, Volume 19, Issue 4, pp 733–755 | Cite as

Invasiveness in wetland plants in temperate North America

  • Susan M. Galatowitsch
  • Neil O. Anderson
  • Peter D. Ascher


The spread of invasive taxa, includingLythrum salicaria, Typha × glauca, Myriophyllum spicatum, Phalaris arundinacea, andPhragmites australis, has dramatically changed the vegetation of many wetlands of North America. Three theories have been advanced to explain the nature of plant invasiveness. Aggressive growth during geographic expansion could result because 1) growth is more favorable under new environmental conditions than those of resident locales (environmental constraints hypothesis); 2) herbivores may be absent in the new locale, resulting in selection of genotypes with improved competitive ability and reduced allocation to herbivore defenses (evolution of increased competitive ability hypothesis); and 3) interspecific hybridization occurred between a new taxon and one existing in an area, resulting in novel phenotypes with selective advantages in disturbed sites or phenotypes that can grow under conditions not favorable for either parent (introgression/hybrid speciation hypothesis). A review of published literature found few studies that compare the growth and dynamics of invasive populations in their new range versus those in historic ranges. However, there is evidence that hydrologic alterations could facilitate invasions byTypha × glauca andPhalaris arundinacea and that increased salinity promoted spread ofTypha angustifolia (parental taxon) andPhlaris arundinacea and that increased salinity promoted spread ofTypha angustifolia (parental taxon) andPhragmites australis. The potential for reduced herbivory causing aggressive growth is greatest forLythrum salicaria. Introgressive hybridization is potentially a cause of invasiveness for all five species but has been established only forTypha × glauca andLythrum salicaria.

Key Words

Lythrum salicaria Typha × glauca Myriophyllum spicatum Phalaris arundinacea Phragmites australis exotic species invasion hybridization herbivory environmental constraints introgression 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Aiken, S. G. 1979. North American species ofMyriophyllum (Haloragaceae). Ph.D. Dissertation. University of Minnesota, St. Paul, MN, USA.Google Scholar
  2. Aiken, S. G.. 1981. A conspectus ofMyriophyllum (Haloragaceae) in North America. Brittonia 33:57–69.Google Scholar
  3. Aiken, S. G. and J. McNeill. 1980. The discovery ofMyriophyllum exalbescens Fernald (Haloragaceae) in Europe and the typification ofMyriophyllum spicatum andMyriophyllum verticillatum. Botanical Journal of the Linnean. Society 80:213–222.Google Scholar
  4. Aiken, S. G., P. R. Newroth, and I. Wile. 1979. The biology of Canadian weeds—Myriophyllum spicatum. Canadian Journal of Plant Sciences 59:201–215.Google Scholar
  5. Alway, E. J. 1931. Early trials and use of reed canary grass as a forage plant. Journal of the American Society of Agronomy 23:64–66.Google Scholar
  6. Anderson, E. 1949. Introgressive Hybridization. John Wiley and Sons, Inc. New York, NY, USA.Google Scholar
  7. Anderson, E. and L. Hubricht. 1938. The evidence for introgressive hybridization. American Journal of Botany 25:396–402.Google Scholar
  8. Anderson, N. O. and P. D. Ascher. 1993a. Male and female fertility of loosestrife (Lythrum) cultivars. Journal of the American Society of Horticultural Science 118:851–858.Google Scholar
  9. Anderson, N. O. and P. D. Ascher. 1993b. Style morph frequencies in Minnesota populations ofLythrum (Lythraceae). I. DistylousLalatum Pursh. Plant Cell Incompatibility Newsletter. 25: 4–9.Google Scholar
  10. Anderson, N. O. and P. D. Ascher. 1994a. Erosion of style/anther length integrity in introgressiveLythrum hybrids. p. 269–272.In A. G. Stephenson and T-h Kao (eds.) Pollen-Pistil Interactions and Pollen Tube Growth. American Society of Plant Physiologists, Rockville, MD, USA.Google Scholar
  11. Anderson, N. O. and P. D. Ascher. 1994b. Self incompatibility (SI) in distylousLythrum alatum, winged loosestrife. HortScience 29: 497 (Abstr.).Google Scholar
  12. Anderson, N. O. and P. D. Ascher. 1995. Style morph frequencies in Minnesota populations ofLythrum (Lythraceae). II. TristylousL. salicaria L. Sexual Plant Reproduction 8:105–112.Google Scholar
  13. Anderson, N. O., P. D. Ascher, and B. E. Liedl. 1995. Importance of introgressive hybridization in the development of invasiveLythrum salicaria. HortScience 30:819. (Abstr.)Google Scholar
  14. Anonymous. 1932. Find ‘Long Purples’ in Interstate Park. Visitors to Harriman Preseve along Hudson River are attracted by the plant. Flower is an ‘immigrant’.Lythrum salicaria in full blossom now in marshes and streams through the valley. New York Times, New York, NY, USA. Sunday, 21 August, p. 19.Google Scholar
  15. Anonymous. 1834. Ribbon grass. New England Farmer 13:41, 129.Google Scholar
  16. Arnold, M. L., P. Wilkinson, D. D. Shaw, A. D. Marchant, and N. Contreras. 1987. Highly repeated DNA and allozyme variation between sibling species: evidence for introgression. Genome 29:272–279.Google Scholar
  17. Balough, G. R. and T. A. Bookhout. 1989. Purple loosestrife,Lythrum salicaria, in Ohio’s Lake Erie marshes, USA. Ohio Journal of Science 89:62–64.Google Scholar
  18. Barabe, R. 1951. Progress report on the eradication of purple loosestrife (Lythrum salicaria L.) in Quebec. p. 83–90.In Proceedings of the 4th Meeting, Eastern Section, National Weed Committee, Ottawa, Canada.Google Scholar
