Applied Magnetic Resonance

, Volume 8, Issue 2, pp 207–228

Nitrogen in diamond studied by magnetic resonance

  • J. M. Baker
  • M. E. Newton
Article

Abstract

Nitrogen is the most common substitutional impurity in diamond. Much of the information about the many different defects in diamond containing nitrogen atoms has been found by magnetic resonance. This information is reviewed, and the possibility is discussed of finding information about more such centres, mechanisms of their formation and alteration by external influences. The unambiguously identified centres involve either: (a) only substitutional nitrogen atoms, up to three in number, (b) a combination, of substitutional nitrogen atoms and vacancies, (c) substitutional nitrogen and other foreign atoms. Speculations are made about the atomic models of less well characterized centres, as well as about some simple possible centres which have not yet been identified.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Isoya J., Kanda H., Uchida Y.: Phys. Rev.B42, 9843–9842 (1990); Strong, H.M.: U.S. Patent No. 4 030 066 (1977)ADSCrossRefGoogle Scholar
  2. [2]
    Smith W.V., Sorokin P.P., Gelles I.L., Lasher G.J.: Phys. Rev.115, 1546–1552 (1959)CrossRefADSGoogle Scholar
  3. [3]
    Cox A., Newton M.E., Baker J.M.: J. Phys.: Condens. Matter6, 551–563 (1994)CrossRefADSGoogle Scholar
  4. [4]
    van Wyk J.A., Loubser J.H.N., Newton M.E., Baker J.M.: J. Phys.: Condens. Matter4, 2651–2662 (1992)CrossRefADSGoogle Scholar
  5. [5]
    Morton J.R., Preston K.F.: J. Magn. Reson.30, 577–582, (1978)Google Scholar
  6. [6]
    Baldwin Jr. J.A.: Phys. Rev. Lett.10, 220–222 (1963)CrossRefADSGoogle Scholar
  7. [7]
    Loubser J.H.N., van Wyk J.A.: Rep. Prog. Phys.41, 1201–1248 (1978)CrossRefADSGoogle Scholar
  8. [8]
    Ammerlaan C.A.J.: Landolt-Bornstein Numercial Data and Functional Relationships in Science and Technology, New Series III (Madelung O., Schulz M., eds.), vol. 22b, pp. 117–206. Berlin: Springer 1990.Google Scholar
  9. [9]
    Clark C.D., Collins A.T., Woods G.S. in: The Properties of Natural and Synthetic Diamond (Field J.E., ed.), pp. 35–79. London: Academic Press 1992.Google Scholar
  10. [10]
    Woods G.S., Purser G.C., Mtimkulu A.S.S., Collins A.T.: J. Phys. Chem. Solids51, 1191–1197 (1990); Woods G.S., van Wyk J.A., Collins A.T.: Phil. Mag.B62, 589–595 (1990); Woods G.S.: Proc. Roy. Soc. Lond.A407, 219–238 (1986)CrossRefADSGoogle Scholar
  11. [11]
    Evans T. in: The Properties of Natural and Synthetic Diamond (Field J.E., ed.), pp. 259–290. London: Academic Press 1992.Google Scholar
  12. [12]
    Davies G.: J. Phys. C: Solid State Phys.9, L537-L542 (1959)CrossRefGoogle Scholar
  13. [13]
    Kaiser W., Bond W.L.: Phys. Rev.115, 857–863 (1959)CrossRefADSGoogle Scholar
  14. [14]
    Briddon P.R., Heggie M.I., Jones R.: Proc. 2nd Int. Conf. on New Diamond Science and Technology (Messier R., Glass T.J., Butler J.E., Roy R., eds.), pp. 63–68. Mater. Res. Soc. Symp. Int. Proc. NDST2-C3 Pittsburgh, PA 1991.Google Scholar
  15. [15]
    Lang A.R., Moore M., Makepeace A.P.W., Wierzchowski W., Welbourn C.M.: Phil. Trans. Roy. Soc. A337, 497–520 (1991); Kiflawi I., Mayer A.E., Spear P.M., van Wyk J.A., Woods G.S.: Phil. Mag. B69, 1141–1148 (1994); Boyd S.R., Kiflawi I., Woods G.S.: Phil. Mag. B69, 1149–1154 (1994)CrossRefADSGoogle Scholar
  16. [16]
    Ammerlaan C.A.J., Burgemeister E.A.: Phys. Rev. B47, 954–957 (1981)CrossRefADSGoogle Scholar
  17. [17]
    Loubser J.H.N., van Ryneveld W.P.: Brit. J. Appl. Phys.18, 1029–1031 (1967)CrossRefADSGoogle Scholar
  18. [18]
    O’Konshi C.T., Flautt T.J.: J. Chem Phys.27, 815–816 (1957)CrossRefADSGoogle Scholar
  19. [19]
    Lawson S.C., Kanda M.: J. Appl. Phys.73, 3967–3973 (1993)CrossRefADSGoogle Scholar
