Advertisement

e & i Elektrotechnik und Informationstechnik

, Volume 122, Issue 12, pp 442–445 | Cite as

Status and trends in modern micro- and nanotechnology

  • H. Brückl
  • R. Hainberger
  • R. Heer
  • A. Köck
Originalarbeiten

Abstract

The recent development from micro- to nanotechnology enables new ideas and new physical effects to be implemented in both conventional and novel devices. Examples of fast developing fields in this context are electronic, photonic and magnetic components for sensor, memory, and logic applications. Optical lithography, the traditional path of patterning, is supplemented with sophisticated methods to access the nanoworld.

Keywords

microtechnology nanotechnology photonics sensors 

Aktueller Stand und Trends in der modernen Mikro- und Nanotechnologie

Zusammenfassung

Die jüngste Entwicklung von der Mikro- zur Nanotechnologie bringt neue Ideen und neue physikalische Effekte hervor, welche sowohl in konventionellen als auch in neuartigen Bauteilen verwertet werden können. Beispiele sich schnell entwickelnder Felder sind in diesem Zusammenhang elektronische, photonische und magnetische Komponenten für Sensor-, Speicher- und Logikanwendungen. Die optische Lithographie als der traditionelle Weg zur Nanostrukturierung wird erweitert durch anspruchsvollere Methoden für den Zugang zur Nanowelt.

