Senckenbergiana lethaea

, Volume 82, Issue 1, pp 295–314 | Cite as

The origin of metazoa and the main evolutionary lineages of the animal Kingdom: The gallertoid hypothesis in the light of modern research

  • Manfred Grasshoff
  • Michael Gudo
Constructional Morphology and Evolution


A scenario for the evolutionary history of the Metazoa is presented, including the evolution of the Urmetazoa and the Ctenophora, Porifera, Coelenterata, and early Bilateria. The reasoning about evolutionary transformations is based on engineering morphology, and includes the results of comparative anatomy and of molecular research. According to this evolutionary model, the specific metazoan multicellularity, which is different of that of fungi and plants, evolved in multinucleate heterotroph unicellular organisms by the deposit of gelatinous/fibrous substance into the endoplasmatic reticulum. The multitude of cells, the syncytia, and the extracellular matrix with gelatinous properties and containing collagenous fibers, developed dependent of each other and simultaneously. The resulting ancestral metazoan, the ur-metazoan, was named ‘gallertoid’ (German: Gallerte = gelatine) for the main feature of its body support, viz., the gelatinous/fibrous material. By further internal differentiation of gallertoids several evolutionary lineages developed independently:Trichoplax, the Ctenophora, the Porifera, the Coelenterata, and the Bilateria (=Coelomata), which soon split into two lines, the Notoneuralia and the Gastroneuralia.