  19. Barber, H. N. 1970. Hybridization and the evolution of plants. Taxon 19:154–160.Google Scholar
  20. Barrett, S. C. H. 1989. Waterweed invasions. Scientific American 260:90–97.Google Scholar
  21. Batra, S. W. T., D. Schroeder, P. E. Boldt, and W. Mendl. 1986. Insects associated with purple loosestrife (Lythrum salicaria L.) in Europe. Entomological Society Proceedings 88:748–759.Google Scholar
  22. Bayley, S., V. D. Stotts, P. F. Springer, and J. Steenis. 1978. Changes in submerged aquatic macrophyte populations at the head of Chesapeake Bay, 1958–1975. Estuaries 1:73–84.Google Scholar
  23. Bayly, I. L. and T. A. O’Neill. 1971. A study of introgression inTypha at Point Pelee Marsh, Ontario. Canadian Field Naturalist 85:309–314.Google Scholar
  24. Berg, T. 1982. Seed dormancy in local populations ofPhalaris arundinacea, reed canarygrass, western Norway. Acta Agriculturae Scandinavica 32:405–409.CrossRefGoogle Scholar
  25. Berstein, N. P. 1981. Vegetational history of Mentor Marsh. Ohio Journal of Science 81:105–108.Google Scholar
  26. Bjork, S. 1967. Ecological investigations ofPhragmites communis: studies in theoretical and applied limnology. Folia Limnologica Scandinavica 14:1–248.Google Scholar
  27. Blackwell, W. H. 1970. The Lythraceae of Ohio. Ohio Journal of Science 70:346–352.Google Scholar
  28. Bloossey, B. and R. Notzold. 1995. Evolution of increased competitive ability in invasive non indigenous plants: a hypothesis. Journal of Ecology 83:887–889.Google Scholar
  29. Blossey, B. D. Schroeder, S. D. Hight and R. A. Malecki. 1994. Host specificity and environmental impact of two leaf beetles (Galerucella calmariensis andG. pusilla) for biological control of purple loosestrife,Lythrum salicaria. Weed Science 42:134–140.Google Scholar
  30. Blossey, B. 1993. Herbivory below ground and biological weed control: life history of a root-boring weevil on purple loosestrife. Oecologia 94:380–387.Google Scholar
  31. Bousquet, J., W. M. Cheliak, J. Wang, and M. Lalonde. 1990. Genetic divergence and introgressive hybridization betweenAlnus sinuata andA. crispa (Betulaceae). Plant Systematics and Evolution 170:107–124.Google Scholar
  32. Bowley, S. and N. L. Taylor. 1987. Introgressive hybridization. p. 23–59.In: B. R. Christie (ed.) CRC Handbook of Plant Science in Agriculture. Volume 1. Boca Raton, FL, USA.Google Scholar
  33. Breternitz, D. A., C. K. Robinson, and G. T. Gross. 1986. Dolores archeological program final synthetic report. U.S. Department of the Interior, Bureau of Reclamation, Denver, CO, USA.Google Scholar
  34. Bryant, J. P., J. Tuomi, and P. Niemala. 1988. Environmental constraint of constitutive and long-term inducible defenses in woody plants. p. 367–389.In K. C. Spencer (ed.) Chemical Mediation of Coevolution. Academic Press, San Diego, CA, USA.Google Scholar
  35. Carlton, J. T. 1996. Biological invasions and cryptogenic species. Ecology 77:1653–1654.Google Scholar
  36. Carpenter, S. R. 1980. The decline ofMyriophyllum spicatum in a eutrophic Wisconsin lake. Canadian Journal of Botany 58:527–535.Google Scholar
  37. Casler, M. D. and A. W. Hovin. 1980. Genetics of vegetative stand establishment characters in reed canarygrass clones. Crop Science 20:511–515.CrossRefGoogle Scholar
  38. Casler, M. D. and A. W. Hovin. 1984. Genotype × environment interaction for reed canarygrass forage yield (Phalaris arundinacea, stability analysis). Crop Science 24:633–636.CrossRefGoogle Scholar
  39. Casler, M. D. and A. W. Hovin. 1985. Predicting forage yield from morphological traits in reed canarygrass. Crop Science 25:783–787.CrossRefGoogle Scholar
  40. Ceska, A. and O. Ceska. 1986. Notes onMyriophyllum (Haloragaceae) in the Far East: the identity ofMyriophyllum sibiricum Komarov. Taxon 35:95–100.Google Scholar
  41. Chechowitz, N., D. M. Chappell, S. I. Guttman, and L. A. Weigt. 1990. Morphological, electrophoretic, and ecological analysis ofQuercus macrocarpa populations in the Black Hills of South Dakota and Wyoming. Canadian Journal of Botany 68:2185–2194.Google Scholar
  42. Clayton, W. D. 1967. Studies in the Graminae: XIV. Kew Bulletin 21:111–117.Google Scholar
  43. Clayton, W. D. 1968. The correct name of the common reed. Taxon 17:168–169.Google Scholar
  44. Cody, W. J. 1978. The status ofLythrum alatum (Lythraceae) in Canada. The Canadian Field Naturalist 92:74–75.Google Scholar
  45. Coffey, B. T. and C. D. McNabb. 1974. Eurasian water-milfoil in Michigan. The Michigan Botanist 13:159–165.Google Scholar
  46. Coley, P. D., J. P. Bryant, and F. S. Chapin III. 1985. Resource availability and plant herbivore defense. Science 230:895–899.PubMedGoogle Scholar
  47. Conchou, O. and E. Fustec. 1988. Influence of hydrological fluctuations on the growth and nutrient dynamics ofPhalaris arundinacea L. in a riparian environment. Plant and Soil 112:53–60.Google Scholar
  48. Conchou, O. and G. Pautou. 1987. Modes of colonization of an heterogenous alluvial area on the edge of the Garonne River byPhalaris arundinacea. Regulated Rivers 1:37–48.Google Scholar
  49. Couch, R. and E. Nelson. 1985.Myriophyllum spicatum in North America. p. 8–18.In L. W. J. Anderson (ed.) Proceedings of the First International Symposium on Watermilfoil (Myriophyllum spicatum) and Related Haloragaceae Species. Aquatic Plant Management Society, Washington, DC, USA.Google Scholar
  50. Couch, R. and E. Nelson. 1988.Myriophyllum quitense (Haloragaceae) in the United States. Brittonia 40:85–88.Google Scholar