Schlüsselwörter

Mikrotechnologie Nanotechnologie Photonik Sensorik 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almeida, V. A., Xu, Q., Panepucci, R. R., Barrios, C. A., Lipson, M. (2004): Light guiding in low index materials using high-index-contrast waveguides. Mat. Res. Soc. Symp. Proc., Vol. 797: W6.10.Google Scholar
  2. Barnes, W. L., Dereux. A., Ebbenden. T. W. (2003): Surface Plasmon subwavelength optics. Nature 424: 824–830.CrossRefGoogle Scholar
  3. Bhushan, B. (2004): Springer handbook of nanotechnology. Berlin: Springer.Google Scholar
  4. Brückl, H. (2005): Device concepts with magnetic tunnel junctions. In: Zschech, E., et al. (ed): Materials for information technology, devices and packaging: engineering materials and processes. Springer Press.Google Scholar
  5. Brückl, H. (2004): Magnetoresistive logic and biochip. J. Magn. Magn. Mater. 282: 219.CrossRefGoogle Scholar
  6. Charlton, C., Temelkuran, B., Dellemann, G., Mizaikoff, B. (2005): Midinfrared sensors meet nanotechnology: Trace gas sensing with quantum cascade lasers inside photonic band-gap hollow wave-guides. Appl. Phys. Lett. 86, 194102.CrossRefGoogle Scholar
  7. Chou, S. Y. (2001): Nano-imprint lithography and lithographically induced self-assembly. MRS Bulletin 26: 512–517.CrossRefGoogle Scholar
  8. Dresselhaus, M. S. et al. (2004): Nanowires. In: Bhushan, B. et al. (ed.): Springer handbook of nanotechnology. Berlin: Springer: 99–145.Google Scholar
  9. Gersen, H., Karle, T. J., Engelen, R. J. P., Bogaerts, W., Korterik, J. P., van Hulst, N. F., Krauss, T. F., Kuipers, L. (2005): Real-space observation of ultraslow light in photonic crystal waveguides. Phys. Rev. Lett. 94, 073903.CrossRefGoogle Scholar
  10. Gershenfeld, N., Chuang, I. (1997): Bulk spin-resonance quantum computation. Science 275: 350–356.MathSciNetCrossRefGoogle Scholar
  11. International Technology Roadmap for Semiconductors (ITRS) 2004 (http://www.itrs.net/Common/2004Update/2004_07_Lithography.pdf/.)Google Scholar
  12. Larsen, N. B., Biebuyck, H., Delamarche, E., Michel, B. (1997): Order in microcontact printed self-assembled monolayers, J. Am. Chem. Soc. 119: 3017–3026.CrossRefGoogle Scholar
  13. Liu, A., Samara-Rubio, D., Liao, L., Paniccia, M. (2005): Scaling the modulation bandwidth and phase efficiency of a silicon optical modulator. IEEE Journal of Selected Topics in Quantum Electronics, Vol. 11, No. 2: 367–372.CrossRefGoogle Scholar
  14. Loo, Y.-L., Willett, R. W., Baldwin, K., Rogers, J. A. (2002a): Additive, nanoscale patterning of metal films with a stamp and a surface chemistry mediated transfer process: Applications in plastic electronics. Appl. Phys. Lett. 81: 562–564.CrossRefGoogle Scholar
  15. Loo, Y.-L., Willett, R. W., Baldwin, K., Rogers, J. A. (2002b): Interfacial chemistries for nanoscale transfer printing. J. Am. Chem. Soc. 124: 7654–7655.CrossRefGoogle Scholar
  16. Loo, Y.-L., Hsu, J. W. P., Willett, R. L., Baldwin, K. W., West, K. W., Rogers, J. A. (2002c): High-resolution transfer printing on GaAs surfaces using alkane dithiol selfassembled monolayers. J. Vac. Sci. Technol. B. 20: 2853–2856.CrossRefGoogle Scholar
  17. Lloyd, S. (1995): Quantum-mechanical computers. Scientific American 273: 140–145.CrossRefGoogle Scholar
  18. Lutwyche, M., Andreoli, C., Binnig, G., Brugger, J., Drechsler, U., Haeberle, W., Rohrer, H., Rothuizen, H., Vettiger, P. (1998): Microfabrication and parallel operation of 5 × 5 2D AFM cantilever arrays for data storage and imaging. Proc. MEMS 98: 8–11.Google Scholar
  19. Michel, B., Bernard, A., Bietsch, A., Delamarche, E., Geissler, M., Juncker, D., Kind, H., Renault, J. P., Rothuizen, H., Schmid, H., Schmidt-Winkel, P., Stutz, R., Wolf, H. (2001): Printing meets lithography: soft approaches to high-resolution printing. IBM J. Res. Dev. 45: 697–719.CrossRefGoogle Scholar
  20. Minne, S. C., Manalis, S. R., Atalar, A., Quate, C. F. (1996): Independent parallel lithography using the atomic force microscope. J. Vac. Sci. & Technol. B 14: 2456–2461.CrossRefGoogle Scholar
  21. Mirkin, C. A. (2001): Dip-pen nanolithography: automated fabrication of custom multicomponent, sub-100 nanometer surface architectures. MRS Bulletin 26: 535–538.CrossRefGoogle Scholar
  22. Rai-Choudhury, P. (ed.) (1997): Handbook of microlithography, micromachining and microfabrication (SPIE, Bellingham).Google Scholar
  23. Raymo, F. M. (2004): Nanomaterials synthesis and applications: molecule-based devices. In: Bhushan, B. et al.: Springer handbook of nanotechnology. Berlin: Springer: 9–38.Google Scholar
  24. Rogers, J. A., Jackman, R. J., Wagener, J. L., Vengsarkar, A. M., Whitesides, G. M. (1997): Using microcontact printing to generate photomasks on the surface of optical fibers: a new method for producing in-fiber gratings. Appl. Phys. Lett. 70: 7–9.CrossRefGoogle Scholar
  25. Rong, H., Jones, R., Liu, A., Cohen, O., Hak, D., Fang, A., Paniccia, M. (2005): A continuous-wave Raman silicon laser. Nature 433: 725–728.CrossRefGoogle Scholar
  26. Sohn, L. L., Willett, R. L. (1995): Fabrication of nanostructures using atomic-force-microscope-based lithography. Appl. Phys. Lett. 67: 1552–1554.CrossRefGoogle Scholar
  27. Tsuchizawa, T., Yamada, K., Fukuda, H., Watanabe, T., Takahashi, J., Takahashi, M., Shoji, T., Tamechika, E., Itabashi, S., Morita, H. (2005): Microphotonics devices based on silicon microfabrication technology. IEEE Journal of Selected Topics in Quantum Electronics, Vol. 11, No. 1: 232–240.CrossRefGoogle Scholar
  28. Vlasov, Y. A., McNab, S. J. (2004): Losses in single-mode silicon-oninsultor strip waveguides and bends. Optics Express, Vol. 12, No. 8: 1622–1631.CrossRefGoogle Scholar
  29. Wu, L., Mazilu, M., Karle, T., Krauss, T. F. (2002): Superprism phenomena in planar photonic crystals. IEEE Journal of Quantum Electronics, Volume 38, Issue 7: 915–918.CrossRefGoogle Scholar
  30. Xia, Y., Whitesides, G. M. (1998): Soft lithography. Angew. Chem. Int. Ed. 37: 550–575.CrossRefGoogle Scholar
  31. Xia, Y., Rogers, J. A., Paul, K. E., Whitesides, G. M. (1999): Unconventional methods for fabricating and patterning nanostructures. Chem. Rev. 99: 1823–1848.CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.ARC Seibersdorf research, Nano-System-TechnologiesWienÖsterreich

Personalised recommendations