Netherlands Heart Journal

, Volume 15, Issue 2, pp 77–80 | Cite as

Vasa vasorum and molecular imaging of atherosclerotic plaques using nonlinear contrast intravascular ultrasound

  • D. E. Goertz
  • M. E. Frijlink
  • R. Krams
  • N. de Jong
  • A. F. W. van der Steen
Interuniversity Cardiology Institute of the Netherlands


There is increasing evidence that presence and location of neovascular vasa vasorum play an important role in atherosclerotic plaque pathogenesis and stability. This paper describes a method to detect vasa vasorum with high contrast and high spatial resolution. It uses second harmonic or subharmonic intravascular ultrasound, in combination with ultrasound contrast agents. The same technology in combination with targeted contrast agents is suited for molecular imaging. The potential for vasa vasorum imaging is illustrated using an atherosclerotic animal model and the potential for molecular imaging is illustrated using phantom experiments.


  1. Schoenhagen P, Ziada KM, Vince DG, Nissen SE, Tuzcu EM. Arterial remodeling and coronary artery disease: the concept of “dilated” versus “obstructive” coronary atherosclerosis J Am Coll Cardiol 2001;38:297-306.Google Scholar
  2. Nicholls SJ, Sipahi I, Schoenhagen P, Crowe T, Tuzcu EM, Nissen SE. Application of intravascular ultrasound in anti-atherosclerotic drug development. Nat Rev Drug Discov 2006;5:485-92.Google Scholar
  3. Nissen SE, Yock P. Novel pathophysiological insights and current clinical applications. Intravascular ultrasound. Circulation 2001;103:604-16.Google Scholar
  4. Glaser R, Selzer F, Faxon DP, Laskey WK, Cohen HA, Slater J, et al. Clinical progression of incidental, asymptomatic lesions discovered during culprit vessel coronary intervention. Circulation 2005;111:143-9Google Scholar
  5. Schaar JA, Muller JE, Falk E, Virmani R, Fuster V, Serruys PW, et al. Terminology for high-risk and vulnerable coronary artery plaques – Report of a meeting on the vulnerable plaque. Santorini, Greece, 2003.Google Scholar
  6. Muller JE, Tawakol A, Kathiresan S, Narula J. New opportunities for identification and reduction of coronary risk - Treatment of vulnerable patients, arteries, and plaques. J Am Coll Cardiol 2006;47:Suppl:C2-6.Google Scholar
  7. Virmani R, Burke AP, Farb A, Kolodgie FD. Pathology of the vulnerable plaque. J Am Coll Cardiol 2006;47:C13-8.Google Scholar
  8. Schaar JA, de Korte CL, Mastik F, Strijder C, Pasterkamp G, Boersma E, et al. Characterizing vulnerable plaque features with intravascular elastography. Circulation 2003;108:2636-41.Google Scholar
  9. Nair A, Kuban BD, Tuzcu EM, Schoenhagen P, Nissen SE, Vince DG. Coronary plaque classification with intravascular ultrasound radiofrequency data analysis. Circulation 2002;106:2200-6.Google Scholar
  10. Ultrasound contrast agents: basic principles and clinical applications echocardiography. Goldberg BB, Raichlen JS, Forsberg F (editors). Martin Dunitz. 2001.Google Scholar
  11. de Jong N, Frinking PJA, Buoakaz A, Ten Cate FJ. Detection procedures of ultrasound contrast agents. Ultrasonics 2000;38:87-92.Google Scholar
  12. Gorce JM, Arditi M, Schneider M. Influence of bubble size distribution on the echogenicity of ultrasound contrast agents - A study of SonoVue™. Invest Radiol 2000;35:661-71.Google Scholar
  13. Cachard C, Finet G, Bouakaz A, Tabib A, Francon D, Gimenez G. Ultrasound contrast agents in intravascular echography: An in vitro study. Ultrasound Med Biol 1997;23:705-17.Google Scholar
  14. Goertz DE, Cherin E, Needles A, Karshafian R, Duckett A, Burns PN, et al. High frequency nonlinear b-scan imaging of microbubble contrast agents. IEEE Trans Ultrason Ferroelectr Freq Control 2005;52:65-79.Google Scholar
  15. Goertz DE, Frijlink ME, de Jong N, van der Steen AF. Nonlinear intravascular ultrasound contrast imaging. Ultrasound Med Biol 2006;32:491-502.Google Scholar
  16. Frijlink ME, Goertz DE, van Damme LC, Krams R, van der Steen AFW. Intravascular ultrasound tissue harmonic imaging in vivo. IEEE Trans Ultrason Ferroelectr Freq Control 2006;53:1844-52.Google Scholar
  17. Zamir M, Silver MD. Vasculature in the walls of human coronary arteries. Arch Pathol Lab Med 1985;109:659-62.Google Scholar
  18. Barger AC, Beeuwkes R, Lainey LL, Silverman KJ. Hypothesis: vasa vasorum and neovascularization of coronary arteries. A possible role in the pathophyiology of atherosclerosis. N Engl J Med 1984;310:175-7.Google Scholar
  19. Zhang Y, Cliff WJ, Schoefl GI, Higgins G. Immunohistochemical study of intimal microvessels in coronary atherosclerosis. Am J Pathol 1993;143:164-73.Google Scholar
  20. Kwon HM, Sangiorgi G, Ritman EL, McKenna C, Holmes DR, Schwartz RS, et al. Enhanced coronary vasa vasorum neovascularization in experimental hypercholesterolemia. J Clin Invest 1998;101:1551-6.Google Scholar
