Annals of Nuclear Medicine

, Volume 11, Issue 3, pp 233–241 | Cite as

Noninvasive identification of left ventricular involvements in arrhythmogenic right ventricular dysplasia: Comparison of123I-MIBG,201TlCl, magnetic resonance imaging and ultrafast computed tomography

  • Nobukazu Takahashi
  • Yoshio Ishida
  • Masakazu Maeno
  • Yoshiaki Hirose
  • Shigeo Kawano
  • Shyuji Fukuoka
  • Kohei Hayashida
  • Sachio Kurbayashi
  • Seiki Hamada
  • Naoaki Yamada
  • Makoto Takamiya
  • Katuro Shimomura
  • Tohru Ohe
Original Article

Abstract

We examined the feasibility of myocardial123I-MIBG,201TlCl, magnetic resonance imaging (MRI) and ultrafast computed tomography (UFCT) for the early detection of left ventricular involvements in 15 patients with arrhythmogenic right ventricular dysplasia (ARVD). Radionuclide ventriculography (RNV) and myocardial imaging with123I-MIBG,201TlCl, MRI and UFCT were performed in all 15 patients and in 10 normal subjects.

The patients’ scans were visually interpreted by two nuclear medicine physicians taking into consideration the extent score (ES) and severity score (SS) calculated by using the bull’s-eye view in relation to normal data derived from the normal subjects. The left ventricular ejection fraction (LVEF) was measured by RNV. Fourteen (93%) patients showed regional123I-MIBG defects, while 12 (80%) patients showed regional201TlCl defects. The ES and SS were higher in123I-MIBG than201TlCl (ES: 31.5± 18.5 vs. 17.5+18.2, p < 0.01, SS: 34.8±42.2 vs. 16.9±37.5, p< 0.01). Abnormal UFCT and MRI findings suggesting fatty involvements of the LV myocardium were demonstrated in 7 patients (Group B), while 7 patients showed regional123I-MIBG defects without abnormal UFCT and MRI findings (Group A).123I-MIBG was significantly more sensitive than UFCT and MRI (p< 0.05), although one patient, an exception, showed abnormal UFCT findings for the apex of the LV myocardium without abnormal123I-MIBG and MRI findings. The LVEF, as a measure of LV systolic function, was better preserved in Group A than in Group B (59.3±3.6 vs. 45.8±5.8, p< 0.01).

The present findings indicated that myocardial imaging with123I-MIBG sensitively detects myocardial damage in patients with ARVD in the early stage when cardiac systolic function is still preserved.