  20. [20]
    van Wyk J.A.: private communication (1994)Google Scholar
  21. [21]
    van Wyk J.A., Loubser J.H.N.: J. Phys. C: Solid State Phys.16, 1501–1506 (1983)CrossRefADSGoogle Scholar
  22. [22]
    Tucker O.D., Newton M.E., Baker J.M.: private communication (1994)Google Scholar
  23. [23]
    Shcherbakova M.Ya., Sobolev E.V., Samsonenko V.K., Aksenov V.K.: Sov. Phys. Dokl.20, 725–728 (1975); Welbourn C.M., Woods G.S.: private comunication (1977)ADSGoogle Scholar
  24. [24]
    Newton M.E., Baker J.M.: J. Phys.: Condens. Matter3, 3605–3616 (1991)CrossRefADSGoogle Scholar
  25. [25]
    Cox A., Newton M.E., Baker J.M.: J. Phys.: Condens. Matter4, 8119–8130 (1992)CrossRefADSGoogle Scholar
  26. [26]
    Newton M.E., Baker J.M.: J. Phys.: Condens. Matter3, 3591–3603 (1991)CrossRefADSGoogle Scholar
  27. [27]
    Loubser J.H.N., Wright A.C.J.: J. Phys. D: Appl. Phys.6, 1129–1141 (1973)CrossRefADSGoogle Scholar
  28. [28]
    Loubser J.H.N., van Wyk J.A., Welbourn C.M.: J. Phys. C: Solid State Phys.15, 6031–6036 (1982)CrossRefADSGoogle Scholar
  29. [29]
    Davies G., Lawson S.C., Collins A.T., Mainwood A., Sharp S.J.: Phys. Rev. B46, 13157–13170 (1992)CrossRefADSGoogle Scholar
  30. [30]
    Xing-Fei He, Manson N.B., Fisk P.T.H.: Phys. Rev. B47, 8816–8822 (1993)CrossRefADSGoogle Scholar
  31. [31]
    Mita Y., Ohno Y., Kanehara H., Nisida Y., Nakashima T.: J. Phys.: Condens. Matter2, 8567–8574 (1993)CrossRefGoogle Scholar
  32. [32]
    Loubser J.H.N., van Wyk J.A.: private communication (1981)Google Scholar
  33. [33]
    Smith V.W., Gelles I.L., Sorokin P.P.: Phys. Rev. Lett.2, 39–40 (1959)CrossRefADSGoogle Scholar
  34. [34]
    van Wyk J.A., Loubser J.H.N.: J. Phys.: Condens. Matter5, 3019–3026 (1993)CrossRefADSGoogle Scholar
  35. [35]
    de Sa E.S., Davies G.: Proc. Roy. Soc. Lond.A357, 231–251 (1977)CrossRefADSGoogle Scholar
  36. [36]
    Loubser J.H.N., van Wyk J.A.: private communication (1981)Google Scholar
  37. [37]
    van Wyk J.A.: private communication (1994)Google Scholar
  38. [38]
    Newton M.E., Baker J.M.: J. Phys.: Condens. Matter1, 10549–10561 (1989)CrossRefADSGoogle Scholar
  39. [39]
    Madiba C.P.P., Sellschop J.P.F., van Wyk J.A., Annegarn H.J.: private communication (1988)Google Scholar
  40. [40]
    Nadolinny V.A., Yelisseyev A.P.: Diamond and Related Materials3, 17–21 (1993)CrossRefGoogle Scholar
  41. [41]
    Newton M.E., Baker J.M.: J. Phys.: Condens. Matter1, 9801–9803 (1989)CrossRefADSGoogle Scholar
  42. [42]
    Loubser J.H.N.: private communication (1988)Google Scholar
  43. [43]
    van Wyk J.A.: private communication (1991)Google Scholar
  44. [44]
    Mainwood A.M., Larkins F.P., Stoneham A.M.: Solid State Electr.21, 1431–1433 (1978)CrossRefADSGoogle Scholar
  45. [45]
    Lowther J.E., van Wyk J.A.: private communication (1994)Google Scholar
  46. [46]
    Isoya J., Kanda H., Uchida Y., Lawson S.C., Yamasaki S., Itoh H., Morita Y.: Phys. Rev. B45, 1436–1439 (1992)CrossRefADSGoogle Scholar
  47. [47]
    Faulkner E.A., Lomer J.N.: Phil. Mag.7, 1995–2002 (1962): Lomer J.N., Welbourn C.M.: Radiation Effects in Semiconductors, p. 339. Bristol: Institute of Physics 1977.CrossRefADSGoogle Scholar
  48. [48]
    Mainwood A.: Phys. Rev. B49, 7934–7940 (1994)CrossRefADSGoogle Scholar
  49. [49]
    Collins A.T.: J. Phys. C: Solid State Phys.11, L417-L422 (1978); Collins A.T.: J. Phys. C: Solid State Phys.13, 2641–2650 (1980)CrossRefADSGoogle Scholar
  50. [50]
    Mainwood A.: private communication (1994)Google Scholar

Copyright information

© Springer 1995

Authors and Affiliations

  • J. M. Baker
    • 1
  • M. E. Newton
    • 1
  1. 1.Clarendon LaboratoryOxford PhysicsOxfordUK

Personalised recommendations