  51. Crawley, M. J. 1987. What makes a community invasible? p. 429–453.In A. J. Gray, M. J. Crawley, and P. J. Edwards (eds.) Colonization, Succession and Stability. Blackwell, Oxford, England.Google Scholar
  52. Creed, R. P., Jr. and S. P. Sheldon. 1994. The effect of two herbivorous insect larvae on Eurasian watermilfoil. Journal of Aquatic Plant Management 32:21–26.Google Scholar
  53. Crespo, S. and R. Perez-Moreau. 1967. Revision del generoTypha on la Argentina. Darwiniana 14:413–429.Google Scholar
  54. Cutright, N. J. 1986. Regulation of purple loosestrife by states in the midwest. Proceedings of the North Central Weed Control Conference 41:123–125.Google Scholar
  55. Cutright, N. J. 1978. Purple loosestrife: beautiful exotic or unwanted weed? Wisconsin Natural Resources 2:26–27.Google Scholar
  56. Darwin, C. R. 1865. On the sexual relations of the three forms ofLythrum salicaria. Journal of the Linean Society of Botany 8: 169–196.Google Scholar
  57. Dill, W. 1937. Der entwicklungsgang der Mchligen PflaumenblattlausHyalopterus arundinis Fabr. Im schweizerischen Mittelland. Dissertation. Entomogisches Institut, ETH Zurich, Switzerland.Google Scholar
  58. Dore, W. G. and J. McNeill. 1980. Grasses of Ontario. Research Branch, Agriculture Canada. Ottawa, ON, Canada. Monograph No. 26.Google Scholar
  59. Dudley, W. R. 1886. The Cayuga flora. Part I. A catalogue of the Phaenogamia growing without cultivation in the Cayuga Lake basin. Bulletin of Cornell University 2:1–132.Google Scholar
  60. Dykyjova, D. 1978. Plant growth and estimates of production: intraspecitic and clonal variability and its importance for production estimates. p. 159–163.In D. Dykyjova and J. Kvet (eds.) Pond Littoral Ecosystems, Structure and Functioning. Springer Verlag, Berlin BHeidelberg, Germany.Google Scholar
  61. Esnault, M. A. and F. Lahrer. 1982. Interpretation des populations deTypha par l’analyse numerique des donnees morphologiques et par l’etude des formes isofonctionnelles de diverse enzymes. Candolea 37:633–648.Google Scholar
  62. Faegri, K. 1982. TheMyriophyllum spicatum group in North Europe. Taxon 31:467–471.Google Scholar
  63. Fassett, N. C. and B. C. Calhoun. 1952. Introgression betweenTypha latifolia andTypha angustifolia. Evolution 6:367–379.Google Scholar
  64. Fernald, M. L. 1919. Two new Myriophyllums and a species new to the United States. Rhodora 21:120–124.Google Scholar
  65. Frank, A. B., J. D. Berdahl, and R. E. Barker. 1985. Morphological development and water use in clonal lines of four forage grasses. Crop Science 25:339–344.CrossRefGoogle Scholar
  66. Furnier, G. R. and M. M. Mustaphi. 1992. Isozyme variation in Minnesota populations of Eurasian watermilfoil. Aquatic Botany 43:305–309.Google Scholar
  67. Gervais, C., R. Trahan, D. Moreno, A. M. Drolet. 1993.Phragmites australis in Quebec: geographical distribution, chromosome number, and reproduction. Canadian Journal of Botany 71:1386–1393.Google Scholar
  68. Gilpin, H. 1990. Ecological prediction. Science 248:88–89.PubMedGoogle Scholar
  69. Gleason, H. A. and A. Cronquist. 1991. Manual of Vascular Plants of Northeastern United States and Adjacent Canada. 2d ed. NY Botanical Garden, Bronx, NY, USA.Google Scholar
  70. Grace, J. B. and R. G. Wetzel. 1981. Habitat partitioning and competitive displacement in cattails (Typha). American Midland Naturalist 118:463–474.Google Scholar
  71. Grace, J. B. and R. G. Wetzel. 1982a. Niche differentiation between between two rhizomatous species:Typha latifolia andTypha angustifolia. Canadian Journal of Botany 60:46–57.CrossRefGoogle Scholar
  72. Grace, J. N. and R. G. Wetzel. 1982b. Phenotypic and genotypic components of growth and reproduction inTypha latifolia: experimental studies in marshes of differing successional maturity. Ecology 62:789–801.Google Scholar
  73. Graham, S. A. 1975. Taxonomy of the Lythraceae in the southeastern United States. SIDA 6:80–103.Google Scholar
  74. Gray, A., S. Watson, and J. Coulter. 1889. Manual of the Botany of the Northern United States, Including the District East of the Mississippi and North of North Carolina and Tennessee. Sixth Edition. Ivison, Blakeman, Taylor and Company, New York, NY, USA.Google Scholar
  75. Green, E. L. 1889. The genusLythrum in California. Pittonia 2:11–13.Google Scholar
  76. Gries, C., L. Kappen, and R. Losch. 1990. Mechanisms of flood tolerance in reed,Phragmites australis Trin. ex. Steud. New Phytologist 114:589–593.Google Scholar
  77. Haber, E. 1996. Invasive plants of Canada project, Report to the Ontario Ministry of Natural Resources, Ottawa, ON, Canada.Google Scholar
  78. Haghighi, K. and P. D. Ascher. 1988. Fertile, intermediate hybrids betweenPhaseolus vulgaris andP. acutifolius from congruity backerossing. Sexual Plant Reproduction 1:51–58.Google Scholar
  79. Hamrick, J. L. 1989. Isozymes and the analysis of genetic structure in plant populations. p. 87–105.In D. E. Soltis and P. S. Soltis (eds.) Isozymes in Plant Biology. Discorides, Portland, OR, USA.Google Scholar
  80. Hanna, E. 1984. Restoration of aquatic vegetation in Rondeau Bay, Lake Erie. The Plant Press 2:99–101.Google Scholar
  81. Harms, V. L. and G. F. Ledingham. 1986. The narrow-leaved cattail,Typha angustifolia and hybrid cattail, newly reported from Saskatchewan. Canadian Field Naturalist 100:107–110.Google Scholar
  82. Harp, H. F. 1957. The Morden Lythrums. Weekly Note, n.p. Morden Research Station, Morden, Manitoba, Canada.Google Scholar