Key words

evolution engineering morphology Gallertoid Trichoplax Ctenophora Porifera Coelenterata Bilateria Coelomata Notoneuralia Gastroneuralia 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abercrombie, W. (1980): The crawling movement of metazoan cells. — Proceedings of the Royal Society of London. Series B: Biological Sciences,207: 129–147.CrossRefGoogle Scholar
  2. Babcock, L. E. (1991): The enigma of conulariid affinities. —InSimonetta, A. M. &Morris, C. S. [ed.]. The early evolution of Metazoa and the significance of prpblematic taxa: I–IX., 133–143, Cambridge, London, New York (Cambridge University Press).Google Scholar
  3. Bayer, F. M. (1974): Studies on the anatomy and histology of Plexaura homomalla in Florida. —InBayer, F. M. &Weinheimer, A. J. [ed.]. Prostaglandins fromPlaexaura homomalla: Ecology, Utilization and Conservation of a Major Medical Resource, A Symposium. — 165 pp., Coral Gables, Florida (University of Miami Press).Google Scholar
  4. Beklemishev, W. N. (1969): Principles of comparative anatomy of invertebrates. — Chicago (University Press).Google Scholar
  5. Bond, C. andHarris, A. K. (1988): Locomotion of Sponges and Ist Physical Mechanism. — Journal of Experimental Zoology,246: 271–284.CrossRefGoogle Scholar
  6. Bonik, K., Grasshoff, M. andGutmann, W. F. (1976): Die Evolution der Tierkonstruktionen: I. Problemlage und Prämissen, II. Vielzeller und die Evolution der Gallertoide. — Natur und Museum,106 (5): 129–143.Google Scholar
  7. Borchiellini, C., Manuel, M., Alivon, E., Boury-Esnault, N., Vacelet, J. andLe Parco, Y. (2001): Sponge paraphyly and the origin of Metazoa. — Journal of Evolutionary Biology,14: 171–179.CrossRefGoogle Scholar
  8. Bridge, D., Cunningham, C. W., Schierwater, B., DeSalle, R. andBuss, L. W. (1992): Class-level relationships in the phylum Cnidaria: evidence from mitochondrial genome structure. — Proc. Natl. Acad. Sci.,89: 8750–8753.CrossRefGoogle Scholar
  9. Brook, G. (1889): Report on the Antipatharia collected by H. M. S. Challenger during the Years 1973–76. — Rep. Sci. Res. Challenger, Zool.,32: 1–222.Google Scholar
  10. Chevalier, J.-P. (1987): Orde des Scleractiniaires. —InDoumenc, D. A. [ed.].Grassé, P.P.: Traité de Zoologie, Cnidaires, Anthozoaires. — Paris (Masson).Google Scholar
  11. Dewel, R. A. (2000): Colonial Origin for Eumetazoa: Major Morphological Transitions and the Origin of Bilaterian Complexity. — Journal of Morphology,243: 34–74.CrossRefGoogle Scholar
  12. Fioroni, P. (1987): — Allgemeine und vergleichende Embryologie der Tiere. — 429 pp., Berlin, Heidelberg, New York, London, Paris, Tokyo (Springer-Verlag).Google Scholar
  13. Fishelson, L. (1981): Observations on the Moving Colonies of the genus Tethya (Demospongia, Porifera). — Zoomorphology,98: 89–99.CrossRefGoogle Scholar
  14. Gehling, J. G. (1999): Microbial Mats in Terminal Proterozoic Siliciclastics: Ediacaran Death Marks. — Palaios,14 (1): 40–57.CrossRefGoogle Scholar
  15. Gehling, J. G., Narbonne, G. M. andAnderson, M. M. (2000): The first names ediacaran body fossil, Aspidella terranovica. — Palaeontology,43 (3): 427–456.CrossRefGoogle Scholar
  16. Grasshoff, M. (1992a): Die Evolution der Schwämme. I. Die Entwicklung des Kanalfiltersystems. — Natur und Museum,122: 201–210.Google Scholar
  17. Grasshoff, M. (1992b): Die Evolution der Schwämme. II. Bautypen und Vereinfachungen. — Natur und Museum,122: 237–247.Google Scholar
  18. Grasshoff, M. (1993): Die Evolution der Tiere — Eine neue Darstellung. — Praxis der Naturwissenschaften,42 (8): 16–25.Google Scholar
  19. Grasshoff, M. (1995): Die Evolution der Tiere. — Poster, 2nd. edition. — Senckenberg. Naturforsch. Ges., Frankfurt am Main.Google Scholar
  20. Grasshoff, M. (1997): Outlines of Coelenterate Evolution based on principles of constructional morphology. — Proceedings of 6th International Conference on Coelenterate Biology 1995: 195–208.Google Scholar
  21. Grasshoff, M. andGudo, M. (2001): The evolution of animals — poster with explanations. — Senckenberg-Poster,1: 1–16.Google Scholar
