Journal of Neurology

, Volume 244, Supplement 2, pp S15–S20 | Cite as

Transgenic animal models of familial amyotrophic lateral sclerosis



Amyotrophic lateral sclerosis (ALS) occurs in both sporadic and familial forms, which have very similar clinical presentation and course. Approximately 20% of the familial cases of ALS are caused by mutation of the SOD 1 gene encoding Cu, Zn superoxide dismutase (SOD). Over 30 different SOD 1 gene mutations have been found in patients. Most are missense mutations that cause the substitution of one amino acid for another. The failure to find deletions in familial ALS suggests that the mutant protein is required for pathogenesis. Studies in transgenic mice indicate that familial ALS is caused by gian-of-function mutations in the SOD1 gene. These enhance formation of free radicals by the mutant enzyme. When expressed at high levels in transgenic mice, mutant human Cu, Zn SOD causes a clinical disease that resembles human ALS. Selective degeneration of motor neurones in the spinal cord and brainstem is accompanied by progressive motor impairment. Pathogenesis in the transgenic model of familial ALS is a sequential, two-step process in which damage mediated by free radicals accumulates to a threshold that triggers catastrophic motor neurone loss through glutamate-mediated, excitotoxic mechanisms. Evidence in support of this hypothesis comes from therapeutic studies with antioxidants and inhibitors of glutamatergic neurotransmission.

Key words

Amyotrophic lateral sclerosis Animal disease models Transgenic mice Superoxide dismutase Excitotoxins 


