Applied Magnetic Resonance

, Volume 8, Issue 3–4, pp 373–384 | Cite as

High-field cross polarization NMR from laser-polarized xenon to surface nuclei

  • H. C. Gaede
  • Y. -Q. Song
  • R. E. Taylor
  • E. J. Munson
  • J. A. Reimer
  • A. Pines


A method for NMR investigations of surface nuclei using cross polarization from optically polarized xenon (OPCP) is described. We find this methodology results in enhancement factors of approximately 103 upon application to surface protons. The dynamics of129Xe transfer to protons is examined in some detail, including the time, temperature, and multiple contact dependences of signal intensities. Furthermore, we discuss the sensitivity of the transfer process to spatial diffusion. Finally, we report on application of the OPCP experiment to a low total surface area sample.


Xenon Aerosil Cross Polarization Free Induction Decay Xenon Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Pfeifer H. in: NMR Basic Principles and Progress (Diehl E.F.P., Günther H., Kosfeld R., Seelig J., eds.), vol. 31. Berlin: Springer-Verlag 1994.Google Scholar
  2. [2]
    Ansermet J.-P., Slichter C.P., Sinfelt J.H.: Prog. in NMR Spec.22, 401 (1990)CrossRefGoogle Scholar
  3. [3]
    Bell A.T., Pines A.: NMR Techniques in Catalysis. M. Dekker 1994.Google Scholar
  4. [4]
    Pines A., Gibby M., Waugh J.S.: J. Chem. Phys.59, 569 (1973)CrossRefADSGoogle Scholar
  5. [5]
    Maciel G.E., Sindorf D.W.: J. Am. Chem. Soc.102, 7606 (1980)CrossRefGoogle Scholar
  6. [6]
    Walter T.H., Turner G.L., Oldfield E.: J. Mag. Reson.76, 106–120 (1988)Google Scholar
  7. [7]
    Zumbulyadis N., O’Reilly J.M.: Macromolecules24, 5294 (1991)CrossRefADSGoogle Scholar
  8. [8]
    Long H.W., Gaede H.C., Shore J., Reven L., Bowers C.R., Kritzenberger J., Pietrass T., Pines A., Tang P., Reimer J.A.: J. Am. Chem. Soc.115, 8491 (1993)CrossRefGoogle Scholar
  9. [9]
    Grover B.C.: Phys. Rev. Lett.40, 390 (1978)CrossRefADSGoogle Scholar
  10. [10]
    Bhaskar N.D., Happer W., McClelland T.: Phys. Rev. Lett.49, 25 (1982)CrossRefADSGoogle Scholar
  11. [11]
    Raftery D., Long H., Reven L., Tang P., Pines A.: Chem. Phys. Lett.191, 385 (1992)CrossRefADSGoogle Scholar
  12. [12]
    Raftery D., Reven L., Long H., Pines A., Tang P., Reimer J.: J. Phys. Chem.97, 1649 (1993)CrossRefGoogle Scholar
  13. [13]
    Bowers C.R., Pietraß T., Barash E., Pines A., Grubbs R.K., Alivasatos A.P.: J. Phys. Chem.98, 9400–9404 (1994)CrossRefGoogle Scholar
  14. [14]
    Pietraß T., Gaede H.C., Bifone A., Pines A., Ripmeester J.: unpublished results.Google Scholar
  15. [15]
    Augustine M.P., Zilm K.W. in: Experimental Nuclear Magnetic Resonance Conference, p. 160. Pacific Grove, CA: The Asilomar Conference Center 1994.Google Scholar
  16. [16]
    Gentry J.F.P.: private communication.Google Scholar
  17. [17]
    Bowers C.R., Long H.W., Pietrass T., Gaede H.C., Pines A.: Chem. Phys. Lett.205, 168 (1993)CrossRefADSGoogle Scholar

Copyright information

© Springer 1995

Authors and Affiliations

  • H. C. Gaede
    • 1
  • Y. -Q. Song
    • 1
  • R. E. Taylor
    • 1
  • E. J. Munson
    • 1
  • J. A. Reimer
    • 1
  • A. Pines
    • 1
  1. 1.Materials Sciences Division, Lawrence Berkeley Laboratory and Departments of Chemistry and Chemical EngineeringUniversity of CaliforniaBerkeleyUSA

Personalised recommendations