Key words

arrhythmogenic right ventricular dysplasia 123I-MIBG 201TlCl magnetic resonance imaging ultrafast computed tomography imaging 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Marcus FI, Fontaine GH, Guiraudon G, Frank R, Laurenceau JL, Malergue C, et al. Right ventricular dysplasia. A report of 24 adult cases.Circulation 65: 384–398, 1982.PubMedGoogle Scholar
  2. 2.
    Fontaine G, Fontaliran F, Linares-cruz E, Chomette G, Grosgogeat Y.Cardiac Arrhythmias;Recent Progress in Investigation and Management. Elsevier Science Publishers, pp. 189–202, 1988.Google Scholar
  3. 3.
    Furlanello F, Bettini R, Bertoldi A, Vergara G, Visona L, Durante GB, et al. Arrhythmia patterns in athletes with arrhythmogenic right ventricular dysplasia.Eur Heart J 10 (suppl D): 15–19, 1989.Google Scholar
  4. 4.
    Wichter T, Borggrefe M, Haverkamp W, Chen X, Breithardt G. Efficacy of antiarrhythmic drugs in patients with arrhythmogenic right ventricular disease: results in patients with inducible and noninducible ventricular tachycardia.Circulation 86: 29–37, 1992.PubMedGoogle Scholar
  5. 5.
    Glowniak JV, Turner FE, Gray LL, Palac RT, Lagunas-Solar MC, Woodward WR. Iodine-123 metaiodobenzyl-guanidine imaging of the heart in idiopathic congestive cardiomyopathy and cardiac transplants.J Nucl Med 30: 1182–1191, 1989.PubMedGoogle Scholar
  6. 6.
    Gohl K, Feistel H, Weikl A, Bachmann K, Wolf F. Congenital myocardial sympathetic dysinnervation (CMSD)—a structural defect of idiopathic long QT syndrome.Pace 14: 1544–1553, 1991.PubMedGoogle Scholar
  7. 7.
    Kline RC, Swanson DP, Wieland DM. Myocardial imaging in man with I-123-metaiodobenzylguanidine.J Nucl Med 22: 129–132, 1981.PubMedGoogle Scholar
  8. 8.
    Merlet P, Valette H, Dubois-Rande J-L, Moyse D, Duboc D, Dove P, et al. Prognostic value of cardiac metaiodobenzylguanidine imaging in patients with heart failure.J Nucl Med 33: 471, 1992.PubMedGoogle Scholar
  9. 9.
    Stanton MS, Touli MM, Radtke NL. Regional sympathetic denervation after myocardial infarction in humans detected noninvasively using I-123 metaiodobenzylguanidine.J Am Coll Cardiol 14: 1519–1526, 1989.PubMedCrossRefGoogle Scholar
  10. 10.
    Stark RP, McGinn AL, Wilson RF. Chest pain in cardiac-transplant recipients.N Engl J Med 324: 1791–1794, 1991.PubMedGoogle Scholar
  11. 11.
    Wellman HN, Zipes DP. Cardiac sympathetic imaging with radioiodinated metaiodobenzylguanidine (MIBG).Prog cardiol 3: 161–174, 1989.Google Scholar
  12. 12.
    Lerch H, Bartenstein P, Wichter T, Hindricks M, Borggrefe G, Breithardt G, et al. Sympathetic innervation of the left ventricle is impaired in arrhythmogenic right ventricular disease.Eur J Nucl Med 20: 207–212, 1993.PubMedCrossRefGoogle Scholar
  13. 13.
    Wichter T, Hindricks G, Lerch H, Bartenstein P, Borggrefe M, Schober O, et al. Regional myocardial sympathetic dysinnervation in arrhythmogenic right ventricular cardiomyopathy: an analysis using123I-meta-iodobenzyl-guanidine scintigraphy.Circulation 89: 667–683, 1994.PubMedGoogle Scholar
  14. 14.
    Wichter T, Borggrefe M, Breithardt G. Die arrhythmogene rechtsventrikulare Erkrankung. ZKardiol 80: 107–125, 1991.PubMedGoogle Scholar
  15. 15.
    Pinamonti B, Salvi A, Silvestri F, Sinagra G, Camerini F. Left ventricular involvement in right ventricular cardiomyopathy.Eur Heart J 10 (suppl D): 20–21, 1989.PubMedGoogle Scholar
  16. 16.
    Hamada H, Takamiya M, Ohe T, Ueda H. Arrhythmogenic right ventricular dysplasia: evaluation with electron-beam CT.Radiology 187: 723–727, 1993.PubMedGoogle Scholar
  17. 17.
