Advertisement

Tirannieke mechanismen in het brein: Prader-Willi-syndroom en Angelman-syndroom

  • H. E. SmitEmail author
Artikel
  • 247 Downloads

Abstract

Sommige genen zijn onderhevig aan ‘genomic imprinting’: van deze genen komt of alleen het paternale allel of alleen het maternale allel tot expressie. Het vóórkomen van ingeprente genen wordt verklaard met de conflicttheorie, die is afgeleid van de evolutietheorie. In dit artikel wordt deze theorie gebruikt om ontwikkelingen in het postnatale gedrag te onderzoeken. Daarvoor worden kenmerken van het Prader-Willi-syndroom (pws) en Angelman-syndroom (as) geanalyseerd. Deze syndromen ontstaan doordat de effecten van paternale of maternale allelen ontbreken. Uit de analyse blijkt dat de conflicttheorie gedragingen van kinderen tijdens de fase van de borstvoeding goed kan verklaren. Hoe de theorie de ontwikkeling in het eetgedrag en sociaal-emotioneel gedrag op latere leeftijd kan verklaren, is minder duidelijk. De problemen die hierbij optreden worden geanalyseerd door het extreme eetgedrag bij pws te vergelijken met kenmerken van het zogeheten spaarzame fenotype, en door de vrolijke dispositie van as-kinderen te onderzoeken in termen van de evolutionaire signaaltheorie.

