Advertisement

Applied Magnetic Resonance

, Volume 20, Issue 1–2, pp 275–287 | Cite as

An electron paramagnetic resonance study of nitrogen dioxide dissolved in water, carbon tetrachloride and some organic compounds

  • S. N. Mendiara
  • A. Sagedahl
  • L. J. Perissinotti
Article

Abstract

Electron paramagnetic resonance spectrometry was used to characterize and measure the concentration of nitrogen dioxide dissolved in water, carbon tetrachloride, n-hexane, acetone and benzene at 290 K. Solutions were monitored by ultraviolet spectrometry. We measured the equilibrium constant for N2O4 plus NO2 dissolved in n-hexane and carbon tetrachloride. In order to investigate the formation of organic nitroxide type intermediates, some experiments were designed to examine the role of NO and NO plus NO2 mixtures.

Keywords

Electron Paramagnetic Resonance DPPH Carbon Tetrachloride Electron Paramagnetic Resonance Signal Nitrogen Dioxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Weil J.A., Bolton J.R., Wertz J.E.: Electron Spin Resonance, p. 349. New York: Wiley 1994; Bolton J.R., Wertz J.E.: Electron Spin Resonance. Elementary Theory and Practical Applications, p. 208. New York: McGraw-Hill 1972.Google Scholar
  2. 2.
    Castle J.G., Beringer R.: Phys. Rev.80, 114 (1950)CrossRefADSGoogle Scholar
  3. 3.
    Schaafsma T.J.: Chem. Phys. Lett.1, 16 (1967)CrossRefADSGoogle Scholar
  4. 4.
    Burch D.S., Tanttila W.H., Masataka M.: J. Chem. Phys.61, 1607–1612 (1974)CrossRefADSGoogle Scholar
  5. 5.
    Holm T., McConnell, Davidson: Bull. Am. Phys. Soc., Ser. II1956, 397.Google Scholar
  6. 6.
    Bird G.R., Baird J.C., Williams R.B.: J. Chem. Phys.28, 738–739 (1958)CrossRefADSGoogle Scholar
  7. 7.
    Shiotani M., Freed J.H.: J. Phys. Chem.85, 3873–3883 (1981)CrossRefGoogle Scholar
  8. 8.
    Iwasaki M., Eda B.: J. Phys. Chem.86, 2084–2088 (1982)CrossRefGoogle Scholar
  9. 9.
    Zomack M., Baberschke K.: Surface Sci.178, 618–624 (1986)CrossRefADSGoogle Scholar
  10. 10.
    Bielski B.H.J., Gebicki J.M.: Atlas of Electron Spin Resonance Spectra, p. 372. New York: Academic Press 1967.Google Scholar
  11. 11.
    Brown J.F. Jr.: J. Am. Chem. Soc.79, 2480 (1957)CrossRefGoogle Scholar
  12. 12.
    Rockenbauer A., Korecz L.: J. Chem. Soc., Chem. Commun.1994, 145.Google Scholar
  13. 13.
    Schlessinger G.G.: Inorganic Laboratory Preparations, p. 25. New York: Chemical Publishing Company 1962.Google Scholar
  14. 14.
    Brauer G.: Química Inorgánica Preparativa, p. 303. Barcelona, Bs. As.: Editorial Reverté, S.A. 1958.Google Scholar
  15. 15.
    Rand M.C., Greenberg A.E., Taras M.J.: Standard Methods for the Examination of Water and Waste Water, 14th edn., p. 434. New York: American Public Health Association 1976.Google Scholar
  16. 16.
    Saltzman B.E.: Anal. Chem.26, 1949–1955 (1954)CrossRefGoogle Scholar
  17. 17.
    Poole C.P. Jr.: Electron Spin Resonance. A Comprehensive Treatise on Experimental Techniques, p. 798. New York: Interscience Publishers, Wiley 1967Google Scholar
  18. 18.
    Yordanov N.D.: Appl. Magn. Reson.10, 339–350 (1996)CrossRefGoogle Scholar
  19. 19.
    Fessenden R.W., Meisel D., Camaioni D.M.: J. Am. Chem. Soc.122, 3773–3774 (2000)CrossRefGoogle Scholar
  20. 20.
    Behar D., Fessenden R.W.: J. Phys. Chem.76, 1710 (1972)CrossRefGoogle Scholar
  21. 21.
    Pace M.D.: J. Phys. Chem.98, 6251–6257 (1994)CrossRefGoogle Scholar
  22. 22.
    Pace M.D., Carmichael A.J.: J. Phys. Chem. A101, 1848–1853 (1997)CrossRefGoogle Scholar
  23. 23.
    Rao C.N.R. in: The Chemistry of the Nitro and Nitroso Groups (Feuer H., ed.), part 1, p. 93. Huntington, New York: Krieger R.E. Publishing Company 1981.Google Scholar
  24. 24.
    Treinin A., Hayon E.: J. Am. Chem. Soc.92, 5821–5828 (1970)CrossRefGoogle Scholar
  25. 25.
    Calvert J.G., Pitts J.N. Jr.: Photochemistry, p. 217. New York: Wiley 1966.Google Scholar
  26. 26.
    Wolak M., Stochel G., Hamza M., van Eldik R.: Inorg. Chem.39, 2018–2019 (2000)CrossRefGoogle Scholar
  27. 27.
    Goldstein S., Czapski G.: J. Am. Chem. Soc.117, 12078–12084 (1995)CrossRefGoogle Scholar
  28. 28.
    Yin Y.: College Chemical Handbook, p. 830. Shandong: Shandong Science and Technology Press 1985; Yu Q., Gao H.: J. Chem. Ed.74, 233–234 (1997)Google Scholar
  29. 29.
    Dean J.A.: Lange’s Handbook of Chemistry, 14th edn. New York: McGraw-Hill 1992.Google Scholar
  30. 30.
    Gabr I., Patel R.P., Symons M.C.R., Wilson M.T.: J. Chem. Soc., Chem. Commun.1995, 915–916.Google Scholar
  31. 31.
    Lewis R.S., Tannenbaum S.R., Deenn W.M.: J. Am. Chem. Soc.117, 3933–3939 (1995)CrossRefGoogle Scholar
  32. 32.
    Williams D.L.H.: Acc. Chem. Res.32, 869–876 (1999)CrossRefGoogle Scholar
  33. 33.
    Ignarro L.J.: Angew. Chem. Int. Ed.38, 1882–1892 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2001

Authors and Affiliations

  • S. N. Mendiara
    • 1
  • A. Sagedahl
    • 1
  • L. J. Perissinotti
    • 1
  1. 1.Department of ChemistryUniversity of Mar del PlataMar del PlataArgentina

Personalised recommendations