    Sotozono K, Imahara S, Masuda H, Akashi K, Kamegai M, Miyake F, et al. Detection of fatty tissue in the myocardium by using computerized tomography in a patient with arrhythmogenic right ventricular dysplasia.Heart Vessels Suppl 5: 59–61, 1990.PubMedGoogle Scholar
  18. 18.
    Klersy C, Raisaro A, Salerno JA, Montemartini C, Campani R. Arrhythmogenic right and left ventricular disease: evaluation by computed tomography and nuclear magnetic resonance imaging.Eur Heart J 10 (suppl D): 33–36, 1989.PubMedGoogle Scholar
  19. 19.
    Casolo GC, Poggesi L, Boddi M, Fazi A, Bartolozzi C, Lizzadro G, et al. ECG-gated magnetic resonance imaging in right ventricular dysplasia.Am Heart J 113: 1245–1248, 1987.PubMedCrossRefGoogle Scholar
  20. 20.
    Stirner H, Buell U, Kleinhans E. Three-dimensional ROI-based quantification of stress/rest201Tl myocardial SPET: presentation of method.J Nucl Med 25: 128–133, 1986.Google Scholar
  21. 21.
    Kubota M. Quantitative assessment of infarct size with the unfolded map method of201Tl myocardial SPECT in patients with acute myocardial infarction.KAKU IGAKU (Jpn J Nucl Med) 29: 333–346, 1992.Google Scholar
  22. 22.
    Suzuki J, Sakamoto T, Takenaka K, Kawakubo K, Amano K, Takahashi H, et al. Assessment of the thickness of the right ventricular free wall by magnetic resonance imaging in patients with hypertrophic cardiomyopathy.Br Heart J 60: 440–445, 1988.PubMedCrossRefGoogle Scholar
  23. 23.
    Suzuki J, Sakamoto T, Takenaka K, Amano K, Amano W, Igarashi T, et al. New subtype of apical hypertrophic cardiomyopathy identified with nuclear magnetic resonance imaging as an underlying cause of markedly inverted T waves.J Am Coll Cardiol 22: 1175–1181, 1993.PubMedCrossRefGoogle Scholar
  24. 24.
    Fichett DH, Sugrue DD, Macarthur CG, Oakley CM. Right ventricular dilated cardiomyopathy.Br Heart J 51: 25–29, 1984.CrossRefGoogle Scholar
  25. 25.
    Manyari DE, Klein GJ, Gulamhusein S, Boughner D, Guiraudon GM, Wyse G, et al. Arrhythmogenic right ventricular dysplasia: a generalised cardiomyopathy?Circulation 68: 251–257, 1983.PubMedGoogle Scholar
  26. 26.
    Zipes DP. Ischemic modulation of myocardial innervation. GIta Cardiol 22: 615–621, 1992.Google Scholar
  27. 27.
    Mitrani DR, Klein LS, Miles WM, Burt RW, Wellman HN, Zipes DP. Regional cardiac sympathetic denervation in patients with ventricular tachycardia in the absence of coronary artery disease.J Am Coll Cardiol 22: 1344–1353, 1993.PubMedGoogle Scholar
  28. 28.
    Inoue H, Zipes DP. Results of sympathetic denervation in the canine heart: supersensitivity that may be arrhythmogenic.Circulation 75: 877–887, 1987.PubMedGoogle Scholar
  29. 29.
    Maeno M, Ishida Y, Shimonagata T, Hayashida K, Toyama T, Hirose Y, et al. The significance of201Tl/123I-MIBG (metaiodobenzylguanidine) mismatched myocardial regions for predicting ventricular tachycardia in patients with idiopathic dilated cardiomyopathy.KAKU IGAKU (Jpn J Nucl Med) 30: 1221–1229, 1993.Google Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Nobukazu Takahashi
    • 1
  • Yoshio Ishida
    • 1
  • Masakazu Maeno
    • 1
  • Yoshiaki Hirose
    • 1
  • Shigeo Kawano
    • 1
  • Shyuji Fukuoka
    • 1
  • Kohei Hayashida
    • 1
  • Sachio Kurbayashi
    • 1
  • Seiki Hamada
    • 1
  • Naoaki Yamada
    • 1
  • Makoto Takamiya
    • 1
  • Katuro Shimomura
    • 2
  • Tohru Ohe
    • 3
  1. 1.Department of RadiologyNational Cardiovascular CenterOsakaJapan
  2. 2.Department of CardiologyNational Cardiovascular CenterJapan
  3. 3.Department of Cardiovascular MedicineOkayama University Medical SchoolJapan

Personalised recommendations