Annals of Nuclear Medicine

, Volume 13, Issue 3, pp 161–167

Comparison of three PET dopamine D2-like receptor ligands, [11C]raclopride, [11C]nemonapride and [11C]N-methylspiperone, in rats

  • Kiichi Ishiwata
  • Nobutaka Hayakawa
  • Nobuo Ogi
  • Keiichi Oda
  • Hinako Toyama
  • Kazutoyo Endo
  • Akira Tanaka
  • Michio Senda
Original Article
  • 69 Downloads

Abstract

We studied the tracer kinetics of three dopamine D2-like receptor ligands, [11C]raclopride ([11C]RAC), [11C]nemonapride ([11C]NEM) and [11C]N-methylspiperone ([11C]MSP), in anesthetized rats by tissue dissection,ex vivo ARG and PET in order to clarify their characteristics for PET imaging. Thein vivo affinity of the three ligands for the striatum ([11C]MSP > [11C]NEM > [11C]RAC) obeyed thein vitro affinity for dopamine D2 receptors. The affinity of [11C]RAC and [11C]MSP for the cerebellum was very low, but the affinity of [11C]NEM for the cerebellum was compatible to that for the cortex and was not to be ignored. Also the affinity of [11C]MSP for the cortex was relatively high. [11C]RAC showed the highest selectivity. The striatal PET image with [11C]RAC was clearer than that with [11C]NEM or [11C]MSP, but the activity decreased much faster than that measured by tissue dissection because of the partial volume effect. The striatal activity with [11C]NEM remained high and that with [11C]MSP gradually increased. [11C]RAC and [11C]MSP, but not [11C]NEM, showed a high accumulation in the periorbital region.