Notes

Literatuur

  1. Allen, N.D., Logan, K., Lally, G., Drage, D.J., Norris, M.L., & Keverne, E.B. (1995). Distribution of parthenogenetic cells in the mouse brain and their influence on brain development and behaviour. Proceedings of the National Academy of Sciences usa , 92, 10782-10786.CrossRefGoogle Scholar
  2. Bittel, D.C., & Butler, M.G. (2005). Prader-Willi syndrome: Clinical genetics, cytogenetics and molecular biology. Expert Reviews in Molecular Medicine, 7, 1-20.CrossRefGoogle Scholar
  3. Blass, E.M., & Teicher, M.H. (1980). Suckling. Science, 210, 15-22.CrossRefGoogle Scholar
  4. Blurton Jones, N.G., & da Costa, E. (1987). A suggested adaptive value of toddler night walking: Delaying the birth of the next sibling. Ethology and Sociobiology, 8, 135-142.CrossRefGoogle Scholar
  5. Brambilla, P., Bosio, L., Manzoni, P., Pietrobelli, A., Beccaria, L., & Chiumello, G. (1997). Peculiar body composition in patients with Prader-Labhart-Willi syndrome. American Journal of Clinical Nutrition, 65, 1369-1374.CrossRefGoogle Scholar
  6. Brown, W.M., & Consedine, N.S. (2004). Just how happy is the happy puppet? An emotion signalling and kinship theory perspective on the behavioral phenotype of children with Angelman syndrome. Medical Hypothesis, 63, 377-385.CrossRefGoogle Scholar
  7. Butler, M.G. (1990). Prader-Willi syndrome: Current understanding of cause and diagnosis. American Journal of Medical Genetics, 35, 319-332.CrossRefGoogle Scholar
  8. Cavaillé, J., Buiting, K., Kiefmann, M.., Lalande, M., Brannan, C.I., Horsthemke, B., Bachellerie, J.P., Brosius, J., & Huttenhofer, A. (2000). Identification of brain-specific and imprinted small nucleolar rna genes exhibiting an unusual genomic organization. Proceedings of the National Academy of Science usa , 97, 14311-14316.CrossRefGoogle Scholar
  9. Clayton, J., & Laan, L. (2003). Angelman syndrome: A review of the clinical and genetic aspects. Journal of Medical Genetics, 40, 87-95.CrossRefGoogle Scholar
  10. Corradi, J.P., Ravyn, V., Robbins, A.K., Hagan, K.W., Peters, M.F., Bostwick, R., Buono, R.J., Berrettini, W.H., & Furlong, S.T. (2005). Alternative transcripts and evidence of imprinting of gnal on 18p11.2. Molecular Psychiatry, 10, 1017-1025.CrossRefGoogle Scholar
  11. Curley, J.P., Pinnock, S.B., Dickson, S.L., Thresher, R., Miyoshi, N., Surani, M.A., & Keverne, E.B. (2005). Increased body fat in mice with a targeted mutation of the paternally expressed imprinted gene Peg3.faseb Journal, 10, 1302-1304.CrossRefGoogle Scholar
  12. Dencker, S.J., Johansson, G., & Milson, I. (1992). Quantification of naturally occurring benzodiazepine-like substances in human breast milk. Psychopharmacology, 107, 69-72.CrossRefGoogle Scholar
  13. Fieldstone, A., Zipf, W.B., Schwartz, H.C., & Berntston, G.G. (1997). Food preferences in Prader-Willi syndrome, normal weight and obese controls. International Journal of Obesity, 21, 1046-1052.CrossRefGoogle Scholar
  14. Gabriel, J.M., Merchant, M., Ohta, T., Ji, Y., Caldwell, R.G., Ramsey, M.J., Tucker, J.D., Longnecker, R., & Nicholls, R.D. (1999). A transgene insertion creating a heritable chromosome deletion mouse model of Prader-Willi and Angelman syndrome. Proceedings of the National Academy of the usa , 96, 9258-9263.CrossRefGoogle Scholar
  15. Genevieve, D., Sanlaville, D., Faivre, L., Kottler, M.L., Jambou, M., Gosset, P., Boustani-Samara, D., Pinto, G., Ozilou, C., Abeguile, G., Munnich, A., Romana, S., Raoul, O., Cormier-Daire, V., & Vekemans, M. (2005). Paternal deletion of the gnas imprinted locus (including Gnasxl) in two girls presenting with severe pre- and post-natal growth retardation and intractable feeding difficulties. European Journal of Human Genetics, 13, 1033-1039.CrossRefGoogle Scholar
  16. Gluckman, P.D., & Hanson, M.A. (2004). Living with the past: Evolution, development, and patterns of disease. Science, 305, 1733-1736.CrossRefGoogle Scholar
  17. Goldstone, A.P. (2004). Prader-Willi syndrome: advances in genetics, pathophysiology and treatment. Trends in Endocrinology and Metabolism, 15, 12-20.CrossRefGoogle Scholar
  18. Haig, D. (2000). The kinship theory of genomic imprinting. Annual Review of Ecology and Systematics, 31, 9-32.CrossRefGoogle Scholar
  19. Haig, D., & Wilkins, J.F. (2000). Genomic imprinting, sibling solidarity and the logic of collective action. Philosophical Transactions of the Royal Society of London, Biological Sciences, 355, 1593-1597.CrossRefGoogle Scholar
  20. Haig, D., & Wharton, R. (2003). Prader-Willi syndrome and the evolution of human childhood. American Journal of Human Biology, 15, 320-329.CrossRefGoogle Scholar
  21. Hamilton, W.D. (1964). The genetical theory of social behaviour, i & ii. Journal of Theoretical Biology, 7, 1-52.CrossRefGoogle Scholar
  22. Hawkes, K., O’Connell, J.F., Jones, N.G., Alvarez, H., & Charnov, E.L. (1998). Grandmothering, menopause, and evolution of human life histories. Proceedings of the National Academy of Science usa , 95, 1336-1339.CrossRefGoogle Scholar
  23. Henning, S.J. (1981). Postnatal development: coordination of feeding, digestion, and metabolism. American Journal of Physiology, g199-g214.Google Scholar
  24. Hinton, E.C., Holland, A.J., Gellatly, M.S.N., Soni, S., Patterson, M., Ghatei, M.A., & Owen, A.M. (2006). Neural representations of hunger and satiety in Prader-Wili syndrome. International Journal of Obesity, 30, 313-321.CrossRefGoogle Scholar
