Molecular and Chemical Neuropathology

, Volume 12, Issue 1, pp 55–70 | Cite as

Laser-doppler flowmetry

A review of its application for measuring cerebral and spinal cord blood flow
  • Kai U. Frerichs
  • Giora Z. Feuerstein
Original Articles


Laser-Doppler flowmetry is a new technique for noninvasive and continuous measurement of local microcirculatory cerebral and spinal-cord blood flow. The flow estimate by this technique is based on the assessment of the Doppler shift of low-power laser light, which is scattered by moving red blood cells. Laser-Doppler flowmetry has been validated for various organs, including the central nervous system. These studies revealed a linear relationship between relative changes of the Doppler signal and blood flow over a wide range of pharmacological as well as pathological flow alterations, including cerebral ischemia. The usefulness of laser-Doppler flowmetry in experimental as well as clinical applications has received growing attention. The superiority of the technique lies in its high spatial and temporal resolution. Disadvantages are the difficulty of obtaining absolute flow values and the sensitivity to artifacts. The versatility and on-line capacity of laser-Doppler flowmetry might allow new insights into the pathophysiology of alterations of the cerebral and spinal-cord microcirculation.

Index Entries

Laser-Doppler flowmetry CBF cerebral ischemia neuroinjury laser 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahn H., Lindhagen J., Nilsson G. E., Salerud E. G., Jodal M., and Lundgren O. (1985) Evaluation of laser Doppler flowmetry in the assessment of intestinal blood flow in cat.Gastroenterology 88, 951–957.PubMedGoogle Scholar
  2. Arbit E., DiResta G. R., Bedford R. F., Shah N. K., and Galicich J. H. (1989) Intraoperative measurement of cerebral and tumor blood flow with laser-Dopper flowmetry.Neurosurgery 24, 166–170.PubMedCrossRefGoogle Scholar
  3. Bonner R. and Nossal R. (1988) Model for laser Doppler measurements of blood flow in tissue. Appl. Optics20, 2097–2107.CrossRefGoogle Scholar
  4. Bonner R. F., Clem T. R., Bowen P. D., and Bowman R. L. (1988) Laser-Doppler continuous real-time monitor of pulsatile and mean blood flow in tissue microcirculation,Scattering Techniques Applied to Supramolecular and Non Equilibrium Systems (Chen S. H., Chu B., and Nossal R., eds.) pp. 685–702, Plenum, New York.Google Scholar
  5. Chen R. Y. Z., Fan F.-C., Schuessler G. B., Usami S., and Chien S. (1983) Effects of sphere size and injection site on regional cerebral blood flow measurements.Stroke 14, 769–776.PubMedGoogle Scholar
  6. Chen S. T., Hsu C. Y., Hogan E. L., Mariq H., and Balentine J. D. (1986) A model of focal ischemic stroke in the rat: Reproducible extensive cortical infarction.Stroke 17, 738–743.PubMedGoogle Scholar
  7. DiResta G. R., Kiel J. W., Riedel G. L., Kaplan P., and Sheperd A. P. (1987) Hybrid blood flow probe for simultaneous H2 clearance and laser-Doppler velocimetry.Am. J. Physiol. 253, G573-G581.PubMedGoogle Scholar
  8. Dirnagl U., Kaplan B., Jacewicz M., and Pulsinelli W. (1989) Continuous measurement of cerebral cortical blood flow by laser-doppler flowmetry in a rat stroke model.J. Cereb. Blood Flow Metab. 9, 589–596.PubMedGoogle Scholar
  9. Eyre J. A., Essex T. J. H., Flecknell P. A., Bartholomew P. H., and Sinclair J. I. (1988) A comparison of measurements of cerebral blood flow in the rabbit using laser Doppler spectroscopy and radionuclide labelled microspheres.Clin. Phys. Physiol. Meas. 9, 65–74.PubMedCrossRefGoogle Scholar
  10. Fasano V. A., Urciuoli R., Bolognese P., and Mostert M. (1988) Intraoperative use of laser-Doppler in the study of cerebral microvascular circulation.Acta Neurochir. 95, 40–48.CrossRefGoogle Scholar
  11. Frerichs K. U., Lindsberg P. J., Hallenbeck J. M., and Feuerstein G. Z. Platelet-activating factor and progressive brain damage following focal brain injury.J. Neurosurg. (in press).Google Scholar
  12. Haberl R. L., Heizer M. L., Marmarou A., and Ellis E. F. (1989a) Laser-Doppler assessment of brain microcirculation: Effect of systemic alterations.Am. J. Physiol. 256, H1247-H1254.PubMedGoogle Scholar