  83. Harper, J. L. 1965. Establishment, aggression and cohabitation in weedy species. p. 243–265.In H. G. Baker and G. L. Stebbins (eds.). The Genetics of Colonizing Species. Academic Press, New York, NY, USA.Google Scholar
  84. Harper, J. L. 1977. Population Biology of Plants. Academic Press, London, England.Google Scholar
  85. Harris, S. W. and W. H. Marshall. 1963. Ecology of water level manipulation on a northern marsh. Ecology 44:331–343.Google Scholar
  86. Harris, A. 1835. Ribbon grass. New England Farmer 14:125.Google Scholar
  87. Harris, J. A. 1927. The cat tail,Typha angustifolia, in Utah. Torreya 27:9–11.Google Scholar
  88. Haslam, S. M. 1965. Ecological studies in the Breck fens. I. Vegetation in relation to habitat. Journal of Ecology 53:599–619.Google Scholar
  89. Haslam, S. M. 1970. The performance ofPhragmites communis Trin. in relation to water-supply. Annals of Botany 34:867–877.Google Scholar
  90. Haslam, S. M. 1971. Community regulation inPhragmites communis. I. Monodominant stands. Journal of Ecology 59:65–73.Google Scholar
  91. Haslam, S. M. 1972.Phragmites communis. Journal of Ecology 60: 585–610.Google Scholar
  92. Haslam, S. M. 1973. Some aspects of the life history and autecology ofPhragmites communis — a review. Polskii Archiwun Hydrobiologii 20:79–100.Google Scholar
  93. Haslam, S. M. 1979. Infrared color photograph andPhragmites communis. Polskie Archiwun Hydrogiologii 26:65–72.Google Scholar
  94. Hauber, D. P., D. A. White, S. P. Powers, and F. R. DeFrancesch. 1991. Isozyme variation and correspondence with unusual infrared reflectance patterns inPhragmites australis. Plant Systematics and Evolution 178:1–8.Google Scholar
  95. Hayden, A. 1939. Notes onTypha angustifolia L. in Iowa. Iowa State College Journal of Science 13:341–351.Google Scholar
  96. Heiser, C. 1973. Introgression re-examined. Botanical Review 39: 347–366.Google Scholar
  97. Hesselgren, N. L. 1787. Pan Suecus. p. 225–262.In C. von Linne (ed.) Amoenitates Academicae. Vol. 2. Third Edition, Erlangen, Sweden.Google Scholar
  98. Hight, S. D., B. Blossey, and R. Declerck-Floate. 1995. Establishment of insect biological control agents from Europe againstLythrum salicaria in North America. Environmental Entomology 24: 967.Google Scholar
  99. Hobbs, R. J. and L. F. Huenneke, 1992. Disturbance, diversity and invasion: implications for conservation. Conservation Biology 6:324–337.Google Scholar
  100. Hocking, P. J., C. M. Finlayson, and A. J. Chick. 1983. The biology of Australian weeds. 12.Phragmites australis (Cav.) Trin. ex Steud. The Journal of the Australian Institute of Agricultural Science 49:123–132.Google Scholar
  101. Hotchkiss, N. and H. L. Dozier. 1949. Taxonomy and distribution of North American cattails. The American Midland Naturalist 41: 237–254.Google Scholar
  102. Hulten, E. 1968. Flora of Alaska and Neighboring Territories. A Manual of Vascular Plants. Stanford University Press, Stanford, CA, USA.Google Scholar
  103. Isabelle, P. S., L. J. Fooks, P. A. Keddy, and S. D. Wilson. 1987. Effects of roadside snowmelt on wetland vegetation: an experimental study. Journal of Environmental Management 25:57–60.Google Scholar
  104. Ithaca Journal. 1989. Flower is pretty and also a problem; Plant is damaging delicate wetlands. The Ithaca Journal, Ithaca, NY, USA. August 18:7A.Google Scholar
  105. Jepson, W. L. 1925. A Manual of the Flowering Plants of California. University of California Press, Berkeley, CA, USA.Google Scholar
  106. Johnstone, I. M. 1986. Plant invasion windows: a time-based classification of invasion potential. Biological Review 61:369–394.Google Scholar
  107. Junttila, O., L. Landgraff, and A. J. Nilsen. 1978. Germination ofPhalaris seeds. Seed problems. Acta Horticulturae 82:163–166.Google Scholar
  108. Kane, A. E. and G. T. Gross. 1986. Anasazi communities of Dolores: early Anasazi sites in the Sagenhen Flats area. Report to the U.S. Department of Interior, Denver, CO, USA.Google Scholar
  109. Kane, M. E. and L. S. Albert. 1989a. Abscisic acid induction of aerial leaf development inMyriophyllum andProserpinaca species culturedin vitro. Journal of Aquatic Plant Management 27: 102–111.Google Scholar
  110. Kane, M. E. and L. S. Albert. 1989b. Comparative shoot and root regeneration from juvenile and adult aerial leaf explants of variable-leaf milfoil. Journal of Aquatic Plant Management 27:1–10.Google Scholar
  111. Keast, A. 1984. The introduced aquatic macrophyte,Myriophyllum spicatum, as habitat for fish and their invertebrate prey. Canadian Journal of Zoology 62:1289–1303.Google Scholar
  112. Keddy, P. A. 1986. Germination of ten shoreline plants in relation to seed size, soil particle size and water level: an experimental study. Journal of Ecology 74:133–141.Google Scholar
  113. Keim, P., K. N. Page, T. G. Whitham, and K. G. Lark. 1989. Genetic analysis of an interspecific hybrid swarm ofPopulus: occurrence of unidirectional introgression. Genetics 123:557–565.PubMedGoogle Scholar
  114. Kimbel, J. C. 1982. Factors influencing the potential intralake colonization byMyriophyllum spicatum. Aquatic Botany 14:295–307.Google Scholar
  115. Klimesova, J. 1994. The effects of timing and duration of floods on growth of young plants ofPhalaris arundinacea L. andUrtica diocia: an experimental study. Aquatic Botany 48:21–29.Google Scholar
  116. Klopatek, J. M. and F. W. Stearns. 1978. Primary productivity of emergent macrophytes in a Wisconsin freshwater marsh ecosystem. The American Midland Naturalist 100:320–332.Google Scholar
  117. Koehne, E. 1885. The Lythraceae of the United States. Botanical Gazette 10:268–277.Google Scholar