  22. Gudo, M. (1997): Konstruktionsmorphologische Rekonstruktion rugoser Korallen. — Profil,11: 325–340.Google Scholar
  23. Gudo, M. (2000): A structural-functional approach to the soft bodies of rugose corals. — 219–240.InPeters, D. S. &Weingarten, M. [ed.]. Organisms, Genes and Evolution — Evolutionary Theory at the Crosscroads. Proceedings of the 7th International Senckenberg Conference. 219–240 pp., Stuttgart (Steiner).Google Scholar
  24. Gudo, M. (2001): Konstruktion, Evolution und riffbildendes Potential rugoser Korallen. — Courier Forschungsinstitut Senckenberg,228: 1–153.Google Scholar
  25. Gudo, M. andHubmann, B. (2001): Engineering morphology of the rugoseArgutastrea quadrigemina: new aspects on the reconstruction of soft body behaviour during parricidal budding. — Bulletin of the Tohoku University Museum,1: 40–48.Google Scholar
  26. Gutmann, M. (1996): Studien zur Theorie der Biologie. — Die Evolutionstheorie und ihr Gegenstand — Beitrag der Methodischen Philosophie zu einer konstruktiven Theorie der Evolution. — 332 pp., Berlin (VWB).Google Scholar
  27. Gutmann, W. F. (1966): Zu Bau und Leistung von Tierkonstruktionen 4–6. 4. Bindegewebe und Muskulatur im Bewegungsapparat vonMetridium senile. — 5. Struktur und Mechanik des Bindegewebes bei Urticina felina undSagartia troglodytes. — 6. Funktionelle Gesichtspunkte zur Phylogenie der Coelenteraten: Radialsymmetrie und Muskelapparat. — Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft,510: 1–106.Google Scholar
  28. Gutmann, W. F. (1995): Die Evolution hydraulischer Konstruktion — organismische Wandlung statt altdarwinistischer Anpassung. — Frankfurt am Main (Kramer).Google Scholar
  29. Gutmann, W. F. andBonik, K. (1981): Kritische Evolutionstheorie — Ein Beitrag zur Überwindung altdarwinistischer Dogmen. — Hildesheim (Gerster).Google Scholar
  30. Haeckel, E. (1866): Generelle Morphologie der Organismen. 2. Allgemeine Entwicklungsgeschichte der Organismen. — Berlin (Reimer).Google Scholar
  31. Haeckel, E. (1874): Die Gastraea-Theorie, die phylogenetische Klassifikation des Tierreiches und die Homologie der Keimblätter. — Jenaische Zeitschrift für Naturwissenschaft,8: 1–55.Google Scholar
  32. Hanson, E. (1963): On the Origin of the Metazoa. — Systematic Zoology,7: 16–47.CrossRefGoogle Scholar
  33. Herberts, C. (1987): Ordre des Zoanthaires. —InDoumenc, D. A. [ed.].Grassé, P.P.: Traité de Zoologie, Cnidaires, Anthozoaires. — Paris (Masson).Google Scholar
  34. Hernandez-Nicaise, M.-L. andFranc, J. M. (1995): Embranchement des Cténaires. —InDoumenc, D. A. [ed.].Grassé, P.P.: Traité de Zoologie, Cnidaires, Cténaires. — Paris (Masson).Google Scholar
  35. Hyman, L. H. (1940): The Invertebrates — Protozoa through Ctenophora. — New York, London (McGraw-Hill).Google Scholar
  36. James-Clark, H. (1868): On the spongiae ciliatae as infusoria flagellata; or observations on the structure, animality, and relationship of Leucosolenia botryoides, Bowerbank. — Ann. Mag. Nat. Hist.,4 (1): 188–215.Google Scholar
  37. Jenkins, R. J. F. (1992): Functional and Ecological Aspects of Ediacaran Assemblages. —InLipps, J. H. &Signor, P. W. [eds.]. Origin and Early of Evolution of the Metazoa. 131–176 pp., New York (Plenum).Google Scholar
  38. Jensen, S., Gehling, J. G. andDroser, M. L. (1998): Ediacary-type fossils in Cambrian sediments. — Nature,393: 567–569.CrossRefGoogle Scholar
  39. Kiderlen, H. (1937): Die Conularien. Über Bau und Leben der ersten Scyphozoen. — Jahrbuch für Mineralogie, Geologie und Paläontologie, Beilagen,77B: 113–169.Google Scholar
  40. King, N. andCarroll, S. B. (2001): A receptor tyrosine kinase from choanoflagellates: molecular insights into early animal evolution. — Proc Natl Acad Sci U S A,98 (26): 15032–7.CrossRefGoogle Scholar
  41. Levit, G. &Scholz, J. (this volume): The Biosphere as a Morphoprocess and a new Look at the Concepts of Organism and Individuality. — Senckenbergiana lethaea82 (1): 367–372.Google Scholar
  42. Lipps, J. H. andSignor, P.W. [eds] (1992): Origin and Early Evolution of the Metazoa. — New York (Plenum Press).Google Scholar
