Fenotype-genotype correlaties bij cystische fibrose

Effecten van verschillende mutaties in het cftr-gen op de effectiviteit van de chloridetransportfunctie
  • H. Scheffer
Artikelen

Summary

Cystic fibrosis is the most frequent severe autosomal recessive disorder in the Netherlands. The disease is caused by mutations in the cystic fibrosis conductance regulator (cftr) gene. The gene product is a chloride channel, and in addition regulates several other cellular functions, including the activity of other transport channels. The nature of cftr mutations determines in part the clinical characteristics of a particular cf patient.

Samenvatting

De meest frequent voorkomende ernstige autosomaal recessieve aandoening in Nederland is cystische fibrose. De aandoening wordt veroorzaakt door mutaties in het cystic fibrosis transmembrane conductance regulator (cftr)-gen. Het genproduct is een chloridekanaal, en dat heeft tevens enkele andere regulatoire functies binnen de cel, waaronder het regelen van andere transportkanalen. De aard van de cftr-mutaties bepaalt ten dele de ernst van het klinisch beeld.

Literatuur

  1. Andersen DH. Cystic fibrosis of the pancreas and its relationship to celiac disease; a clinical and pathological study. Am J Dis Child 1938;56:344.Google Scholar
  2. Di Sant'Agnese PA, Darling RC, Perera GA, et al. Abnormal electrolytic composition of sweat in cystic fibrosis of the pancreas. Clinical significance and relationship to disease. Pediatrics 1953;12:549.Google Scholar
  3. Riordan JR, Rommens JM, Kerem B-S, et al. Identification of the cystic fibrosis gene: chromosome walking and jumping. Science 1989;245:1066-72.CrossRefPubMedGoogle Scholar
  4. Kerem B-S, Rommens JM, Buchanan JA, et al. Identification of the cystic fibrosis gene: genetic analysis. Science 1989; 245:1073-80.CrossRefPubMedGoogle Scholar
  5. Tsui L-C. The spectrum of cystic fibrosis mutations. Trends Genet 1992;8:392-8.PubMedGoogle Scholar
  6. Baxter PS, Goldhill J, Hardcastle J, et al. Accounting for cystic fibrosis. Nature 1988;335:211.CrossRefPubMedGoogle Scholar
  7. Welsh MJ, Smith AE. Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis. Cell 1993;73:1251-4.CrossRefPubMedGoogle Scholar
  8. Okiyoneda T, Harada K, Takeya M, et al. Delta F508 CFTR pool in the endoplasmic reticulum is increased by calnexin overexpression. Molec Biol Cell 2004;15:563-74.CrossRefPubMedGoogle Scholar
  9. Gan K-H, Veeze HJ, Ouweland AMW van den, et al. A455E: First evidence for a CF mutation associated with mild lung disease. New Engl J Med 1995;333:95-9.CrossRefPubMedGoogle Scholar
  10. Delisle BP, Anderson CL, Balijepalli RC, et al. Thapsigargin selectively rescues the trafficking defective LQT2 channels G601S and F805C. J Biol Chem 2003;278:35749-54.CrossRefPubMedGoogle Scholar
  11. Chillon M, Casals T, Mercier B, et al. Mutations in the cystic fibrosis gene in patients with congenital absence of the vas deferens. New Engl J Med 1995;332:1475-80.CrossRefPubMedGoogle Scholar
  12. Groman JD, Hefferon TW, Casals T, et al. Variation in a repeat sequence determines whether a common variant of the cystic fibrosis transmembrane conductance regulator gene is pathogenic or benign. Am J Hum Genet 2004;74:176-9.CrossRefPubMedGoogle Scholar
  13. Kiesewetter S, Macek M Jr, Davis C, et al. A mutation in CFTR produces different phenotypes depending on chromosomal background. Nat Genet 1993;5:274-8.CrossRefPubMedGoogle Scholar

Copyright information

© Bohn Stafleu van Loghum 2006

Authors and Affiliations

  • H. Scheffer
    • 1
  1. 1.

Personalised recommendations