  118. Koehne, E. 1903. Lythraceae. p. 1–78.In: A. Engler (ed.) Das Pflanzenriech. Vol. 4. W. Engelmann, Leipzig, Germany.Google Scholar
  119. Komarov, V. L. 1914. Ex herbario Horti Botanici Petropolitani: Novitates asiae orientalis. Decase II–VII. Repertorum Specierum Novarum Regni Vegetabilis (“Fedde Repert”) 13:84–87, 161–169, 225–237.Google Scholar
  120. Krattinger, K. 1978. Biosystematische Untersuchungen innerhalb der GattungTypha. Ph.D. Dissertation, Universitaet Zucrich, Zurich, Switzerland.Google Scholar
  121. Lamprecht, H. von: 1948. The genic basis of evolution. Agri Hortique Genetica 6:83–86.Google Scholar
  122. Lamprecht, H. von. 1964. Species concept and the origin of species. The two categories of genes: intra- and interspecific ones. Agri Hortique Genetica 23:272–280.Google Scholar
  123. Lee, D. W. 1975. Population variation and introgression in AmericanTypha. Taxon 24:633–641. Lee, D. W. and D. E. Fairbrothers. 1973. Enzyme differences between adjacent hybrid and parent populations ofTypha. Bulletin of the Torrey Botanical Club 100: 3–11.Google Scholar
  124. Lehmann, E. 1918. Ueber die minimale Belichtungszcit, welche die Keimung der Samen vonLythrum salicaria ausloest. Der Deutsche Botanische Gesellschaft 36:157–163.Google Scholar
  125. Lehmann, E. and R. Lakshmana. 1924. Ueber die Gueltigkeit des Produktgesetzes bei der Lichtleimung vonLythrum salicaria. Der Deutsche Botanische Gesellschaft 42:5–54.Google Scholar
  126. Levin, D. A. 1970. Assortative pollination inLythrum. American Journal of Botany 57:1–5.Google Scholar
  127. Levin, D. A. and Z. Bulinska-Radomska. 1988. Effects of hybridization and inbreeding on fitness inPhlox. American Journal of Botany 75:1632–1639.Google Scholar
  128. Levin, D. A. and H. W. Kerster. 1973. Assortative pollination for stature inLythrum salicaria. Evolution 27:144–152.Google Scholar
  129. Lewontin, R. C. and L. C. Birch. 1966. Hybridization as a source of variation for adaptation to new environments. Envolution 20: 315–336.Google Scholar
  130. Lindroth, C. H. 1957. The Faunal Connections Between Europe and North America. John Wiley and Sons, Inc., New York, NY, USA.Google Scholar
  131. Louis-Marie, P. 1944. La salicaire dans le Quebec. Inst. Ag d’Oka, Province de Quebec, Canada.Google Scholar
  132. Louis-Marie, P. 1960. Cas d’introgression dans la flore du Quebec. La Revue d’Oka 34:1–11.Google Scholar
  133. Love, D. and J. B. Bernard. 1959. Flora and vegetation of the Otterburne area, Manitoba, Canada. Svensk Botanisk Tidskrift 53: 335–461.Google Scholar
  134. Mack, R. N. 1985. Invading plants: their potential contribution to population biology. p. 127–142.In J. White (ed.) Studies on Plant Demography: John L. Harper Festschrift. Academic Press, London, UK.Google Scholar
  135. Mack, R. N. 1991. The commercial seed trade: an early disperser of weeds in the United States. Economic Botany 45:257–273.Google Scholar
  136. Madsen, J. D., L. W. Eichler, and C. W. Boylen. 1988. Vegetative spread of Eurasian watermilfoil in Lake George, New York. Journal of Aquatic Plant Management 26:47–50.Google Scholar
  137. Madsen, J. D. 1994. Invasions and declines of submersed macrophytes in Lake George and other Adirondack lakes. Lake and Reservoir Management 10:19–28.Google Scholar
  138. Marks, M., B. Lapin., and J. Randall. 1993. Element stewardship abstract:Phragmites australis. The Nature Conservancy, Arlington, VA. 32 p. Internet document (http://www.tnc.org/science/src/weeds/phraust.htm).Google Scholar
  139. Marsh, L. C. 1962. Studies in the genusTypha. Ph.D. Thesis. Syracuse University, Syracuse, NY, USA.Google Scholar
  140. Marten, G. C. and M. E. Heath. 1985. Reed canarygrass. p. 207–216.In M. E. Heath, R. E. Barnes, D. S. Metcalfe (eds.) Forages: The Science of Grassland Agriculture. Iowa State University Press, Ames, IA, USA.Google Scholar
  141. McDonald, M. E. 1955. Cause and effects of a die-off of emergent vegetation. Journal of Wildlife Management 19:24–35.Google Scholar
  142. McMillan, C. 1959. Salt tolerance within aTypha population. American Journal of Botany 46:521–526.Google Scholar
  143. McNabb, C. D. and T. R. Batterson. 1991. Occurrence of the common reed,Phragmites australis along roadsides in lower Michigan. Michigan Academy of Science, Arts, and Letters 23:211–220.Google Scholar
  144. McNaughton, S. J. 1970. Fitness sets forTypha. American Naturalist 104:337–341.Google Scholar
  145. McNaughton, S. J. and L. L. Wolf. 1970. Dominance and niche in ecological systems. Science 16:131–139.Google Scholar
  146. Menzie, C. A. 1979. Growth of the aquatic plantMyriophyllum spicatum in a littoral area of the Hudson River estuary. Aquatic Botany 6:365–375.Google Scholar
  147. Metzler, K. and R. Rozsa. 1987. Additional notes on the tidal wetlands of the Connecticut River. Connecticut Botanical Society Newsletter 15:1–6.Google Scholar
  148. Moody, M. E. and R. N. Mack. 1988. Controlling the spread of plant invasions: the importance of nascent foci. Journal of Applied Ecology 25:1009–1021.Google Scholar
  149. Mook, J. H. and J. van der Toorn. 1985. Delayed response of the common reedPhragmites australis to herbivory as a cause of cyclic fluctuations in the density of the mothArchanara geminipuncta. Oikos 44:142–148.Google Scholar
  150. Mori. 1971. The littoral mcrophyte vegetation of Lake Wingra. Transactions of the Wisconsin Academy of Science 59:107–119.Google Scholar