  25. Johnstone, R. (1997). The evolution of animal signals. In J.R. Krebs & N.B. Davies (red.), Behavioural ecology; An evolutionary approach (4e dr.) (pp. 155-178). Oxford: Blackwell Science.Google Scholar
  26. Keverne, E.B., Fundele, R., Narasimha, M., Barton, S.C., & Surani, M.A. (1996). Genomic imprinting and the differential roles of parental genomes in brain development. Developmental Brain Research, 92, 91-100.CrossRefGoogle Scholar
  27. Kuwako, K., Hosokawa, A., Nishimura, I., Uetsuki, T., Yamada, M., Nada, S., Okada, M., & Yoshikawa, K. (2005). Disruption of the paternal necdin gene diminishes TrkA signaling for sensory neuron survival. Journal of Neuroscience, 25, 7090-7099.CrossRefGoogle Scholar
  28. Lee, S., Walker, C.L., Karten, B., Kuny, S.L., Tennese, A.A., O’Neill, M.A., & Wevrick, R. (2005). Essential role for the Prader-Willi syndrome protein necdin in axonal outgrowth. Human Molecular Genetics, 14, 627-637.CrossRefGoogle Scholar
  29. Lund, J.P., Kolta, A., Westberg, K.G., & Scott, G. (1998). Brain stem mechanisms underlying feeding behaviours. Current Opinion in Neurobiology, 8, 718-724.CrossRefGoogle Scholar
  30. Maynard Smith, J., & Harper, D. (2003). Animal signals. Oxford: Oxford University Press.Google Scholar
  31. McNamara, P., Dowdall, J., & Auerbach, S. (2002). rem sleep, early experience, and the development of reproductive strategies. Human Nature, 13, 405-435.CrossRefGoogle Scholar
  32. Messinger, D., Dondi, M., Nelson-Goens, G.C., Beghi, A., Fogel, A., & Simion, F. (2002), How sleeping neonates smile. Developmental Science, 5, 48-54.CrossRefGoogle Scholar
  33. Nicholls, R.D., & Knepper, J.L. (2001). Genome organization, function, and genomic imprinting in Prader-Willi and Angelman syndromes. Annual Review of Genomics and Human Genetics, 2, 153-175.CrossRefGoogle Scholar
  34. Olson, M. (1965). The logic of collective action. Cambridge: Harvard University Press.Google Scholar
  35. Plagge, A., Gordon, E., Dean, W., Boiani, R., Cinti, S., Peters, J., & Kelsey, G. (2004). The imprinted signaling protein xlas is required for postnatal adaptation to feeding. Nature Genetics, 36, 818-826.CrossRefGoogle Scholar
  36. Plagge, A., Isles, A.R., Gordon, E., Humby, T., Dean, W., Gritsch, S., Fischer-Colbrie, R., Wilkinson, L.S., & Kelsey, G. (2005). Imprinted Nesp55 influences behavioral reactivity to novel environments. Molecular & Cellular Biology, 25, 3019-3026.CrossRefGoogle Scholar
  37. Ravelli, A.C., Meulen, J.H. van der, Michels, R.P., Osmond, C., Barker, D.J., Hales, C.N., & Bleker, O.P. (1998). Glucose tolerance in adults after prenatal exposure to famine. Lancet, 351,173-177.CrossRefGoogle Scholar
  38. Schulze, A., Mogensen, H., Hamborg-Petersen, B., Graem, N., Ostergaard, J.R., & Brondum-Nielsen, K. (2001). Fertility in Prader-Willi syndrome: A case report with Angelman syndrome in the offspring. Acta Paediatrica, 90, 455-459.CrossRefGoogle Scholar
  39. Schwartz, M.W., Woods, S.C., Porte Jr., D., Seeley, R.J., & Baskin, D.G. (2000). Central nervous system control of food intake. Nature, 404, 661-671.CrossRefGoogle Scholar
  40. Smit, H. (1989). De biologie en methodologie van aanleg en omgeving. Groningen: Wolters-Noordhoff.Google Scholar
  41. Smit, H. (1995). Zwangerschapsmisselijkheid in een evolutionair perspectief. De Psycholoog, 11, 449-455.Google Scholar
  42. Smit, H. (1999). Oudere vrouwen zijn milder; de biologische keuring van embryo’s. Natuur en Techniek, 67, 6-15.Google Scholar
  43. Smit, H. (2002). De seksespecifieke erfenis van de ouders. Nederlands Tijdschrift voor de Psychologie, 57, 82-94.Google Scholar
  44. Sutcliffe, J.G., & de Lecea, L. (2002). The hypocretins: Setting the arousal threshold. Nature Reviews Neuroscience, 3, 339-349.CrossRefGoogle Scholar
  45. Trivers, R.L. (1974). Parent-offspring conflict. American Zoologist, 14, 249-264.CrossRefGoogle Scholar
  46. Tsai, T-F, Jiang, Y.H., Bressler, J., Armstrong, D., & Baudet, A.L. (1999). Paternal deletion from Snrpn to Ube3a in the mouse causes hypotonia, growth retardation and partial lethality and provides evidence for a gene contributing to Prader-Willi syndrome. Human Molecular Genetics, 8, 1357-1364.CrossRefGoogle Scholar
  47. Waterland, R.A., & Jirtle, R.L. (2004). Early nutrition, epigenetic changes at transposons and imprinted genes, and enhanced susceptibility to adult chronic diseases. Nutrition, 20, 63-68.CrossRefGoogle Scholar
  48. Wilkins, J.F., & Haig, D (2003). What good is genomic imprinting: The function of parent-specific gene expression. Nature Reviews Genetics, 4, 1-10.CrossRefGoogle Scholar
  49. Yajnik, C.S. (2001), The insulin resistance epidemic in India: Fetal origins, later lifestyle, or both? Nutrition Reviews, 59, 1-9.CrossRefGoogle Scholar
  50. Yu, S., Gavrilova, O., Chen, H., Lee, R., Liu, J., Pacak, K., Parlow, A.F., Quon, M.J., Reitman, M.L., & Weinstein, L.S. (2000). Paternal versus maternal transmission of a stimulatory g-protein a subunit knockout produces opposite effects on energy metabolism. Journal of Clinical Investigation, 105, 615-623.CrossRefGoogle Scholar

Copyright information

© Bohn Stafleu van Loghum 2006

Authors and Affiliations

  1. 1.

Personalised recommendations