  1. 1.
    Mulder DW (1982) Clinical limits of amyotrophic lateral sclerosis. In: Rowland LP (ed) Human motor neuron diseases. Raven, New York, pp 15–22Google Scholar
  2. 2.
    Emery AEH, Holloway S (1982) Familial moton neuron diseases. In: Rowland LP (ed) Human motor neuron diseases. Raven, New York, pp 139–147Google Scholar
  3. 3.
    Hirano A (1991) Cytopathology of amyotrophic lateral sclerosis. Adv Neurol 56: 91–101PubMedGoogle Scholar
  4. 4.
    Rosen DR, Siddique T, Patterson D, et al (1993) Mutations in Cu, Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362: 59–62PubMedCrossRefGoogle Scholar
  5. 5.
    Liu XF, Elashvili I, Gralla EB, Valentine JS, Lapinskas P, Culotta VC (1992) Yeast lacking superoxide dismutase: isolation of genetic suppressors. J Biol Chem 267: 18298–18302PubMedGoogle Scholar
  6. 6.
    Phillips JP, Campbell SD, Michaud D, Charbonneau M, Hilliker AJ (1989) Null mutation of copper/zinc superoxide dismutase inDrosophila confers hypersensitivity to paraquat and reduced longevity. Proc Natl Acad Sci USA 86: 2761–2765PubMedCrossRefGoogle Scholar
  7. 7.
    Li Y, Huang TT, Carlson EJ, et al (1995) Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nature Genet 11: 376–381PubMedCrossRefGoogle Scholar
  8. 8.
    Reaume AG, Sosa PA de, Kulkarni S, et al (1996) Motor neurons in Cu/Zn superoxide, dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nat Genet 13: 43–47PubMedCrossRefGoogle Scholar
  9. 9.
    Deng HX, Hentati A, Tainer JA, et al (1993) Amyotrophic lateral sclerosis and structural defects in Cu, Zn superoxide dismutase. Science 261: 1047–1051PubMedCrossRefGoogle Scholar
  10. 10.
    Getzoff ED, Tainer JA, Weiner PK, Kollman PA, Richardson JS, Richardson DC (1983) Electrostatic recognition between superoxide and copper, zinc, superoxide dismutase. Nature 306: 287–290PubMedCrossRefGoogle Scholar
  11. 11.
    Bowling AC, Schulz JB, Brown RH Jr, Beal MF (1993) Superoxide dismutase activity, oxidative damage, and mitochondrial energy metabolism in familial and sporadic amyotrophic lateral sclerosis. J Neurochem 61: 2322–2325PubMedCrossRefGoogle Scholar
  12. 12.
    Borchelt DR, Lee MK, Slunt HS, et al (1994) Superoxide dismutase 1 with mutations linked to familial amyotrophic lateral sclerosis possess significant activity. Proc. Natl Acad Sci USA 91: 8292–8296PubMedCrossRefGoogle Scholar
  13. 13.
    Andersen PM, Nilsson P, Ala-Hurula, et al (1995) Amyotrophic lateral sclerosis associated with homozygosity for an Asp90Ala mutation in CuZn-superoxide dismutase. Nat Genet 10: 61–66PubMedCrossRefGoogle Scholar
  14. 14.
    Pramatarova A, Goto J, Nanba E, et al (1994) A two base pair deletion in the SOD1 gene causes familial amyotrophic lateral sclerosis. Hum Mol Genet 3: 2061–2062PubMedGoogle Scholar
  15. 15.
    Gurney ME, Pu H, Chiu AY, et al (1994) Motor neuron degeneration in mice expressing a human Cu, Zn superoxide dismutase mutation. Science 264: 1772–1775PubMedCrossRefGoogle Scholar
  16. 16.
    Ripps ME, Huntley GW, Hof PR, Morrison JH, Gordon JW (1995) Transgenic mice expressing an altered murine superoxide dismutase gene provide an animal model of amyotrophic lateral sclerosis. Proc Natl Acad Sci USA 92: 689–693PubMedCrossRefGoogle Scholar
  17. 17.
    Wong PC, Pardo CA, Borchelt DR, et al (1995) An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron 14: 1105–1116PubMedCrossRefGoogle Scholar
  18. 18.
    Epstein CJ, Avraham KB, Lovett M, et al (1987) Transgenic mice with increased Cu/Zn-superoxide dismutase activity: animal model of dosage effects in Down syndrome. Proc. Natl Acad Sci USA 84: 8044–8048PubMedCrossRefGoogle Scholar
  19. 19.
    Chiu AY, Zhai P, Dal Canto MC, et al (1995) Age-dependent penetrance of disease in a transgenic model of familial amyotrophic lateral sclerosis. Mol Cell Neurosci 6: 349–362PubMedCrossRefGoogle Scholar
  20. 20.
    Przedborski S, Kostic V, Jackson-Lewis V, et al (1992) Transgenic mice with increased Cu/Zn-superoxide dismutase activity are resistant toN-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity. J Neurosci 12: 1658–1667PubMedGoogle Scholar
  21. 21.
    Yang G, Chan PH, Chen J, et al (1994) Human copper-zinc superoxide dismutase transgenic mice are highly resistant to reperfusion injury after focal cerebral ischemia. Stroke 25: 165–170PubMedGoogle Scholar
  22. 22.
    Hodgson EK, Fridovich I (1975) The interaction of bovine erythrocyte superoxide dismutase with hydrogen peroxide: inactivation of the enzyme. Biochemistry 14: 5294–5299PubMedCrossRefGoogle Scholar
  23. 23.
    Yim MB, Chock PB, Stadtman ER (1990) Copper, zinc superoxide dismutase catalyzes hydroxyl radical production from hydrogen peroxide. Proc Natl Acad Sci USA 87: 5006–5010PubMedCrossRefGoogle Scholar
  24. 24.
    Beckman JS, Carson M, Smith CD, Koppenol WH (1993) ALS, SOD and peroxynitrite. Nature 364: 584PubMedCrossRefGoogle Scholar
  25. 25.
    Wiedau-Pazos M, Goto JJ, Rabizadeh S, et al (1996) Altered reactivity of superoxide dismutase in familial amyotrophic lateral sclerosis. Science 271: 515–518PubMedCrossRefGoogle Scholar
  26. 26.
    Yim MB, Kang JH, Yim HS, Kwak HS, Chock PB, Stadtman ER (1996) A gain-of-function of an amyotrophic lateral sclerosis-associated Cu, Zn superoxide dismutase mutant: an enhancement of free radical formation due to an increase in Km for hydrogen peroxide. Proc Natl Acad Sci USA 93: 5709–5714PubMedCrossRefGoogle Scholar
  27. 27.
    Canu W, Billiard M, Baldy-Mouliner M (1993) Fasting plasma and CSF amino acid levels in ALS. Acta Neurol Scand 88: 51–55Google Scholar
  28. 28.
    Plaitakis A, Constantakakis E (1993) Altered metabolism of excitatory amino acids,N-acetyl-aspartate andN-acetyl-aspartyl-glutamate in ALS. Brain Res Bull 30: 381–386PubMedCrossRefGoogle Scholar
  29. 29.
    Rothstein JD, Martin LJ, Kuncl RW (1992) Decreased glutamate transport by the brain and spinal cord in ALS. N Engl J Med 326: 1464–1468PubMedGoogle Scholar
  30. 30.
    Rothstein JD, Van Kammen M, Levey AI, Martin LJ, Kuncl RW (1995) Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Ann Neurol 38: 73–84PubMedCrossRefGoogle Scholar
  31. 31.
    Bensimon G, Lacomblez L, Meininger V and the ALS/Riluzole Study Group (1994) A controlled trial of riluzole in amyotrophic lateral sclerosis. N Engl J Med 330: 585–591PubMedCrossRefGoogle Scholar
  32. 32.
    Martin D, Thompson MA, Nadler JV (1993) The neuroprotective agent riluzole inhibits release of glutamate and aspartate from slices of hippocampal area CA1. Eur J Pharmacol 250: 473–476PubMedCrossRefGoogle Scholar
  33. 33.
    Welty DF, Schielke GP, Rothstein JD (1995) Potential treatment of amyotrophic lateral sclerosis by the anticonvulsant gabapentin: a hypothesis. Ann Pharmacother 29: 1164–1167PubMedGoogle Scholar
  34. 34.
    Pelligrini-Giampietro DE, Cherici G, Alesiani M, Carla V, Moroni F (1990) Excitatory amino acid release and free radical formation may cooperate in the genesis of ischemia-induced neuronal damage. J Neurosci 10: 1035–1041Google Scholar
  35. 35.
    Boisvert DPJ, Schreiber C (1992) Interreelationship of excitotoxic and free radical mechanisms. In: Krieglstein J, Oberpichler H (eds) Pharmacology of cerebral ischemia. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 1–10Google Scholar
  36. 36.
    Gurney ME, Cutting FB, Zhai P (1996) Benefit of vitamin E, riluzole, and gabapentin in a transgenic model of familial amyotrophic lateral sclerosis. Ann Neurol 39: 147–157PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  1. 1.CNS Diseases Research UnitPharmacia and Upjohn, Inc.KalamazooUSA

Personalised recommendations