  151. Nagle, J. J. and L. E. Mettler. 1969. Relative fitness of introgressed and parental populations ofDrosophila maojavensis andD. arizonensis. Evolution 23:519–524.Google Scholar
  152. Nicholls, M. S. 1987. Pollen flow, self pollination and gene specialization: factors affecting seed set in the tristylous speciesLythrum salicaria (Lythraceae). Plant Systematics and Evolution 156: 151–157.Google Scholar
  153. Nichols, S. A. 1975. Identification and management of Eurasian water milfoil in Wisconsin. Wisconsin Academy of Science, Arts and Letters 63:116–128.Google Scholar
  154. Nichols, S. A. 1984. Phytochemical and morphological differentiation betweenMyriophyllum spicatum andMyriophyllum exalbescens in two Wisconsin lakes. Transactions of the Wisconsin Academy of Science, Arts, and Letters 72:153–156.Google Scholar
  155. Nichols, S. A. 1994a. Evaluation of invasions and declines of submersed macrophytes for the Upper Great Lakes region. Lake and Reservoir Management 10:29–33.Google Scholar
  156. Nichols, S. A. 1994b. Factors affecting the distribution of Eurasian watermilfoil (Myriophyllum spicatum) biomass in Lake Wingra, Wisconsin. Journal of Freshwater Ecology 9:145–151.Google Scholar
  157. Nichols, S. A. and B. H. Shaw. 1986. Ecological life histories of the three aquatic nuisance plants,Myriophyllum spicatum, Potamogeton crispus, andElodea canadensis. Hydrobiologia 131:3–21.Google Scholar
  158. Niering, W. A. and R. S. Warren. 1977. Our dynamic tidal marshes: vegetation as revealed by peat analysis. Connecticut Arborctum Bulletin 12:1–22.Google Scholar
  159. O’Neill, P. 1994. Genetic incompatibility and offspring quality in the tristylous plantLythrum salicaria. American Journal of Botany 81:76–84.Google Scholar
  160. Oglesby, R. T. and A. Vogel. 1976. Changes in submerged plants at the south end of Cayuga Lake following Tropical Storm Agnes. Hydrobiologia 48:251–255.Google Scholar
  161. Orth, R. J. and K. A. Moore. 1984. Distribution and abundance of submerged aquatic vegetation in Chesapeake Bay: an historical perspective. Estuaries 7:531–540.Google Scholar
  162. Ostendorp, W. 1989. “Die-back” of reeds in Europe—a critical review of literature. Aquatic Botany 35:5–26.Google Scholar
  163. Ostrem, L. 1987. Studies on genetic variation in reed canarygrass,Phalaris arundinacea. II. Alkaloid type and concentration. Hereditas 107:235–248.Google Scholar
  164. Painter, D. S. and K. J. McCabe. 1988. Investigation into the disappearance of Eurasian watermilfoil from Kawartha Lakes. Journal of Aquatic Plant Management 26:3–12.Google Scholar
  165. Patten, B. C. 1954. The status of some American species ofMyriophyllum as revealed by the discovery of intergrade material betweenM. exalbescens Fern. andMyriophyllum spicatum L. in New Jersey. Rhodora 56:213–225.Google Scholar
  166. Patten, B. C. 1955. Germination of the seed ofMyriophyllum spicatum K, Bulletin of the Torrey Botanical Club 82:50–56.Google Scholar
  167. Patten, B. C. 1956. Notes on the biology ofMyriophyllum spicatum L. in a New Jersey lake. Bulletin of the Torrey Botanical Club 83:5–18.Google Scholar
  168. Pellett, M. 1966. Purple loosestrife, colorful honey plant. American Bee Journal 106:134–135.Google Scholar
  169. Pellett, M. 1977. Purple loosestrife spreads down river. American Bee Journal 117:214–215.Google Scholar
  170. Penko, J. M. 1985. Ecological studies ofTypha in Minnesota:Typha-insect interactions and the productivity of floating stands. M.S. Thesis. University of Minnesota, Minneapolis, MN, USA.Google Scholar
  171. Penko, J. M. and D. C. Pratt. 1986a. Effectrs ofBellura obliqua onTypha latifolia productivity. Journal of Aquatic Plant Management 24:24–28.Google Scholar
  172. Penko, J. M. and D. C. Pratt. 1986b. The growth and survival of early instars ofBellura obliqua (Lepidoptera: Nocturidae) inTypha latifolia andT. angustifolia. Great Lakes Entomologist 19: 35–42.Google Scholar
  173. Pursh, F. 1814. Flora Americae Sepentrionalis: or, A Systematic Arrangement and Description of the Plants of North America. White, Cochran and Co., London, England.Google Scholar
  174. Rawls, C. K. 1978.Myriophyllum spicatum p. 14–31.In J. C. Stevenson and N. Confer (eds.) Summary of available information on Chesapeake Bay submersed vegetation. U.S. Fish and Wildlife Service, Office of Biological Services, Washington, DC, USA. FWS/OBS-78/66.Google Scholar
  175. Reed, C. F. 1977. History and distribution of Eurasian watermilfoil in United States and Canade. Phytologia 36:417–436.Google Scholar
  176. Reed, C. F. 1980.Myriophyllum spicatum L. along shores of Gulf of Mexico. Phytologia 45:383–384.Google Scholar
  177. Rejmanek, M. and D. M. Richardson. 1996. What attributes make some plant species more invasive? Ecology 77:1655–1660.Google Scholar
  178. Rendall, J. 1989. TheLythrum story: a new chapter. Minnesota Horticulturalist 117:22–24.Google Scholar
  179. Rice, J. S. and B. W. Pinkerton. 1993. Reed canarygrass survival under cyclic inundation. Journal of Soil and Water Conservation 48:132–135.Google Scholar
  180. Ricketson, J. M. 1989. Additions to the aquatic flora of Arizona. J. Arizona-Nevada Academy of Science 23:33–34.Google Scholar
  181. Ridley, H. N. 1930. The Dispersal of Plants Throughout the World. L. Reeve and Co. Ltd., Ashford, Kent, England.Google Scholar
  182. Rieseberg, L. H., D. E. Soltis, and J. D. Palmer. 1988. A molecular reexamination of introgression betweenHelianthus annuus andH. bolanderi (Compositae). Evolution 42:227–238.Google Scholar