Key words

raclopride nemonapride N-methylspiperone dopamine D2-like receptor rat PET 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Farde L, Pauli S, Hall H, Eriksson L, Halldin C, Högberg T, et al. Selective binding of11C-raclopride in living human brain—a search for extrastriatal central D2-dopamine receptors by PET.Psychopharmacology 94: 471–478, 1988.PubMedCrossRefGoogle Scholar
  2. 2.
    Köhler C, Hall H, Ögren S-V, Gawell L. Specificin vitro andin vivo binding of3H-raclopride. A potent substituted benzamide drug with high affinity for dopamine D-2 receptors in the rat brain.Biochem Pharmacol 34: 2251–2259, 1985.PubMedCrossRefGoogle Scholar
  3. 3.
    Wagner HN, Burns HD, Dannals RF, Wong DF, Langstrom B, Duelfer T, et al. Imaging dopamine receptors in the human brain by positron emission tomography.Science 221: 1264–1266, 1993.CrossRefGoogle Scholar
  4. 4.
    Hatano K, Ishiwata K, Kawashima K, Hatazawa J, Itoh M, Ido T. D.2-dopamine receptor specific brain uptake of carbon-11-labeled YM-09151-2.J Nucl Med 30: 515–522, 1989.PubMedGoogle Scholar
  5. 5.
    Hatazawa J, Hatano K, Ishiwata K, Itoh M, Ido T, Kawashima K, et al. Measurement of D2 dopamine receptor-specific carbon-11-YM-01951-2 binding in the canine brain by PET: Importance of partial volume correction.J Nucl Med 32: 713–718, 1991.PubMedGoogle Scholar
  6. 6.
    Itoh M, Yamaguchi S, Meguro K, Fujiwara T, Iwata R, Ido T, et al. Neuroreceptor PET; Assessment of dopamine neurotransmission in dementia.In Brain, Heart and Tumor Imaging. Updated PET and MRI, Ochi H, et al. (ed.), Amsterdam, Elsevier Science, pp. 101–105, 1995.Google Scholar
  7. 7.
    Meguro K, Itoh M, Yanai K, Takase K, Yamaguchi S, Ido T, et al. Psychiatric wandering behavior in dementia patients correlated with increased striatal dopamine D2 receptor as shown by [11C]YM-09151-2 and positron emission tomography.Eur J Neurol 4: 221–226, 1997.Google Scholar
  8. 8.
    Ishiwata K, Onoguchi K, Noguchi J, Toyama H, Senda M. Effects of reserpine treatment on the dopamine receptor binding of [3H/11C]nemonapride in the mouse and rat brain.Ann Nucl Med 11: 21–26, 1997.PubMedCrossRefGoogle Scholar
  9. 9.
    Hall H, Wedel I, Halldin C, Kopp J, Farde L. Comparison of thein vitro receptor binding properties of N-[3H]methylspiperone and [3H]raclopride to rat and human brain membranes.J Neurochem 55: 2048–2057, 1990.PubMedCrossRefGoogle Scholar
  10. 10.
    Inoue O, Kobayashi K, Tsukada H, Itoh T, Längström B. Difference inin vivo receptor binding between [3H]/N-methylspiperone and [3H]raclopride in reserpine-treated mouse brain.J Neural Transm 85: 1–10, 1991.CrossRefGoogle Scholar
  11. 11.
    Young LT, Wong DF, Goldman S, Minkin E, Chen C, Matsumura K, et al. Effects of endogenous dopamine on kinetics of [3H]/V-methylspiperone and [3H]raclopride binding in the rat brain.Synapse 9: 188–194, 1991.PubMedCrossRefGoogle Scholar
  12. 12.
    Terai M, Hidaka K, Nakamura Y. Comparison of [3H]YM-09151-2 with [3H]spiperone and [3H]raclopride for dopamine D-2 receptor binding to rat striatum.Eur J Pharmacol 173: 177–182, 1989.PubMedCrossRefGoogle Scholar
  13. 13.
    Frost JJ, Smith AC, Kuhar MJ, Dannals RF, Wagner HN Jr.In vivo binding of3H-N-methylspiperone to dopamine and serotonin receptors.Life Sci 40: 987–995, 1987.PubMedCrossRefGoogle Scholar
  14. 14.
    Nordström A-L, Farde L, Nyberg S, Karlsson P, Halldin C, Sedvall G. D1, D2, and 5-HT2 receptor occupancy in relation to clozapine serum concentration: a PET study of schizophrenic patients.Am J Psychia 152: 1444–1449, 1995.Google Scholar
  15. 15.
    Goyer PF, Berridge MS, Morris ED, Semple WE, Compton-Toth B A, Schulz SC, et al. PET measurements of neuroreceptor occupancy by typical and atypical neuroleptics.J Nucl Med 37: 1122–1127, 1996.PubMedGoogle Scholar
  16. 16.
    Nyberg S, Farde L, Halldin C. A PET study of 5-HT2 and D2 dopamine receptor occupancy induced by olanzapine in healthy subjects.Neuropsychopharmacology 16: 1–7, 1997.PubMedCrossRefGoogle Scholar
  17. 17.
    Seeman P, Guan HC, Van Tol HHM. Dopamine D4 receptors elevated in schizophrenia.Nature 365: 441–445, 1993.PubMedCrossRefGoogle Scholar
  18. 18.
    Seeman P, Van Tol HHM. Dopamine D4-like receptor elevation in schizophrenia: cloned D2 and D4 receptors cannot be discriminated by raclopride competition against [3H]nemonapride.J Neurochem 64: 1413–1415, 1995.PubMedGoogle Scholar
  19. 19.
    Van Tol HHM, Bunzow JR, Guan HC, Sunahara RK, Seeman P, Niznik HB, et al. Cloning of the gene for a human dopamine D4 receptor with high affinity for the antipsychotic clozapine.Nature 350: 610–614, 1991.PubMedCrossRefGoogle Scholar
  20. 20.
    Seeman P, Guan HC, Van Tol HHM. Schizophrenia: elevation of dopamine D4-like sites, using [3H]nemonapride and [125I]epidepride.Eur J Pharmacol 286: R3-R5, 1995.PubMedCrossRefGoogle Scholar
  21. 21.
