Annals of Nuclear Medicine

, Volume 13, Issue 2, pp 95–100 | Cite as

Diabetic cardiac autonomic dysfunction: Parasympathetic versus sympathetic

  • Akihiko Uehara
  • Chinori Kurata
  • Toshihiko Sugi
  • Tadashi Mikami
  • Sakae Shouda
Original Article



Diabetic cardiac autonomic dysfunction often causes lethal arrhythmia and sudden cardiac death.123I-Metaiodobenzylguanidine (MIBG) can evaluate cardiac sympathetic dysfunction, and analysis of heart rate variability (HRV) can reflect cardiac parasympathetic activity. We examined whether cardiac parasympathetic dysfunction assessed by HRV may correlate with sympathetic dysfunction assessed by MIBG in diabetic patients.

Methods and Results

In 24-hour electrocardiography, we analyzed 4 HRV parameters: high-frequency power (HF), HF in the early morning (EMHF), rMSSD and pNN50. MIBG planar images and SPECT were obtained 15 minutes (early) and 150 minutes (late) after injection and the heart washout rate was calculated. The defect score in 9 left ventricular regions was scored on a 4 point scale (0 = normal ∼ 3 = severe defect). In 20 selected diabetic patients without congestive heart failure, coronary artery disease and renal failure, parasympathetic HRV parameters had a negative correlation with the sum of defect scores (DS) in the late images (R = −0.47 ∼ −0.59, p < 0.05) and some parameters had a negative correlation with the washout rate (R = −0.50 ∼ −0.55, p < 0.05). In a total of 64 diabetic patients also, these parameters had a negative correlation with late DS (R = −0.28 ∼ −0.35, p < 0.05) and early DS (R = −0.27 ∼ −0.32, p < 0.05).


The progress of diabetic cardiac parasympathetic dysfunction may parallel the sympathetic one.