  183. Rieseberg, L. H., R. Carter, and S. Zona. 1990. Molecular tests of the hypothesized hybrid origin of two diploidHelianthus species (Asteraceae). Evolution 44:1498–1511.Google Scholar
  184. Roscoe, M. V. 1927. Cytological studies in the genusTypha. Botanical Gazette 84:392–406.Google Scholar
  185. Rothmaler, W. 1940. De flora occidentali. I.Typhu. Repertorum Specierum Novarum Regni Vegetabilis (“Fedde Repert”) 49:169–171.Google Scholar
  186. Schloesser, D. W. and B. A. Manny. 1989. Distribution of Eurasian watermilfoil,Myriophyllum spicatum in the St. Clair Detroit River system in 1978. Journal of Great Lakes Research 10:322–326.CrossRefGoogle Scholar
  187. Schoch-Bodmer, H. 1938. The proportion of long-, mid-, and shortstyled plants in natural populations ofLythrum salicaria L. Journal of Genetics 36:39–43.Google Scholar
  188. Sculthorpe, C. D. 1967. The Biology of Aquatic Vascular Plants. Edward Arnold, London, England.Google Scholar
  189. Shamsi, S. R. A. and E. H. Whitehead. 1974. Comparative ecophysiology ofEpilobium hirsutum andLythrum salicaria L. 1. General biology, distribution, and germination. Journal of Ecology 62: 279–290.Google Scholar
  190. Shamsi, S. R. A. and F. H. Whitehead. 1977. Comparative ecophysiology ofEpilobium hirsutum L. andLythrum salicaria L. IV. Effects of temperature and interspecific competition and concluding discussion. Journal of Ecology 65:71–84.Google Scholar
  191. Sharitz, R. R., Wineriter, S. A., M. H. Smith, and E. H. Liu. 1980. Comparisons of isozymes amongTypha spp. in the Eastern USA. American Journal of Botany 67:1297–1303.Google Scholar
  192. Shay, J. M. and C. T. Shay. 1986. Prairie marshes in western Canada, with specific reference to the ecology of five emergent macrophytes. Canadian Journal of Botany 64:443–454.Google Scholar
  193. Sheaffer, C. C., P. R. Peterson, M. H. Hall, and J. B. Stordahl. 1992. Drought effects on yield and quality of perennial grasses in the north central United States. Journal of Production Agriculture 5: 556–561.Google Scholar
  194. Shearer, J. 1994. Potential role of plant pathogens in declines of submersed macrophytes. Lake and Reservoir Management 10:9–12.Google Scholar
  195. Sheldon, S. P. 1994. Invasions and declines of submersed macrophytes in New England, with particular reference to Vermont lakes and herbivorous invertebrates in New England. Lake and Reservoir Management 10:13–17.Google Scholar
  196. Sifton, H. B. 1959. The germination of light sensitive seeds ofTypha latifolia. Canadian Journal of Botany 37:719–739.Google Scholar
  197. Skuhrava, M. and V. Skuhravy. 1981. Die Gallmucken (Cecidomyiidae, Diptera) des Schlifs (Phragmites communis Trin.) Studie CSAV, Prag 3:1–150.Google Scholar
  198. Skuhravy, V. 1978. Invertebrates: destroyers of common reed. p. 376–388.In D. Dykjova and J. Kvet (eds.) Pond Littoral Ecosystems, Springer-Verlag, Berlin, Germany.Google Scholar
  199. Smith, C. S. and J. W. Barko. 1990. Ecology of Eurasian watermilfoil. Journal of Aquatic Plant Management 28:55–64.Google Scholar
  200. Smith, G. E., T. F. Hall, and R. A. Stanley. 1967. Eurasian watermilfoil in the Tennessee Valley. Weeds 15:95–98.Google Scholar
  201. Smith, S. G. 1961. Natural hybridization and taxonomy in the genusTypha, with particular reference to California populations. Ph.D. Dissertation. University of California-Berkeley, Berkeley, CA, USA.Google Scholar
  202. Smith, S. G. 1967. Experimental and natural hybrids in North AmericanTypha (Typhaceae). American Midland Naturalist 78:257–287.Google Scholar
  203. Smith, S. G. 1987.Typha: its taxonomy and the ecological significance of hybrids. Archiv fur Hydrobiologie 27:129–138.Google Scholar
  204. Spencer, N. R. and M. Lekic. 1974. Prospects for biological control of Eurasian watermilfoil. Weed Science 22:401–404.Google Scholar
  205. Springer, P. F. and R. E. Stewart. 1959. Condition of waterfowl feeding grounds on the Susquehanna Flats during the fall of 1959 with notes on the invasion of a serious pest plant. Bureau of Sport Fisheries and Wildlife, Washington, DC, USA. Administration Report.Google Scholar
  206. Stebbins, G. L. 1959. The role of hybridization in evolution. Proceedings of the American Philosophical Society 103:231–251.Google Scholar
  207. Stebbins, G. L. 1969. The significance of hybridization for plant taxonomy and evolution. Taxon 18:26–35.Google Scholar
  208. Stebbins, G. L. 1974. Evolution of morphogenic patterns. Brook-haven Symposium on Biology 25:27–243.Google Scholar
  209. Steenis, J. H., L. P. Smith, and H. P. Cofer. 1958. Studies on cattail management in the northeast. p. 149–155In Transactions of the First North American Wildlife Conference. Montreal, ON, Canada.Google Scholar
  210. Steenis, J. H. and V. D. Stotts. 1961. Progress report on control of Eurasian watermilfoil in Chesapeake Bay. Proceedings of Northeast Weed Control Conference 15:566–570.Google Scholar
  211. Steenis, J. H. and G. M. King. 1964. Report of interagency meeting on watermilfoil. Maryland Game and Inland Fish Commission. Annapolis, MD, USA.Google Scholar
  212. Strefeler, M. S., E. Darmo, R. L. Becker, and E. J. Katovich. 1996. Isozyme characterization of genetic diversity in Minnesota populations of purple loosestrife,Lythrum salicaria (Lythraceae). American Journal of Botany 83:265–273.Google Scholar
  213. Stuckey, R. L. 1969. The introduction and spread ofLycopus asper (Western water horsetail) in the western Lake Erie and Lake St. Clair region. The Michigan Botanist 8:111–120.Google Scholar