    Reynolds GP, Mason SL. Absence of detectable striatal dopamine D4 receptors in drug-treated schizophrenia.Eur J Pharmacol 281: R5-R6, 1995.PubMedCrossRefGoogle Scholar
  22. 22.
    Reynolds GP. Dopamine D4 receptors schizophrenia?J Neurochem 66: 881–882, 1996.PubMedGoogle Scholar
  23. 23.
    Helmeste D, Tang SW, Fang H, Li M. Brain σ receptors labelled by [3H]nemonapride.Eur J Pharmacol 301: R1-R3, 1996.PubMedCrossRefGoogle Scholar
  24. 24.
    Tang SW, Helmeste D, Fang H, Li M, Vu R, Bunney W Jr, et al. Differential labeling of dopamine and sigma sites by [3H]nemonapride and [3H]raclopride in postmortem human brains.Brain Res 765: 7–12, 1997.PubMedCrossRefGoogle Scholar
  25. 25.
    Ujike H, Akiyama K, Kuroda S. [3H]YM-09151-2 (nemonapride), a potent radioligand for both sigma1 and sigma2 receptor subtypes.Neuroreport 7: 1057–1061, 1996.PubMedCrossRefGoogle Scholar
  26. 26.
    Ishiwata K, Ogi N, Tanaka A, Senda M. Quantitativeex vivo andin vitro receptor autoradiography using11C-labeled ligands and an imaging plate: a study with a dopamine-D2 like receptor ligand [11C]nemonapride.Nucl Med Blol 26: 291–296, 1999.CrossRefGoogle Scholar
  27. 27.
    Cutler PD, Cherry SR, Hoffman EJ, Digby WM, Phelps ME. Design features and performance of a PET system for animal research.J Nucl Med 33: 595–604, 1992.PubMedGoogle Scholar
  28. 28.
    Watanabe M, Uchida H, Okada H, Shimizu K, Satoh N, Yoshikawa E, et al. A high resolution PET for animal studies.IEEE Trans Med Imag 11: 577–580, 1992.CrossRefGoogle Scholar
  29. 29.
    Marriott CJ, Cadorette JE, Lecomte R, Scasnar V, Rousseau J, van Lier JE. High-resolution PET imaging and quantitation of pharmaceutical biodistributions in a small animal using avalanche photodiode detectors.J Nucl Med 35: 1390–1397, 1994.PubMedGoogle Scholar
  30. 30.
    Bloomfield PM, Myers R, Hume SP, Spinks TJ, Lammertsma AA, Jones T. Three-dimensional performance of a smalldiameter positron emission tomograph.Phys Med Biol 42: 389–400, 1997.PubMedCrossRefGoogle Scholar
  31. 31.
    Hume SP, Lammertsma AA, Myers R, Rajeswaran S, Bloomfield PM, Ashworth S, et al. The potential of highresolution positron emission tomography to monitor striatal dopaminergic function in rat models of disease.J Neurosci Methods 67: 103–122, 1996.PubMedGoogle Scholar
  32. 32.
    Fricker RA, Torres EM, Hume SP, Myers R, Opacka-Juffrey J, Ashworth S, et al. The effects of donor stage on the survival and function of embryonic striatal grafts in the adult rat brain. II. Correlation between positron emission tomography and reaching behaviour.Neuroscience 79: 711–721, 1997.PubMedCrossRefGoogle Scholar
  33. 33.
    Tsukada H, Kreuter J, Maggos CE, Unterwald EM, Kakiuchi T, Nishiyama S, et al. Effects of binge pattern cocaine administration on dopamine D1 and D2 receptors in the rat brain: anin vivo study using positron emission tomography.J Neurosci 16: 7670–7677, 1996.PubMedGoogle Scholar
  34. 34.
    Maggos CE, Tsukada H, Kakiuchi T, Nishiyama S, Myers JE, Kreuter J, et al. Sustained withdrawal allows normalization ofin vivo [11C]N-methylspiperone dopamine D2 receptor binding after chronic binge cocaine: a positron emission tomography study in rats.Neuropsychopharmacology 19: 145–153, 1998.CrossRefGoogle Scholar
  35. 35.
    Suzuki K, Inoue O, Tamate K, Mikado F. Production of 3-N-[11C]methylspiperone with high specific activity and high radiochemical purity for PET studies: suppression of its radiolysis.Appl Radiat hot 41: 593–599, 1990.CrossRefGoogle Scholar
  36. 36.
    Paxinos G, Watson C.The Rat Brain in Stereotaxic Coordinates. 2nd ed., San Diego, Academic Press, Inc., 1986.Google Scholar
  37. 37.
    Kuge Y, Minematsu K, Hasegawa Y, Yamaguchi T, Mori H, Matsuura H, et al. Positron emission tomography for quantitative determination of glucose metabolism in normal and ischemic brains in rats: an insoluble problem by the Harderian glands.J Cereb Blood Flow Metab 17: 116–120, 1997.PubMedCrossRefGoogle Scholar
  38. 38.
    Ouchi Y, Tsukada H, Kakiuchi T, Nishiyama S, Futatsubashi M. Changes in cerebral blood flow and postsynaptic muscarinic cholinergic activity in rats with bilateral carotid artery ligation.J Nucl Med 39: 198–202, 1998.PubMedGoogle Scholar
  39. 39.
    Onoe H, Inoue O, Suzuki K, Tsukada H, Itoh T, Mataga N, et al. Ketamine increases the striatalN-[11C]methylspiperone bindingin vivo: positron emission tomography study using conscious rhesus monkey.Brain Res 663: 191–198, 1994.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • Kiichi Ishiwata
    • 1
  • Nobutaka Hayakawa
    • 1
    • 2
  • Nobuo Ogi
    • 1
    • 2
  • Keiichi Oda
    • 1
  • Hinako Toyama
    • 1
  • Kazutoyo Endo
    • 2
  • Akira Tanaka
    • 2
  • Michio Senda
    • 1
  1. 1.Positron Medical CenterTokyo Metropolitan Institute of GerontologyTokyoJapan
  2. 2.Showa College of Pharmaceutical SciencesJapan

Personalised recommendations