  21. Kumamoto M, Nakashimi Y, Sueishi K. Intimal neovascularization in human coronary atherosclerosis- its origin and pathophysiological significance. Hum Pathol 1995;26:450-6.Google Scholar
  22. de Boer OJ, van der Wal AC, Teeling P, et al. Leucocyte recruitment in rupture prone regions of lipid-rich plaques: a prominent role for neovascularization? Cardiovascular Res 1999;41:443-9.Google Scholar
  23. Moulton KS, Vakili K, Zurakowski D, Soliman M, Butterfield C, Sylvin E, et al. Inhibition of plaque neovascularization reduces macrophage accumulation and progression of advanced atherosclerosis. Proc Nat Acad Sciences 2003;100;4736-41.Google Scholar
  24. Kolodgie FD, Gold HK, Burke AP, Fowler DR, Kruth HS, Weber DK, et al. Intraplaque hemorrhage and progression of coronary Atheroma. N Engl J Med 2002;349:2316-25.Google Scholar
  25. Milei J, Parodi JC, Alonso GF, et al. Carotid rupture and intraplaque hemorrhage: Immunophenotype and role of cells involved. Am Heart J 1998;136: 1096-105.Google Scholar
  26. Barger AC, Beeuwkes R. Rupture of vasa vasorum as trigger of acute myocardial infarction. Am J Cardiol 1990;66:G41-3.Google Scholar
  27. Tenaglia AN, Peters KG, Sketch MH, et al. Neovascularization in atherectomy specimens from patients with unstable angina: Implications for pathogenesis of unstable angina. Am Heart J 1998;135:10-4.Google Scholar
  28. Mofidi R, Crotty TB, McCarthy P, et al. Association between plaque instability, angiogenesis and symptomatic carotid occlusive disease. Br J Surg 2001;88:945-50.Google Scholar
  29. Schaar JA, Muller JE, Falk E, Virmani R, Fuster V, Serruys PW, et al. Terminology for high-risk and vulnerable coronary artery plaques. Eur Heart J 2004;25:1077-82.Google Scholar
  30. Moreno PR, Purushothaman R, Fuster V, Echeverri D, Truszczynska H, Sharma SK, et al. Plaque neovascularization is increased in ruptured atherosclerotic lesions of human aorta - Implications for plaque vulnerability. Circulation 2004;110:2032-8.Google Scholar
  31. Jorgensen SM, Demirkaya O, Ritman EL. Three-dimensional imaging of vasculature and parenchyma in intact rodent organs with X-ray micro-CT. Am J Physiol 1998;275:H1103-4.Google Scholar
  32. Herrmann J, Lerman LO, Rodriguez-Porcel M, Holmes DR, Richardson DM, Ritman EL, et al. Coronary vasa vasorum neovascularization precedes epicardial endothelial dysfunction in experimental hypercholesterolemia. Cardiovasc Res 2001;51:762-6.Google Scholar
  33. Kerwin W, Hooker A, Spilker M, et al. Quantitative magnetic resonance imaging analysis of neovasculature volume in carotid atherosclerotic plaque. Circulation 2003;107:851-6.Google Scholar
  34. Feinstein SB. The powerful microbubble: from bench to bedside, from intravascular indicator to therapeutic delivery system, and beyond. Am J Physiol 2004;287:H450-7.Google Scholar
  35. Casscels W, Haasan G, Vasegi MF, et al. Plaque blush, branch location, and calcification are angiographic predictors of progression of mild to moderate coronary stenosis. Am Heart J 2003;145:813-20.Google Scholar
  36. Li W, van der Steen AFW, Lancee CT, Cespedes EI, Bom N. Blood flow imaging and volume flow quantitation with intravascular ultrasound. Ultrasound Med Biol 1998;24:203-14.Google Scholar
  37. Carlier SG, Kakadiaris A, Dib N, et al. Vasa vasorum imaging: a new window to the clinical detection of vulnerable atherosclerotic plaques. Curr Atherosclerosis Reports 2005;7:164-9.Google Scholar
  38. Goertz DE, Frijlink ME, Tempel D, van Damme LC, Krams R, Schaar JA, et al. Contrast harmonic intravascular ultrasound: a feasibility study for vasa vasorum imaging. Invest Radiol 2006;41:631-8.Google Scholar
  39. Villanueva FS, Jankowski RJ, Klibanov AL, Brandenburger GH, Wagner WR. Microbubble targeted to intercellular adhesion molecule-1 bind to activated coronary endothelial cells. Circulation 2004;98:1-5.Google Scholar
  40. Demos SM, Alkan-Onyuksel H, Kane BJ, Ramani K, Nagaraj A, Greene R, et al. In vivo targeting of acoustically reflective liposomes for intravascular and transvascular ultrasonic enhancement. J Am Coll Cardiol 1999; 33:867-75.Google Scholar
  41. Goertz DE, van Wamel A, Frijlink ME, de Jong N, van der Steen AFW. Nonlinear Imaging of Targeted Microbubbles with Intravascular Ultrasound. IEEE Ultrasonics Symp., Rotterdam, 2005:2003-6.Google Scholar
  42. van der Steen AFW, Baldewsing RA, Degertekin FL, Emelianov S, Frijlink ME, Furukawa Y, et al. IVUS beyond the horizon. EuroIntervention 2006;2:132-42.Google Scholar
  43. van der Steen AFW, Goertz D. Kontiki revisited. Eur J Echocardiog. In press 2007.Google Scholar

Copyright information

© Bohn Stafleu van Loghum 2007

Authors and Affiliations

  • D. E. Goertz
    • 1
  • M. E. Frijlink
  • R. Krams
  • N. de Jong
  • A. F. W. van der Steen
  1. 1.

Personalised recommendations