Key words

diabetic mellitus autonomic nervous system metaiodobenzylguanidine heart rate variability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kahn JK, Sisson JC, Vink AI. QT interval prolongation and sudden death in diabetic autonomic neuropathy.J Clin Endocrinol Metab 64: 751–754, 1987.PubMedCrossRefGoogle Scholar
  2. 2.
    Ewing DJ, Campbell IW, Clarke BF. Mortality in diabetic autonomic neuropathy.Lancet 1: 601–603, 1976.PubMedCrossRefGoogle Scholar
  3. 3.
    Kurata C, Okayama K, Wakabayashi Y, Shouda S, Mikami T, Tawarahara K, et al. Cardiac sympathetic neuropathy and effects of aldose reductase inhibitor in streptozotocin-induced diabetic rats.J Nucl Med 38: 1677–1680, 1997.PubMedGoogle Scholar
  4. 4.
    Pagani M, Malfatto G, Pierini S, Casati R, Masu AM, Poli M, et al. Spectral analysis of heart rate variability in the assessment of autonomic diabetic neuropathy.J Auton Nerv Syst 23: 143–153, 1988.PubMedCrossRefGoogle Scholar
  5. 5.
    Mäntysaari M, Kuikka J, Mustonen J, Tahvanainen K, Vanninen E, Länsimies E, et al. Noninvasive detection of cardiac sympathetic nervous dysfunction in diabetic patients using [123I]metaiodobenzylguanidine.Diabetes 41: 1069–1075, 1992.PubMedCrossRefGoogle Scholar
  6. 6.
    Freeman MR, Newman D, Dorian P, Barr A, Langer A. Relation of direct assessment of cardiac autonomic function with metaiodobenzylguanidine imaging to heart rate variability in diabetic mellitus.Am J Cardiol 80: 247–250, 1997.PubMedCrossRefGoogle Scholar
  7. 7.
    Murata K, Sumida Y, Murashima S, Matsumura K, Takeda H, Nakagawa T, et al. A novel method for the assessment of autonomic neuropathy in type 2 diabetic patients: a comparative evaluation of123I-MIBG myocardial scintigraphy and power spectral analysis of heart rate variability.Diabet Med 13: 266–272, 1996.PubMedCrossRefGoogle Scholar
  8. 8.
    Task Force of European Society of Cardiology and North American Society of Pacing and Electrophysiology. Heart rate variability: standards and measurement, physiological interpretation, and clinical use.Circulation 93: 1043–1065, 1996.Google Scholar
  9. 9.
    Ewing DJ, Campbell IW, Clarke BF. Assessment of cardiovascular effects in diabetic autonomic neuropathy and prognostic implications.Ann Intern Med 92 (Pt 2): 308–311, 1980.PubMedGoogle Scholar
  10. 10.
    Oikawa N, Umetsu M, Toyota T, Goto Y. Quantitative evaluation of diabetic autonomic neuropathy by using heart rate variations: relationship between cardiac parasympathetic or sympathetic damage and clinical conditions.Tohoku J exp Med 148: 125–133, 1986.PubMedCrossRefGoogle Scholar
  11. 11.
    Kurata C, Wakabayashi Y, Shouda S, Okayama K, Yamamoto T, Ishikawa A, et al. Enhanced clearance of123Imetaiodobenzylguanidine from the heart in patients with chronic renal failure on dialysis.J Nucl Med 36: 2037–2043, 1995.PubMedGoogle Scholar
  12. 12.
    Kurata C, Shouda S, Mikami T, Wakabayashi Y, Nakano T, Sugiyama T, et al. Comparison of123I-metaiodobenzylguanidine kinetics with heart rate variability and plasma norepinephrine.J Nucl Cardiol 4: 515–523, 1997.PubMedCrossRefGoogle Scholar
  13. 13.
    Kreiner G, Wolzt M, Fasching P, Leita T, Edlmayer A, Korn A, et al. Myocardial m-[l23I]iodobenzylguanidine scintigraphy for the assessment of adrenergic cardiac innervation in patients with IDDM. Comparison with cardiovascular reflex test and relationship to left ventricular function.Diabetes 44: 543–549, 1995.PubMedCrossRefGoogle Scholar
  14. 14.
    Nagamachi S, Jinnouchi S, Nakahara H, Flores LG 2nd, Ohnishi T, Hoshi H, et al.123I-MIBG myocardial scintigraphy in diabetic patients: relationship to autonomic neuropathy.Nucl Med Commun 17: 621–632, 1996.PubMedCrossRefGoogle Scholar
  15. 15.
    Hattori N, Tamaki N, Hayashi T, Masuda I, Kudoh T, Tateno M, et al. Regional abnormality of iodine-123-MIBG in diabetic hearts.J Nucl Med 37: 1985–1990, 1996.PubMedGoogle Scholar
  16. 16.
    Schnell O, Kirsch CM, Stemplinger J, Haslbeck M, Standl E. Scintigraphic evidence for cardiac sympathetic dysinnervation in long-term IDDM patients with and without ECG-based autonomic neuropathy.Diabetologia 38: 1345–1352, 1995.PubMedCrossRefGoogle Scholar
  17. 17.
    Dubois EA, Kam KL, Somsen GA, Boer GJ, de Bruin K, Batink HD, et al. Cardiac iodine-123 metaiodobenzylguanidine uptake in animals with diabetes mellitus and/or hypertension.Eur J Nucl Med 23: 901–908, 1996.PubMedCrossRefGoogle Scholar
  18. 18.
    Ganguly PK, Dhalla KS, Innes IR, Beamish RE, Dhalla NS. Altered norepinephrine turnover and metabolism in diabetic cardiomyopathy.Circ Res 59: 684–693, 1986.PubMedGoogle Scholar
  19. 19.
    Miyanaga H, Yoneyama S, Kamitani T, Kawasaki S, Takahashi T, Kunishige H. Clinical usefulness of123Imetaiodobenzylguanidine myocardial scintigraphy in diabetic patients with cardiac sympathetic nerve dysfunction.Jpn Circ J 59: 599–607, 1995.PubMedGoogle Scholar
  20. 20.
    Chakko S, Mulingtapang RF, Huikuri HV, Kessler KM, Materson BJ, Myerburg RJ. Alterations in heart rate variability and its circadian rhythm in hypertensive patients with left ventricular hypertrophy free of coronary artery disease.Am Heart J 126: 1364–1372, 1993.PubMedCrossRefGoogle Scholar
  21. 21.
    Counihan PJ, Fei L, Bashir Y, Farrell TG, Haywood GA, McKenna WJ. Assessment of heart rate variability in hypertrophic cardiomyopathy. Association with clinical and prognostic features.Circulation 88: 1682–1690, 1993.PubMedGoogle Scholar
  22. 22.
    Bigger JT Jr, Fleiss JL, Steinman RC, Rolnitzky LM, Schneider WJ, Stein PK. RR variability in healthy, middleaged persons compared with patients with chronic coronary heart disease or recent acute myocardial infarction.Circulation 91: 1936–1943, 1995.PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • Akihiko Uehara
    • 1
  • Chinori Kurata
    • 1
  • Toshihiko Sugi
    • 1
  • Tadashi Mikami
    • 1
  • Sakae Shouda
    • 1
  1. 1.Department of Medicine IIIHamamatsu University School of MedicineHamamatsuJAPAN

Personalised recommendations