Tijdschrift voor kindergeneeskunde

, Volume 72, Issue 2, pp 65–73 | Cite as

Genetische factoren van de gastheer in infecties met Neisseria meningitidis

  • M. Emonts
  • P. W. M. Hermans
  • R. de Groot
  • J. A. Hazelzet
Artikelen
  • 14 Downloads

Samenvatting

Neisseria meningitidis is verantwoordelijk voor infectie met een wisselende klinische presentatie. Het spectrum reikt van meningitis tot sepsis en septische shock. Tot voor kort was niet duidelijk wat het verschil in ernst en gevoeligheid voor infectie veroorzaakte. Verschil in serotype van de bacterie en omgevingsfactoren spelen een rol. Recentelijk is duidelijk geworden dat ook genetische variabiliteit van de gastheer bijdraagt aan het verschil in de gevoeligheid voor, ernst van en outcome van infectie. De genen die hierbij een rol spelen, coderen voor eiwitten die betrokken zijn bij een van de drie cascades die geactiveerd worden tijdens infectie. Deze drie cascades betreffen het complementsysteem, de ontstekingsreactie, en het stollings- en fibrinolytisch systeem. We geven een overzicht van de genetische variaties die bestudeerd zijn in patiënten met meningokokkeninfecties en de problemen die optreden bij de interpretatie van de resultaten en het vergelijken van onderzoeken. Slechts van enkele polymorfismen, waaronder de pai1 4G/5G-variant, is in een onafhankelijk onderzoek de associatie met outcome van ziekte bevestigd.

Summary

Neisseria meningitidis is responsible for infections with different clinical presentation. The disease spectrum ranges from meningitis to sepsis and septic shock. In the past only bacterial serotype and environmental factors were shown to influence disease susceptibility and outcome. Recently genetic polymorphisms in the host have shown to be associated with susceptibility to, severity of and outcome of infectious disease. Genes encoding proteins of the three major cascade pathways are involved. These pathways include the complement system, the inflammatory reaction and the coagulation and fibrinolysis pathway. We discuss the polymorphisms that have been studied in patients with meningococcal infections and the problems that arise on interpretation of the results and on comparing the different studies. The association of genetic polymorphisms and disease outcome has been confirmed in an independent study cohort for only a few polymorphisms, among which the pai1 4G/5G variant.