  43. Margulis, L. (1990): Kingdom Animalia: The Zoological Malaise from a Microbial Persepctive. — American Zoologist,30 (4): 861–975.Google Scholar
  44. McMenamin, M. A. S. (1998): The Garden of Ediacara. — 295 pp., New York (Columbia University Press).Google Scholar
  45. Metschnikoff, E. (1885): Vergleichende embryologische Studien. IV. Über die Gastrulation und Mesodermbildung bei Ctenophoren. — Zeitschrift für wissenschaftliche Zoologie,42: 648–656.Google Scholar
  46. Müller, W. E. G. (2001): How was metazoan threshold crossed? The hypothetical Urmetazoa. — Comparative Biochemistry and Physiology Part A,129: 433–460.CrossRefGoogle Scholar
  47. Nielsen, C. (1995): Animal Evolution. — 466 pp., Oxford, New York, Tokyo (Oxford University Press).Google Scholar
  48. Nielsen, C. andNörrevang, A. (1985): The trochea theory: an example of life cycle phylogeny. — The Systematics Association Special Volume,28: 28–41.Google Scholar
  49. Nörrevang, A. andWingstrand, K. G. (1970): On the Occurence and Structure of Coanocyte-like Cells in Some Echinoderms. — Acta Zoologica,51: 249–270.CrossRefGoogle Scholar
  50. Norris, R. D. (1989): Cnidarian taphonomy and affinities of the Ediacara biota. — Lethaia,22 (4): 381–393.CrossRefGoogle Scholar
  51. O’Rahilly, R. andMüller, F. (1999): Embryologie und Teratologie des Menschen. — 486 pp., Bern, Göttingen, Toronto, Seattle (Hans Huber).Google Scholar
  52. Odorico, D. M. andMiller, D. J. (1997): Internal and external relationships of the Cnidaria: implications of primary and predicted secondary structure of the 5′-end of the 23S-like rDNA. — Proceedings of the Royal Society of London. Series B: Biological Sciences,264: 77–82.CrossRefGoogle Scholar
  53. Ortolani, G. (1964): Origino dell’organo apicale e di deriva mesodermici nello sviluppo embrionale di ctenofori. — Acta Embryol. Morphol. exper.,7: 191–200.Google Scholar
  54. Pax, F. (1918): Die Antipatharien. — Zool. Jahrb., Syst., Geogr., Biol. Tiere,41: 419–478.Google Scholar
  55. Pauwels, F. (1960): Eine neue Theorie über den Einfluß mechanischer Reize auf die Differenzierung der Stützgewebe. — Zeitschrift für Anatomie und Entwicklungsgeschichte,121: 478–515.CrossRefGoogle Scholar
  56. Peters, D. S. andGutmann, W. F. (1971): Über die Lesrichtung von Merkmals- und Konstruktions-Reihen. — Zeitschrift für zoologische Systematik und Evolutionsforschung,9 (4): 237–263.Google Scholar
  57. Reitner, J. andMehl, D. (1996): Monophyly of the Porifera. — Verh. naturwiss. Ver. Hamburg, NF36: 5–62.Google Scholar
  58. Roule, P. L. (1905): Description des Antipathaires et Cérianthaires Recueillès par S.A.S. le Prince de Monaco dans l’Atlantique nord (1886–1902). — Res. Camp. Sci Albert I. Monaco,30: 1–99.Google Scholar
  59. Runnegar, B. (1995): Vendobionta or Metazoa? Developments in Understanding the Ediacara ‘Fauna’. — Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen,195 (1–3): 303–318.Google Scholar
  60. Schaffer, J. (1933): Lehrbuch der Histologie und Histogenese. — Berlin, Wien (Urban & Schwarzenberg).Google Scholar
  61. Seilacher, A. (1984): Late Precambrian Metazoa: Preservational or real extinctions? —InHolland, H. D. &Trendall, A. F. [ed.]. Patterns of change in earth evolution. 159–168 pp., Berlin.Google Scholar
  62. Seilacher, A. (1989): Vendozoa: Organismic construction in the Proterozoic biosphere. — Lethaia,22 (3): 229–239.CrossRefGoogle Scholar
  63. Seilacher, A. andGoldring, R. (1996): Class Psammocorallia (Coelenterata, Vendian Ordovician): Recognition, Systematics, and Distribution. — Geologiska Föreningens i Stockholm Förhandlingar,118: 207–216.Google Scholar
  64. Siewing, R. (1969): Lehrbuch der vergleichenden Entwicklungsgeschichte der Tiere. — Hamburg, Berlin (Parey).Google Scholar
  65. Siewing, R. (1977): Mesoderm bei Ctenophoren. — Zeitschrift für zoologische Systematik und Evolutionsforschung,15: 1–8.Google Scholar
  66. Starck, D. (1975): Embryologie. Ein Lehrbuch auf allgemein biologischer Grundlage. — Stuttgart (G. Thieme).Google Scholar
  67. Steinböck, O. (1937): Eine Theorie über den plasmoidalen Ursprung der Vielzeller (Metazoa). — 343–348.Google Scholar