  13. Haberl R. L., Heizer M. L., and Ellis E. F. (1989b) Laser-Doppler assessment of brain microcirculation: Effect of local alterations.Am. J. Physiol. 256, H1255-H1260.PubMedGoogle Scholar
  14. Halsey J. H., Capra N. F., and McFarland R. S. (1977) Use of hydrogen for measurement of regional cerebral blood flow. Problem of intercompartmental diffusion.Stroke 8, 351–357.PubMedGoogle Scholar
  15. Holloway G. A. and Watkins D. W. (1977) Laser-Doppler measurement of cutaneous blood flow.J. Invest. Dermatol. 69, 306–309.PubMedCrossRefGoogle Scholar
  16. Lacombe P., Meric P., and Seylaz J. (1980) Validity of cerebral blood flow measurements obtained with quantitative tracer technique.Brain Res. Rev. 2, 105–169.CrossRefGoogle Scholar
  17. Lindsberg P. J., O’Neill J. T., Paakkari I. A., Hallenbeck J. M., and Feuerstein G. (1989) Validation of laser-Doppler flowmetry in measurement of spinal cord blood flow.Am. J. Physiol. 257, H674-H680.PubMedGoogle Scholar
  18. Nilsson G. E., Tenland T., and Oberg P. A. (1980) Evaluation of a laser Doppler flowmeter for measurement of tissue blood flow.IEEE Trans. Biomed. Eng. BME-27, 597–604.PubMedCrossRefGoogle Scholar
  19. Riva C., Ross B., and Benedek G. B. (1972) Laser Doppler measurements of blood flow in capillary tubes and retinal arteries.Invest. Opthalmol. 11, 936–944.Google Scholar
  20. Rosenblum B. R., Bonner R. F., and Oldfield E. H. (1987) Intraoperative measurement of cortical blood flow adjacent to cerebral AVM using laser Doppler velocimetry.J. Neurosurg. 66, 369–399.Google Scholar
  21. Sakurada O., Kennedy C., Jehle J., Brown J. D., Carbin G. L. and Sokoloff L. (1978) Measurement of local cerebral blood flow with iodo[14C]antipyrine.Am. J. Physiol. 234, H59-H66.PubMedGoogle Scholar
  22. Sheperd A. P. and Riedel G. L. (1982) Continuous measurement of intestinal mucosal blood flow by laser-Doppler velocimetry.Am. J. Physiol. 242, G668-G672.Google Scholar
  23. Skarphedinsson J. O., Hårding H., and Thoreń P. (1988) Repeated measurements of cerebral blood flow in rats. Comparisons between the hydrogen clearance method and laser Doppler flowmetry.Acta Physiol. Scand. 134, 133–142.PubMedCrossRefGoogle Scholar
  24. Skarphedinsson J. O., Sandberg M., Hagberg H., Carlsson S., and Thoreń P. (1989a) Relative cerebral ischemia in SHR due to hypotensive hemorrhage: Cerebral function, blood flow and extracellular levels of lactate and purine catabolites.J. Cereb. Blood Flow Metab. 9, 364–372.PubMedGoogle Scholar
  25. Skarphedinsson J. O., Delle M., Hoffmann P., and Thoreń P. (1989b) The effects of naloxone on cerebral blood flow and cerebral function during relative cerebral ischemia.J. Cereb. Blood Flow Metab. 9, 515–522.PubMedGoogle Scholar
  26. Stern M. D., Lappe D. L., Bowen P. D., Chimosky J. E., Holloway G. A., Keiser H. R., and Bowman R. L. (1977) Continuous measurement of tissue blood flow by laser-Doppler spectroscopy.Am. J. Physiol. 232, H441-H448.PubMedGoogle Scholar
  27. Tamura A., Graham D. I., McGulloch J., and Teasdale G. M. (1981) Focal cerebral ischaemia in the rat: 2. Regional cerebral blood flow determined by [14C]iodoantipyrine autoradiography following middle cerebral artery occlusion.J. Cereb. Blood Flow Metab. 1, 61–69.PubMedGoogle Scholar
  28. Tomida S., Wagner H. G., Klatzo I., and Nowak T. S. (1989) Effect of acute electrode placement on regional CBF in the gerbil: A comparison of blood flow measured by hydrogen clearance, [3H]nicotine, and [14C]iodoantipyrine techniques.J. Cereb. Blood Flow Metab. 9, 79–86.PubMedGoogle Scholar
  29. Young W. (1980) H2 clearance measurement of blood flow: A review of techniques and polarographic principles.Stroke 11, 552–564.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 1990

Authors and Affiliations

  • Kai U. Frerichs
    • 1
  • Giora Z. Feuerstein
    • 2
  1. 1.Department of NeurologyUSUHS, F. Edward Hébert School of MedicineBethesda
  2. 2.Department of PharmacologySmith, Kline and French Research and DevelopmentKing of Prussia

Personalised recommendations