literatuur

  1. Rich RR, Fleisher TA, Schroeder HW Jr, eds. Clinical immunology, principles and practice, 2nd ed. St. Louis: Mosby, 2001.Google Scholar
  2. Kornelisse RF, Groot R de, Neijens HJ. Bacterial meningitis: mechanisms of disease and therapy. Eur J Pediatr 1995; 154(2):85-96.CrossRefPubMedGoogle Scholar
  3. Kleijn ED de, Hazelzet JA, Kornelisse RF, Groot R de. Pathophysiology of meningococcal sepsis in children. Eur J Pediatr 1998;157(11):869-80.CrossRefPubMedGoogle Scholar
  4. Read RC, Cannings C, Naylor SC, et al. Variation within genes encoding interleukin-1 and the interleukin-1 receptor antagonist influence the severity of meningococcal disease. Ann Intern Med 2003;138(7):534-41.PubMedGoogle Scholar
  5. Haralambous E, Weiss H, Radalowicz A, et al. Sibling familial risk ratio of meningococcal disease in UK Caucasians. Epidemiol Infect 2003;130(3):413-8.PubMedGoogle Scholar
  6. Underhill DM, Ozinsky A. Toll-like receptors: key mediators of microbe detection. Curr Opin Immunol 2002;14(1):103-10.CrossRefPubMedGoogle Scholar
  7. Akira S. Toll-like receptors and innate immunity. Adv Immunol 2001;78:1-55.CrossRefPubMedGoogle Scholar
  8. Read RC, Pullin J, Gregory S, et al. A functional polymorphism of toll-like receptor 4 is not associated with likelihood or severity of meningococcal disease. J Infect Dis 2001;184 (5):640-2.CrossRefPubMedGoogle Scholar
  9. Smirnova I, Hamblin MT, McBride C, et al. Excess of rare amino acid polymorphisms in the Toll-like receptor 4 in humans. Genetics 2001;158(4):1657-64.PubMedGoogle Scholar
  10. Smirnova I, Mann N, Dols A, et al. Assay of locus-specific genetic load implicates rare Toll-like receptor 4 mutations in meningococcal susceptibility. Proc Natl Acad Sci USA 2003;100(10):6075-80.CrossRefPubMedGoogle Scholar
  11. Rigat B, Hubert C, Alhenc-Gelas F, et al. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest 1990;86(4):1343-6.CrossRefPubMedGoogle Scholar
  12. Harding D, Baines PB, Brull D, et al. Severity of meningococcal disease in children and the angiotensin-converting enzyme insertion/deletion polymorphism. Am J Respir Crit Care Med 2002;165(8):1103-6.PubMedGoogle Scholar
  13. Danser AH, Schalekamp MA, Bax WA, et al. Angiotensin-converting enzyme in the human heart. Effect of the deletion/insertion polymorphism. Circulation 1995;92(6):1387-8.PubMedGoogle Scholar
  14. Von Depka M, Czwalinna A, Wermes C, et al. The deletion polymorphism in the angiotensin-converting enzyme gene is a moderate risk factor for venous thromboembolism. Thromb Haemost 2003;89(5):847-52.Google Scholar
  15. Hazelzet JA, Groot R de, Mierlo G van, et al. Complement activation in relation to capillary leakage in children with septic shock and purpura. Infect Immun 1998;66(11):5350-6.PubMedGoogle Scholar
  16. Hibberd ML, Summerfield JA, Levin M. Variation in the Mannose Binding Lectin (MBL) gene and susceptibility to sepsis. Sepsis 2001;4(3):201-7.CrossRefGoogle Scholar
  17. Madsen HO, Garred P, Kurtzhals JA, et al. A new frequent allele is the missing link in the structural polymorphism of the human mannan-binding protein. Immunogenetics 1994;40(1): 37-44.CrossRefPubMedGoogle Scholar
  18. Hibberd ML, Sumiya M, Summerfield JA, et al. Meningococcal Research Group. Association of variants of the gene for mannose-binding lectin with susceptibility to meningococcal disease. Lancet 1999;353(9158):1049-53.CrossRefPubMedGoogle Scholar
  19. Spath PJ, Sjoholm AG, Fredrikson GN, et al. Properdin deficiency in a large Swiss family: identification of a stop codon in the properdin gene, and association of meningococcal disease with lack of the IgG2 allotype marker G2m(n). Clin Exp Immunol 1999;118(2):278-84.CrossRefPubMedGoogle Scholar
