Advertisement

Wetlands

, Volume 13, Issue 2, pp 115–121 | Cite as

The relationship between variable hydroperiod, production allocation, and belowground organic turnover in forested wetlands

  • Frank P. Day
  • J. Patrick Megonigal
Article

Abstract

Belowground processes in forested wetland ecosystems are exceptionally important, yet most attention seems to focus on surface flooding regimes and other aboveground features of these systems. Field studies in the Dismal Swamp and several manipulative experiments examined belowground dynamics in relation to a flood intensity gradient. Generally, more extensive flooding results in less production allocation belowground. Erroneous conclusions regarding wetland production are reached if aboveground parameters alone are considered. Root decomposition rates are slowest where the duration of soil saturation is the longest. Organic accumulation rates in wetlands are determined by the amount of production of particular biomass types (eg., leaves vs. roots) and the rate at which they decompose. Biomass allocation patterns seem to change in response to a flooding gradient. This represents a major implication for wetland ecosystem functions, as carbon allocation patterns determine the array of litter types that affect decomposition rates and thus nutrient availability. The hydroperiod data from the Dismal Swamp demonstrate the highly variable nature of flooding in forested wetlands, especially during the growing season. The data suggest that it is unwise to rely on hydroperiod as a direct criterion for identifying a jurisdictional wetland.

Key Words

allocation belowground forested wetland hydrology hydroperiod production 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Aber, J.D., J.M. Melillo, K.J. Nadelhoffer, C.A. McClaugherty, and J. Pastor. 1985. Fine root turnover in forest ecosystems in relation to quantity and form of nitrogen availability: a comparison of two methods. Oecologia 66: 317–321.CrossRefGoogle Scholar
  2. Brinson, M.M., A.E. Lugo, and S. Brown. 1981. Primary productivity, decomposition and consumer activity in freshwater wetlands. Annual Review of Ecology and Systematics 12: 123–161.CrossRefGoogle Scholar
  3. Brinson, M.M., H.D. Bradshaw, and E.S. Kane. 1984. Nutrient assimilative capacity of an alluvial floodplain swamp. Journal of Applied Ecology 21: 1041–1057.CrossRefGoogle Scholar
  4. Brown, S. 1981. A comparison of the structure, primary productivity, and transpiration of cypress ecosystems in Florida. Ecological Monographs 51: 403–427.CrossRefGoogle Scholar
  5. Conner, W.H., J.G. Gosselink, and R.T. Parrondo. 1981. Comparison of the vegetation of three Louisiana swamp sites with different flooding regimes. American Journal of Botany 68: 320–331.CrossRefGoogle Scholar
  6. Dabel, C.V. and F.P. Day. 1977. Structural comparisons of four plant communities in the Great Dismal Swamp, Virginia. Bulletin of the Torrey Botanical Club 104: 352–360.CrossRefGoogle Scholar
  7. Day, F.P. 1982. Litter decomposition rates in the seasonally flooded Great Dismal Swamp. Ecology 63: 670–678.CrossRefGoogle Scholar
  8. Day, F.P. 1985. Tree growth rates in the periodically flooded Great Dismal Swamp. Castanea 50: 89–95.Google Scholar
  9. Day, F.P. 1987. Effects of flooding and nutrient enrichment on biomass allocation inAcer rubrum seedlings. American Journal of Botany 74: 1541–1554.CrossRefGoogle Scholar
  10. Day, F.P. and C.V. Dabel. 1978. Phytomass budgets for the Great Dismal Swamp ecosystem. Virginia Journal of Science 29: 220–224.Google Scholar
  11. Day, F.P., J.P. Megonigal, and L.C. Lee. 1989. Cypress root decomposition in experimental wetland mesocosms. Wetlands 9: 263–282.CrossRefGoogle Scholar
  12. Day, F.P., S.K. West, and E.G. Tupacz. 1988. The influence of ground-water dynamics in a periodically flooded ecosystem, the Great Dismal Swamp. Wetlands 8: 1–13.Google Scholar
  13. Donovan, L.A., K.W. McLeod, K.C. Sherrod, and N.J. Stumpff. 1988. Response of woody swamp seedlings to flooding and increased water temperatures. I. Growth, biomass, and survivorship. American Journal of Botany 75: 1181–1190.CrossRefGoogle Scholar
  14. Keeley, J.E. 1979. Population differentiation along a flood frequency gradient: physiological adaptations to flooding inNyssa sylvatica. Ecological Monographs 49: 89–108.CrossRefGoogle Scholar
  15. Kozlowski, T.T. 1984. Responses of woody plants to flooding. p. 129–162.In T.T. Kozlowski (ed.) Flooding and Plant Growth. Academic Press, New York, NY, USA.Google Scholar
  16. McClaugherty, C.A., J.D. Aber, and J.M. Melillo. 1982. The role of fine roots in the organic matter and nitrogen budgets of two forested ecosystems. Ecology 63: 1481–1490.CrossRefGoogle Scholar
  17. Megonigal, J.P. and F.P. Day. 1988. Organic matter dynamics in four seasonally flooded forest communities of the Dismal Swamp. American Journal of Botany 75: 1334–1343.CrossRefGoogle Scholar
  18. Megonigal, J.P. and F.P. Day. 1992. Effects of flooding on root and shoot production of bald cypress in large experimental enclosures. Ecology 73: 1182–1193.CrossRefGoogle Scholar
  19. Mitsch, W.J. and K.C. Ewel. 1979. Comparative biomass and growth of cypress in Florida wetlands. The American Midland Naturalist 101: 417–426.CrossRefGoogle Scholar
  20. Norby, R.J. and T.T. Kozlowski. 1983. Flooding and SO2 stress interaction inBetula papyrifera andB. nigra seedlings. Forest Science 29: 739–750.Google Scholar
  21. Peterson, D.L. and F.A. Bazzaz. 1984. Photosynthetic and growth responses of silver maple (Acer saccharinum L.) to flooding. The American Midland Naturalist 112: 262–272.Google Scholar
  22. Powell, S.W. and F.P. Day. 1991. Root production in four communities in the Great Dismal Swamp. American Journal of Botany 78: 288–297.CrossRefGoogle Scholar
  23. Sena Gomes, A.R. and T.T. Kozlowski. 1980. Growth responses and adaptation ofFraxinus pennsylvanica seedlings to flooding. Plant Physiology 66: 267–271.CrossRefGoogle Scholar
  24. Tupacz, E.G. and F.P. Day. 1990. Decomposition of roots in a seasonally flooded swamp ecosystem. Aquatic Botany 37: 199–214.CrossRefGoogle Scholar
  25. Vogt, K.A., C.C. Grier, and D.J. Vogt. 1986. Production, turnover, and nutrient dynamics of aboveground and belowground detritus of world forests. Advances in Ecological Research 15: 303–377.CrossRefGoogle Scholar
  26. Wharton, C.H., W.M. Kitchens, E.C. Pendleton, and T.W. Sipe. 1982. The ecology of bottomland hardwood swamps of the southeast: a community profile. U.S. Fish and Wildlife Service, Biological Services Program, Washington, DC, USA FWS/OBS-81/37.Google Scholar

Copyright information

© Society of Wetland Scientists 1993

Authors and Affiliations

  • Frank P. Day
    • 1
  • J. Patrick Megonigal
    • 2
  1. 1.Department of Biological SciencesOld Dominion UniversityNorfolk
  2. 2.Department of BotanyDuke UniversityDurham

Personalised recommendations