  214. Stuckey, R. L. 1980a. Distributional history ofLythrum salicaria (purple loosestrife) in North America. Bartonia 47:3–20.Google Scholar
  215. Stuckey, R. L. 1980b. Range expansion of native North American aquatic and wetland species. Ohio Journal of Science 80:22.Google Scholar
  216. Stuckey, R. L. and D. P. Salamon. 1987.Typha angustifolia in North America: a foreigner masquerading as a native. (Abstract). p. 4.In Proceedings of the Ohio Academy of Science, Columbus, OH, USA.Google Scholar
  217. Suprenant, J., D. K. Barnes, R. H. Busch, and G. G. Marten. 1988. Bidirectional selection for neutral detergent fiber and yield in reed canarygrass. Canadian Journal of Plant Science 68:705–712.CrossRefGoogle Scholar
  218. Teale, E. W. 1982. Stems beyond counting, flowers unnumbered. Audubon 84:38–43.Google Scholar
  219. ter Heerdt, G. N. J. and H. J. Drost. 1994. Potential for the development of marsh vegetation from the seed bank after a drawdown. Biological Conservation 67:1–11.Google Scholar
  220. Thompson, D. J. and J. M. Shay. 1985. The effects of fire onPhragmites australis in the Delta Marsh, Manitoba. Canadian Journal of Botany 63:1864–1869.Google Scholar
  221. Thompson, D. Q., R. L. Stuckey, and E. B. Thompson. 1987. Spread, impact and control of purple loosestrife (Lythrum salicaria) in North American wetlands. Fisheries and Wildlife Research 2. U.S. Department of the Interior, Fish and Wildlife Service, Washington, DC, USA.Google Scholar
  222. Tilman, D. 1990. Constraints and tradeoffs: toward a predictive theory of competition and succession. Oikos 58:3–15.Google Scholar
  223. Titus, J. E. 1994. Submersed plant invasions and declines in New York. Lake and Reservoir Management 10:25–28.Google Scholar
  224. Tscharntke, T. 1989. Changes in shoot growth ofPhragmites australis caused by the gall makerGiraudiella inclusa (Diptera: Cecidomyiidae). Oikos 54: 370–377.Google Scholar
  225. Tscharntke, T. 1990. Fluctuations in abundance of a stem-boring moth damaging shoots ofPhragmites australis: causes and effects of overexploitation of food in a late-successional grass monoculture. Journal of Applied Ecology 27:679–692.Google Scholar
  226. Tscharntke, T. 1992. Fragmentation ofPhragmites habitats, minimal viable population sizes, habitat suitability and local extinctions of months, midges, flies, aphids, and birds. Conservation Biology 6: 530–536.Google Scholar
  227. Twilley, R. R. and J. W. Barko. 1990. The growth of submersed macrophytes under experimental salinity and light conditions. Estuaries 13:311–321.Google Scholar
  228. Van der Toorn, J. 1972. Variability ofPhragmites australis (Cav.) Trin. ex Steudel in relation to the environment. Van Zee tot Land 48:1–22.Google Scholar
  229. Van der Toorn, J. and J. H. Mook. 1982. The influence of environmental factors and management on stands ofPhragmites australis. I. Effects of burning, frost, and insect damage on shoot density and shoot size. Journal of Applied Ecology 19:477–499.Google Scholar
  230. van der Valk, A. G. and C. B. Davis. 1980. The impact of a natural drawdown on the growth of four emergent species in a prairie glacial marsh. Aquatic Botancy 9:301–322.Google Scholar
  231. Vogel, M. 1984. Okologische unteruchungen in einemPhragmites Bestand. Berichte der Akademic fur Naturschutz und Landschaftspflege Laufen 8:130–166.Google Scholar
  232. Waters, I. and J. M. Shay. 1990. A field study of the morphometric response ofTypha glauca shoots to a water depth gradient. Canadian Journal of Botany 68:2339–2343.Google Scholar
  233. Waters, I. and J. M. Shay. 1992. Effect of water depth on population parameters of aTypha glauca stand. Canadian Journal of Botany 70:349–351.Google Scholar
  234. Welling, C. H. and R. L. Becker. 1993. Reduction of purple lossestrife establishment in Minnesota wetlands. Wildlife Society Bulletin 21:56–64.Google Scholar
  235. Wetmore, A. 1921. Wild ducks and duck foods of the Bear River Marshes, Utah. Bulletin of the U.S. Department of Agriculture 936:1–20.Google Scholar
  236. White, D., E. Haber, and C. Keddy. 1993. Invasive plants of natural habitats in Canada. Environment Canada, Ottawa, ON, Canada.Google Scholar
  237. Wijte, A. H. and J. L. Gallagher. 1996. Effect of oxygen availability and salinity on early life history stages of salt marsh plants. I. Different germination strategies ofSpartina alterniflora andPhragmites australis (Poaceae). American Journal of Botany 83: 1337–1342.Google Scholar
  238. Wilcox, D. A. 1986a. The effects of deicing salts on water chemistry in Pinhook Bog, Indiana. Water Resources Bulletin 22:57–65.Google Scholar
  239. Wilcox, D. A. 1986b. The effects of deicing salts on vegetation in Pinhook Bog, Indiana. Canadian Journal of Botany 64:865–874.Google Scholar
  240. Wilcox, D. A. 1989. Migration and control of purple loosestrife (Lythrum salicaria L.) along highway corridors. Environmental Management 13:365–370.Google Scholar
  241. Wilkins, F. S. and H. D. Hughs. 1932. Agronomic trials with reed canarygrass. Journal of American Society of Agronomy 24:18–28.Google Scholar
  242. Zeiders, K. E. and R. T. Sherwood. 1985. Environmental interactions among reed canarygrass genotypes for nutritive value, height and disease severity. Agronomy Journal 77:94–98.CrossRefGoogle Scholar

Copyright information

© Society of Wetland Scientists 1999

Authors and Affiliations

  • Susan M. Galatowitsch
    • 1
  • Neil O. Anderson
    • 1
  • Peter D. Ascher
    • 1
  1. 1.Department of Horticultural ScienceUniversity of MinnesotaSt. PaulUSA

Personalised recommendations