  20. Westberg J, Fredrikson GN, Truedsson L, et al. Sequence-based analysis of properdin deficiency: identification of point mutations in two phenotypic forms of an X-linked immunodeficiency. Genomics 1995;29(1):1-8.CrossRefPubMedGoogle Scholar
  21. Bogaard R van den, Fijen CA, Schipper MG, et al. Molecular characterisation of 10 Dutch properdin type I deficient families: mutation analysis and X-inactivation studies. Eur J Hum Genet 2000;8(7):513-8.CrossRefPubMedGoogle Scholar
  22. Fredrikson GN, Gullstrand B, Westberg J, et al. Investigation of properdin expression in monocytes from properdin deficient individuals by intracellular staining and mRNA analysis. Exp Clin Immunogenet 1997;14:61.Google Scholar
  23. Fredrikson GN, Westberg J, Kuijper EJ, et al. Molecular characterization of properdin deficiency type III: dysfunction produced by a single point mutation in exon 9 of the structural gene causing a tyrosine to aspartic acid interchange. J Immunol 1996;157(8):3666-71.PubMedGoogle Scholar
  24. Fijen CA, Kuijper EJ, Bulte MT te, et al. Assessment of complement deficiency in patients with meningococcal disease in The Netherlands. Clin Infect Dis 1999;28(1):98-105.CrossRefPubMedGoogle Scholar
  25. Densen P, Weiler JM, Griffiss JM, Hoffmann LG. Familial properdin deficiency and fatal meningococcemia. Correction of the bactericidal defect by vaccination. N Engl J Med 1987;316(15):922-6.PubMedCrossRefGoogle Scholar
  26. Hazelzet JA, Risseeuw-Appel IM, Kornelisse RF, et al. Age-related differences in outcome and severity of DIC in children with septic shock and purpura. Thromb Haemost 1996;76 (6):932-8.PubMedGoogle Scholar
  27. Eriksson P, Kallin B, Hooft FM van 't, et al. Allele-specific increase in basal transcription of the plasminogen-activator inhibitor 1 gene is associated with myocardial infarction. Proc Natl Acad Sci USA 1995;92(6):1851-5.CrossRefPubMedGoogle Scholar
  28. Kornelisse RF, Hazelzet JA, Savelkoul HF, et al. The relationship between plasminogen activator inhibitor-1 and proinflammatory and counterinflammatory mediators in children with meningococcal septic shock. J Infect Dis 1996;173 (5):1148-56.PubMedGoogle Scholar
  29. Hermans PW, Hibberd ML, Booy R, et al. Meningococcal Research Group. 4G/5G promoter polymorphism in the plasminogen-activator-inhibitor-1 gene and outcome of meningococcal disease. Lancet 1999;354(9178):556-60.CrossRefPubMedGoogle Scholar
  30. Westendorp RG, Hottenga JJ, Slagboom PE. Variation in plasminogen-activator-inhibitor-1 gene and risk of meningococcal septic shock. Lancet 1999;354(9178):561-3.CrossRefPubMedGoogle Scholar
  31. Haralambous E, Hibberd M, Ninis N, et al. The role of the functional plasminogen-activator-inhibitor-1 4G/5G promoter polymorphism in susceptibility, severity and outcome of meningococcal disease in Caucasian children. Crit Care Med 2003;31(12):2788-93.CrossRefPubMedGoogle Scholar
  32. Kondaveeti S, Hibberd ML, Booy R, et al. Effect of the Factor V Leiden mutation on the severity of meningococcal disease. Pediatr Infect Dis J 1999;18(10):893-6.CrossRefPubMedGoogle Scholar
  33. Kondaveeti S, Hibberd ML, Levin M. The insertion/deletion polymorphism in the t-PA gene does not significantly affect outcome of meningococcal disease. Thromb Haemost 1999; 82(1):161-2.PubMedGoogle Scholar
  34. Hazelzet JA, Kleijn ED de, Groot R de. Endothelial protein C activation in meningococcal sepsis. N Engl J Med 2001; 345(24):1776-7.CrossRefPubMedGoogle Scholar
  35. Kleijn ED de, Groot R de, Hack CE, et al. Activation of protein C following infusion of protein C concentrate in children with severe meningococcal sepsis and purpura fulminans: A randomized, double-blinded, placebo-controlled, dose-finding study. Crit Care Med 2003;31(6):1839-47.CrossRefPubMedGoogle Scholar