  68. Steinböck, O. (1963): Origin and affinities of Lower Metazoa. — 40–54.InDougherty, E. [ed.]. The Lower Metazoa. 40–54 pp., San Franzisco (Univ. Calif. Press).Google Scholar
  69. Syed, T. &Schierwater, B. (this volume): The Evolution of the Placozoa: A new morphological Model. — Senckenbergiana lethaea82 (1): 315–324.Google Scholar
  70. Tamm, S. L. andTamm, S. (1973): Mechanisms of ciliary co-ordination in Ctenophores. — Journal of Experimental Biology,59: 231–245.Google Scholar
  71. Tamm, S. L. andTamm, S. (1980): Cilia and ctenophores. — Oceanus,23: 50–59.Google Scholar
  72. Tardent, P. (1978): Coelenterata, Cnidaria. —InSeidel, F. [ed.]. Morphogenese der Tiere. — Stuttgart, New York (Fischer).Google Scholar
  73. Thiel, H. (1966): The evolution of the Scyphozoa, a review. —InRees, W. J. [ed.]. Symp. Zool. Soc. London, The Cnidaria and their Evolution.Google Scholar
  74. Vacelet, J. andBoury-Esnault, N. (1995): Carnivorous sponges. — Nature,373: 333–335.CrossRefGoogle Scholar
  75. Van Iten, H. (1992): Microstructure and growth of the conulariid test: Implications for conulariid affinities. — Palaeontology,35: 359–372.Google Scholar
  76. Van-Praet, M., Doumenc, D. andPax, F. (1987): Ordre des Antipathaires. —InDoumenc, D.e. [ed.],Grassé, P.P.: Traité de Zoologie, Cnidaires, Anthozoaires. pp. 189–210. — Paris (Masson).Google Scholar
  77. Vogel, K. P. (1989): Constructional morphology and the reconstruction of phylogeny. — Abhandlungen des Naturwissenschaftlichen Vereins,28: 255–264.Google Scholar
  78. Vogel, K. P. (1991): Concepts of Constructional Morphology. —InSchmidt-Kittler, N. &Vogel, K. [ed.]. Constructional Morphology and Evolution. pp. 55–68, HeidelbergGoogle Scholar
  79. Wainright, P. O., Hinkle, G., Sogin, M. L. andStickel, S. K. (1993): Monophyletic origins of the metazoa: an evolutionary link with fungi. — Science,260: 340–342.CrossRefGoogle Scholar
  80. Wells, J. W. (1956): Scleractinia. — 328–444.InMoore, R. C. [ed.]. Treatise on Invertebrate Paleontology, Part F, Coelenterata. — Lawrence (Kansas Press).Google Scholar
  81. Werner, B. (1965): Die Nesselkapselzellen der Cnidarier, mit besonderer Berücksichtigung der Hydroida. I. Klassifikation & Bedeutung für die Systematik und Evolution. — Helgoländer wissenschaftliche Meeresuntersuchungen,12: 1–39.CrossRefGoogle Scholar
  82. Werner, B. (1966):Stephanoscyphus (Scyphozoa, Coronatae) und seine direkte Abstammung von den fossilen Conulata. — Helgoländer wissenschaftliche Meeresuntersuchungen,13: 317–347.CrossRefGoogle Scholar
  83. Werner, B. (1973): New investigations on systematic and evolution on the class Scyphozoa and the phyllum Cnidaria. — Publ. Seto Mar. Biol. Lab.,20: 35–61.Google Scholar
  84. Werner, B. (1975): Bau und Lebensgeschichte des Polypen vonTripedalia cystophora (Cubozoa, class. Nov., Carybdeidae) und seine Bedeutung für die Evolution der Cnidaria. — Helgoländer wissenschaftliche Meeresuntersuchungen,28 (4): 461–504.CrossRefGoogle Scholar
  85. Werner, B. (1984): Stamm Cnidaria. —InGruner, E. [ed.]. Lehrbuch der Speziellen Zoologie, Wirbellose Tiere (2). — Jena (Fischer).Google Scholar
  86. Williams, G.C. (1997): Preliminary assessment of the phylogeny of Pennatulacea (Anthozoa: Octocorallia), with a reevaltuation of Ediacara frond-like fossils, and a synopsis of the history of evolutionary thought regarding the sea pens. — Proceedings of the 6th International Conference on Coelenterate Biology,1995: 497–509.Google Scholar
  87. Willmer, P. (1990): Invertebrate Relationships — Patterns in animal evolution. — 400 pp., Cambridge (Cambridge University Press).Google Scholar
  88. Zhuravlev, A. Y. (1993): Were Ediacaran Vendobionta Multicellulars? — Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen,190: 299–314.Google Scholar

Copyright information

© E. Schweizerbart’sche Verlagsbuchhandlung 2002

Authors and Affiliations

  • Manfred Grasshoff
    • 1
  • Michael Gudo
    • 1
  1. 1.Forschungsinstitut SenckenbergFrankfurt am Main

Personalised recommendations