Applied Magnetic Resonance

, Volume 5, Issue 2, pp 187–205

Microwave Induced Optical Nuclear Polarization at 75 GHz: A quantitative analysis

  • P. F. A. Verheij
  • W. Th Wenckebach
  • J. Schmidt
Article

Abstract

A quantitative analysis of Microwave Induced Optical Nuclear Polarization (MIONP) on crystals of fluorene-h10 doped with phenanthrene-d10 at 75 GHz and 1.4 K is presented. Two effects are studied in detail: the nuclear spin diffusion barrier and the phonon bottleneck. Experiments are presented that allow the identification of the proton spins on fluorene-h10 molecules located inside the nuclear spin diffusion barrier surrounding phenanthrene-d10 molecules excited in the photo-excited triplet state. Using this result the experimental values for the triplet spin-lattice relaxation (SLR) rates and the nuclear SLR rate can be related to each other without any fitting parameter. Microwave frequency and magnetic field modulation are used during MIONP to prove that the triplet SLR is phonon-bottlenecked. Subsequently a quantitative analysis of MIONP in the system fluorene-h10 doped with phenanthrene-d10 is obtained.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Abragam A., Goldman M.: Nuclear Magnetism: Order and Disorder. Oxford: Clarendon Press 1982.Google Scholar
  2. [2]
    Deimling M., Brunner H., Colpa J.P., Dinse K.P., Hausser K.H.: J. Magn. Reson.39, 185 (1980)Google Scholar
  3. [3]
    van Kesteren H.W., Wenckebach W.Th., Schmidt J., Poulis N.J.: Chem. Phys. Lett.89, 67 (1982); Henstra A., Lin T.-S., Schmidt J., Wenckebach W.Th.: Chem. Phys. Let.165, 6 (1990); van den Heuvel D.J., Henstra A., Lin T.-S., Schmidt J., Wenckebach W.Th.: Chem. Phys. Lett.188, 194 (1992)CrossRefADSGoogle Scholar
  4. [4]
    van Kesteren H.W., Wenckebach W.Th., Schmidt J.: Phys. Rev. Lett.55, 1642 (1985)CrossRefADSGoogle Scholar
  5. [5]
    Khutsishvili G.R.: Sov. Phys. Usp.8, 743 (1966)CrossRefADSGoogle Scholar
  6. [6]
    Bloembergen N.: Physica25, 386 (1949)CrossRefADSGoogle Scholar
  7. [7]
    van Vleck J.H.: Phys. Rev.59, 724 (1941)CrossRefADSMATHGoogle Scholar
  8. [8]
    Kemple M.D. in: Multiple Electron Resonance Spectroscopy (Dorio M.M., Freed J.H., eds.). New York-London: Plenum Press 1979.Google Scholar
  9. [9]
    Hutchison Jr. C.A., McCann V.H.: J. Chem. Phys.61, 820 (1974)CrossRefADSGoogle Scholar
  10. [10]
    Gerkin R.E., Lundstedt A.P., Reppart W.J.: Acta Cryst. C40, 1892 (1984)CrossRefGoogle Scholar
  11. [11]
    Abragam A., Goldman M.: Rep. Prog. Phys.41, 395 (1978)CrossRefADSGoogle Scholar
  12. [12]
    van’t Hof C.A., Schmidt J.: Mol. Phys.38, 309 (1979)CrossRefADSGoogle Scholar
  13. [13]
    Strandberg M.W.P.: Phys. Rev.110, 65 (1958)CrossRefADSGoogle Scholar
  14. [14]
    Abragam A., Bleaney B.: Electron Paramagnetic Resonance of Transition Ions. Oxford: Clarendon Press 1970.Google Scholar
  15. [15]
    van Kesteren H.W., Wenckebach W.Th., Disselhorst J.A.J.M.: J. Phys. E: Sci. Instrum.20, 648 (1987)CrossRefADSGoogle Scholar
  16. [16]
    Hansen A.D.A., Wolfe J.P.: Phys. Lett.66A, 320 (1978)ADSGoogle Scholar
  17. [17]
    van der Zon C.M.B., Marks J., Wenckebach W.Th., Poulis N.J.: Physica145B, 153 (1987)Google Scholar
  18. [18]
    van Kesteren H.W., Wenckebach W.Th., Schmidt J.: Chem. Phys. Lett.121, 440 (1985)CrossRefADSGoogle Scholar
  19. [19]
    Schmidt J.: Relaxation Processes in Molecular Excited States (Fünfschilling J., ed.). Kluwer 1989.Google Scholar

Copyright information

© Springer 1993

Authors and Affiliations

  • P. F. A. Verheij
    • 1
  • W. Th Wenckebach
    • 1
  • J. Schmidt
    • 2
  1. 1.Faculty of Applied PhysicsDelft University of TechnologyDelftThe Netherlands
  2. 2.Huygens laboratoryLeidenThe Netherlands

Personalised recommendations