  36. Yuksel M, Okajima K, Uchiba M, et al. Activated protein C inhibits lipopolysaccharide-induced tumor necrosis factor-alpha production by inhibiting activation of both nuclear factor-kappa B and activator protein-1 in human monocytes. Thromb Haemost 2002;88(2):267-73.PubMedGoogle Scholar
  37. Hackett SJ, Thomson AP, Hart CA. Cytokines, chemokines and other effector molecules involved in meningococcal disease. J Med Microbiol 2001;50(10):847-59.PubMedGoogle Scholar
  38. Westendorp RG, Langermans JA, Bel CE de, et al. Release of tumor necrosis factor: an innate host characteristic that may contribute to the outcome of meningococcal disease. J Infect Dis 1995;171(4):1057-60.PubMedGoogle Scholar
  39. Westendorp RG, Langermans JA, Huizinga TW, et al. Genetic influence on cytokine production and fatal meningococcal disease. Lancet 1997;349(9046):170-3.CrossRefPubMedGoogle Scholar
  40. Nadel S, Newport MJ, Booy R, Levin M. Variation in the tumor necrosis factor-alpha gene promoter region may be associated with death from meningococcal disease. J Infect Dis 1996;174(4):878-80.PubMedGoogle Scholar
  41. Westendorp RG, Langermans JA, Huizinga TW, et al. Genetic influence on cytokine production in meningococcal disease. Lancet 1997;349(9069):1912-3.CrossRefPubMedGoogle Scholar
  42. Booy R, Nadel S, Hibberd M, et al. Genetic influence on cytokine production in meningococcal disease. Lancet 1997;349 (9059):1176.CrossRefPubMedGoogle Scholar
  43. Huizinga TW, Westendorp RG, Bollen EL, et al. TNF-alpha promoter polymorphisms, production and susceptibility to multiple sclerosis in different groups of patients. J Neuroimmunol 1997;72(2):149-53.CrossRefPubMedGoogle Scholar
  44. Uglialoro AM, Turbay D, Pesavento PA, et al. Identification of three new single nucleotide polymorphisms in the human tumor necrosis factor-alpha gene promoter. Tissue Antigens 1998;52(4):359-67.CrossRefPubMedGoogle Scholar
  45. Tarlow JK, Blakemore AI, Lennard A, et al. Polymorphism in human IL-1 receptor antagonist gene intron 2 is caused by variable numbers of an 86-bp tandem repeat. Hum Genet 1993;91(4):403-4.CrossRefPubMedGoogle Scholar
  46. Read RC, Camp NJ, di Giovine FS, et al. An interleukin-1 genotype is associated with fatal outcome of meningococcal disease. J Infect Dis 2000;182(5):1557-60.CrossRefPubMedGoogle Scholar
  47. Clay FE, Tarlow JK, Cork MJ, et al. Novel interleukin-1 receptor antagonist exon polymorphisms and their use in allele-specific mRNA assessment. Hum Genet 1996;97(6):723-6.CrossRefPubMedGoogle Scholar
  48. Carrol ED, Mobbs KJ, Thomson AP, Hart CA. Variable number tandem repeat polymorphism of the interleukin-1 receptor antagonist gene in meningococcal disease. Clin Infect Dis 2002;35(4):495-7.CrossRefPubMedGoogle Scholar
  49. Balding J, Livingstone WJ, Healy M, et al. G to C transition in the promotor region of the IL6 gene is associated with disease outcome in meningococcal sepsis [abstract]. XVIII International Society on Thrombosis and Haemostasis. Paris, 2001, p. P1065.Google Scholar
  50. Schluter B, Raufhake C, Erren M, et al. Effect of the interleukin-6 promoter polymorphism (-174 G/C) on the incidence and outcome of sepsis. Crit Care Med 2002;30(1):32-7.CrossRefPubMedGoogle Scholar
  51. Terry CF, Loukaci V, Green FR. Cooperative influence of genetic polymorphisms on interleukin 6 transcriptional regulation. J Biol Chem 2000;275(24):18138-44.CrossRefPubMedGoogle Scholar
  52. Deventer SJ van, Buller HR, Cate JW ten, et al. Experimental endotoxemia in humans: analysis of cytokine release and coagulation, fibrinolytic, and complement pathways. Blood 1990;76(12):2520-6.PubMedGoogle Scholar
  53. Eskdale J, Gallagher G, Verweij CL, et al. Interleukin 10 secretion in relation to human IL-10 locus haplotypes. Proc Natl Acad Sci USA 1998;95(16):9465-70.CrossRefPubMedGoogle Scholar
