between death and autopsy on dopamine and 3-methoxy-tyramine levels in human basal ganglia.J Neural Transm 38: 271–276, 1976.PubMedCrossRefGoogle Scholar
  22. 22.
    Leenders KL, Salmon EP, Turton D, Tyrrell P, Perani D, Brooks DJ, et al. The nigro-striatal dopaminergic system assessedin vivo by positron emission tomography in healthy volunteer subjects and patients with Parkinson’s disease.Arch Neurol 47: 1290–1298, 1990.PubMedGoogle Scholar
  23. 23.
    Takikawa S, Dahwan V, Chaly T, Robeson W, Spetsieris P, Eidelberg D. Does striatal FDOPA uptake decrease with age?J Cereb Blood Flow Metab 13: S410, 1993.Google Scholar
  24. 24.
    Itoh M, Hatazawa J, Miyazawa H, Matsui H, Meguro K, Yanai K, et al. Stability of cerebral blood flow and oxygen metabolism during normal aging.Gerontology 36: 43–48, 1990.PubMedCrossRefGoogle Scholar
  25. 25.
    Tyrrell PJ, Sawle GV, Ibanez V, Bloomfield PM, Leenders KL, Frackowiak RSJ, et al. Clinical and positron emission tomographic studies in the ’extrapyramidal syndrome’ of dementia of the Alzheimer type.Arch Neurol 47: 1318–1323, 1990.PubMedGoogle Scholar
  26. 26.
    Robins TW. Cognitive deficits in schizophrenia and Parkinson’s disease: Neural basis and the role of dopamine.In the mesolimbic dopamine system: From motivation to action, Willner P, Sheel-Krueger (eds.), Chichester, Jon Wiley & Sons, pp. 497–528, 1991.Google Scholar
  27. 27.
    Gottfries CG. Neurochemical aspects on aging and diseases with cognitive impairment.J Neurosci Res 27: 541–547, 1990.PubMedCrossRefGoogle Scholar
  28. 28.
    Wallin A, Alafuzoff I, Carlsson A, Eckernaes SA, Gottfries CG, Karlsson I, et al. Neurotransmitter deficits in a nonmulti-infarct category of vascular dementia.Acta Neurol Scand 79: 397–406, 1989.PubMedCrossRefGoogle Scholar
  29. 29.
    Nagasawa H, Saito H, Kogure K, Hatazawa J, Itoh M, Fujiwara T, et al. 6-[18F]fluorodopa metabolism in patients with hemiparkinsonism studied by positron emission tomography.J Neurolog Sci 115: 136–143, 1993.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Masatoshi Itoh
    • 1
  • Kenichi Meguro
    • 2
  • Takehiko Fujiwara
    • 1
  • Jun Hatazawa
    • 3
  • Ren Iwata
    • 4
  • Kiichi Ishiwata
    • 5
  • Toshihiro Takahashi
    • 6
  • Tatsuo Ido
    • 4
  • Hidetada Sasaki
    • 2
  1. 1.Division of Nuclear Medicine, Cyclotron Radioisotope CenterTohoku UniversitySendaiJapan
  2. 2.Department of GeriatricsTohoku University School of MedicineJapan
  3. 3.Department of RadiologyInstitute of Brain and Blood VesselsAkita
  4. 4.Division of Radiochemistry, Cyclotron RI CenterTohoku UniversityJapan
  5. 5.Positron Medical CenterTokyo Metropolitan Institute for AgingJapan
  6. 6.Radioisotope CenterNiigata UniversityJapan

Personalised recommendations