Applied Magnetic Resonance

, Volume 12, Issue 2–3, pp 231–245 | Cite as

Multidimensionally resolved pore size distributions

  • J. H. Strange
  • J. B. W. Webber


A novel method of determining median pore size and pore size distributions as a function of spatial position inside a porous sample is described. Pore sizes have been measured with 1-, 2- and 3-dimensional spatial resolution, using NMR cryoporometry in conjunction with magnetic resonance imaging techniques. The method is suitable for pore diameters in the range of 30 Å to over 2000 Å pore diameter, and is based on the technique of freezing a liquid in the pores and measuring the melting temperature by nuclear magnetic resonance. Since the melting point is depressed for crystals of small size, the melting point depression gives a measurement of pore size.


Pore Size Distribution Digital Signal Processor Melting Point Depression Median Pore Size Read Gradient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Jackson C.L., McKenna G.B.: J. Chem. Phys.93, 9002–9011 (1990)CrossRefADSGoogle Scholar
  2. [2]
    Strange J.H., Rahman M., Smith E.G.: Phys. Rev. Lett.71, 21, 358–3591 (1993)CrossRefGoogle Scholar
  3. [3]
    Harris R.K.: Nuclear Magnetic Resonance Spectroscopy. A Physicochemical View. Longman Scientific & Technical 1987.Google Scholar
  4. [4]
    Strange J.H., Webber J.B.: Characterization of Porous Solids by NMR. 12th Specialized Colloque Ampere, Corfu 1995.Google Scholar
  5. [5]
    Norris M.O., Strange J.H.: J. Phys. E2, Series 2, 1106–1108 (1969)CrossRefADSGoogle Scholar
  6. [6]
    Macnair A.: Ph.D. Thesis, University of Kent 1995.Google Scholar
  7. [7]
    Aikens R.S., Kerwin W.J. in: Active RC Filters: Theory and Application (Huelsman L.P., ed.). New York: Dowden, Hutchinson & Ross, Inc., John Wiley & Sons, Inc. 1976Google Scholar
  8. [8]
    Hayes C.E., Scheneck J.F., Mueller O.M., Eash M.: J. Magn. Reson.63, 622–628 (1985)Google Scholar
  9. [9]
    Strange J.H., Halse M.R.: Encyclopedia of NMR, pp. 2472–2481. New York: Wiley, ISBN 0-471 958 395, 1996.Google Scholar
  10. [10]
    Codd S.L.: Ph. D. Thesis, University of Kent 1996.Google Scholar
  11. [11]
    Callaghan P.T.: Principles of Nuclear Magnetic Resonance Microscopy. Oxford: Oxford Science Publications, Clarendon Press 1993.Google Scholar
  12. [12]
    Kroon D.J.: Laboratory Magnet, pp. 186–189. Eindhoven: Philips Technical Library 1968.Google Scholar
  13. [13]
    Rahman H.J.: Ph.D. Thesis, University of Kent 1991.Google Scholar
  14. [14]
    Hoult D.I., Richards R.E.: Proc. Roy. Soc. A344 311 (1975)CrossRefADSGoogle Scholar
  15. [15]
    Creen T.A.P.: M.Sc. Thesis, University of Kent 1994.Google Scholar

Copyright information

© Springer 1997

Authors and Affiliations

  • J. H. Strange
    • 1
  • J. B. W. Webber
    • 1
  1. 1.Physics LaboratoryUniversity of KentCanterburyUK

Personalised recommendations