  54. Turner DM, Williams DM, Sankaran D, et al. An investigation of polymorphism in the interleukin-10 gene promoter. Eur J Immunogenet 1997;24(1):1-8.PubMedGoogle Scholar
  55. Gibson AW, Edberg JC, Wu J, et al. Novel single nucleotide polymorphisms in the distal IL-10 promoter affect IL-10 production and enhance the risk of systemic lupus erythematosus. J Immunol 2001;166(6):3915-22.PubMedGoogle Scholar
  56. Pol WL van der, Huizinga TW, Vidarsson G, et al. Relevance of Fcgamma receptor and interleukin-10 polymorphisms for meningococcal disease. J Infect Dis 2001;184(12):1548-55.CrossRefPubMedGoogle Scholar
  57. Domingo P, Muniz-Diaz E, Baraldes MA, et al. Associations between Fc gamma receptor IIA polymorphisms and the risk and prognosis of meningococcal disease. Am J Med 2002; 112(1):19-25.CrossRefPubMedGoogle Scholar
  58. Bredius RG, Derkx BH, Fijen CA, et al. Fc gamma receptor IIa (CD32) polymorphism in fulminant meningococcal septic shock in children. J Infect Dis 1994;170(4):848-53.PubMedGoogle Scholar
  59. Smith I, Vedeler C, Halstensen A. FcgammaRIIa and FcgammaRIIIb polymorphisms were not associated with meningococcal disease in Western Norway. Epidemiol Infect 2003; 130(2):193-9.CrossRefPubMedGoogle Scholar
  60. Platonov AE, Kuijper EJ, Vershinina IV, et al. Meningococcal disease and polymorphism of FcgammaRIIa (CD32) in late complement component-deficient individuals. Clin Exp Immunol 1998;111(1):97-101.CrossRefPubMedGoogle Scholar
  61. Fijen CA, Bredius RG, Kuijper EJ. Polymorphism of IgG Fc receptors in meningococcal disease. Ann Intern Med 1993;119(7 Pt 1):636.PubMedGoogle Scholar
  62. Pol WL van der, Jansen MD, Sluiter WJ, et al. Evidence for non-random distribution of Fcgamma receptor genotype combinations. Immunogenetics 2003;55(4):240-6.CrossRefPubMedGoogle Scholar
  63. Goldschneider I, Gotschlich EC, Artenstein MS. Human immunity to the meningococcus. II. Development of natural immunity. J Exp Med 1969;129(6):1327-48.CrossRefPubMedGoogle Scholar
  64. Goldschneider I, Gotschlich EC, Artenstein MS. Human immunity to the meningococcus. I. The role of humoral antibodies. J Exp Med 1969;129(6):1307-26.CrossRefPubMedGoogle Scholar
  65. Griffiss JM, Bannatyne RM, Artenstein MS, Anglin CS. Recurrent meningococcal infection with an antigenically identical strain. JAMA 1974;229(1):68-70.CrossRefPubMedGoogle Scholar
  66. Borrow R. Update on meningococcal C conjugate vaccination programme in the UK. 21st meeting European Society for Paediatric Infectious Diseases. Giardini Naxos, 2003, p. 6.Google Scholar
  67. Dankert J, Ende A van der, Spanjaard L. Epidemiology of group C meningococcal disease in the Netherlands. 21st meeting European Society for Paediatric Infectious Diseases. Giardini Naxos, 2003, p. 7.Google Scholar
  68. Pollack MM, Patel KM, Ruttimann UE. PRISM III: an updated Pediatric Risk of Mortality score. Crit Care Med 1996;24(5):743-52.CrossRefPubMedGoogle Scholar
  69. Kornelisse RF, Hazelzet JA, Hop WC, et al. Meningococcal septic shock in children: clinical and laboratory features, outcome, and development of a prognostic score. Clin Infect Dis 1997;25(3):640-6.CrossRefPubMedGoogle Scholar
  70. Lazarus R, Klimecki WT, Raby BA, et al. Single-nucleotide polymorphisms in the Toll-like receptor 9 gene (TLR9): frequencies, pairwise linkage disequilibrium, and haplotypes in three U.S. ethnic groups and exploratory case-control disease association studies. Genomics 2003;81(1):85-91.CrossRefPubMedGoogle Scholar

Copyright information

© Bohn Stafleu van Loghum 2004

Authors and Affiliations

  • M. Emonts
  • P. W. M. Hermans
  • R. de Groot
  • J. A. Hazelzet

There are no affiliations available

Personalised recommendations