Senckenbergiana lethaea

, Volume 82, Issue 1, pp 59–75 | Cite as

Forelimb biomechanics of nonavian theropod dinosaurs in predation

  • Kenneth Carpenter
Functional Morphology and Biomechanics

Abstract

Theoretical models of theropod forelimb biomechanics are often tainted with preconceived ideas. Actualistic modeling using specimens and casts, coupled with CAT-scans and dissections of extant vertebrate forelimbs, demonstrates that forelimb motion in theropods is considerably less than hypothetical models indicate. The forelimbs ofCoelophysis, cf.Coelurus, Allosaurus, Deinonychus, andTyrannosaurus were investigated. Motion at the shoulder, elbow, wrist, and digits were analyzed and compared with those of birds and crocodiles, then motion of the entire forelimb was examined. The results have considerable implications for forelimb use in predation. Three models of predation are recognized: 1) long armed grasper —Deinonychus, cf.Coelurus; 2) clutcher -Tyrannosaurus; 3) combination grasper-clutcher -Allosaurus. Analysis of the joints ofDeinonychus show that the forelimb could not fold avian fashion. The scapula of the theropodUnenlagia was oriented incorrectly and differs little from the standard theropod scapula.

Key words

theropods joint morphology functional morphology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anton, J. (2000): Ceratopsian crests as acoustic devices. — Journal of Vertebrate Paleontology20(supl. 3):27A.Google Scholar
  2. Boch, W.J. (1974): The avian skeletomusculature system. — In D.S.Farmer, J.R.King, & K.P.Parkes [eds], Avian Biology:4:119–257, 31 text figs.; New York (Academic Press).Google Scholar
  3. Carpenter, K. (1998). Evidence of predatory behavior by carnivorous dinosaurs. —Gaia15: 135–144.Google Scholar
  4. Carpenter, K., &Smith, M. (1995): Osteology and functional morphology of the forelimb in tyrannosaurids as compared with other theropods. — Journal of Vertebrate Paleontology15(supl. 3):21A.Google Scholar
  5. Carpenter, K. &Smith, M. (2001): Forelimb osteology and biomechanics ofTyrannosaurus rex. — InD. Tanke &K. Carpenter [eds], Mesozoic Vertebrate Life: 90–116, 13 text figs.; Bloomington (Indiana University Press).Google Scholar
  6. Carpenter, K., Madsen, J. andLewis, A. (1994): Mounting of fossil vertebrate skeletons. — InP. Leiggi andP. May [eds], Vertebrate Paleontological Techniques.: 285–322, 38 text figs.; New York (Cambridge University Press).Google Scholar
  7. Carrano, M.T. (2000): Homoplasy and the evolution of dinosaur locomotion. — Paleobiology26:489–512.CrossRefGoogle Scholar
  8. Chatterjee, S. (1997): The Rise of Birds. — 312pp., Baltimore (Johns Hopkins University Press).Google Scholar
  9. Chure, D. (2001): One dead reptile: the death and resurrection of a carnivorous dinosaur in Dinosaur National Monument. — Dino Press,2:4–11.Google Scholar
  10. Chure, D.L. &Madsen, J.H. (1996): On the presence of furculae in some non-maniraptoran theropods. — Journal of Vertebrate Paleontology16:573–577.Google Scholar
  11. Chatterjee, S. (1998): Counting the fingers of birds and dinosaurs. — Science280:355.CrossRefGoogle Scholar
  12. Clark, J.M., Norell, M.A., &Chiappe, L.M. (1999): An oviraptorid skeleton from the Late Cretaceous of Ukhaa Tolgod, Mongolia, preserved in an avianlike brooding position over an oviraptorid nest. — American Museum Novitates3265: 1–36.Google Scholar
  13. Colbert, E.D. (1989): The Triassic dinosaurCoelophysis. — Museum of Northern Arizona Bulletin57: 1–160.Google Scholar
  14. Currie, P.J. &Carpenter, K. (2000): A new specimen ofAcrocanthosaurus atokensis (Theropoda, Dinosauria) from the Lower Cretaceous Antlers Formation (Lower Cretaceous, Aptian) of Oklahoma, USA. — Geodiversitas22:207–246.Google Scholar
  15. Dal Sasso C. &Signore M. (1998): Exceptional soft tissue preservation in a theropod dinosaur from Italy. — Nature392:383–387.CrossRefGoogle Scholar
  16. Feduccia, A. (1986): The scapulocoracoid of flightless birds: a primitive avian character similar to that of theropods. — Ibis128: 128–132.CrossRefGoogle Scholar
  17. Galton, P.M. (1969): The pelvic musculature of the dinosaurHypsilophodon (Reptilia: Ornithischia). — Postilla131:1–64.Google Scholar
  18. Galton, P.M. (1971): Manus movements of the coelurosaurian dinosaurSyntarsus and the opposability of the theropod hallux. — Arnoldia2(5):1–8.Google Scholar
  19. Gatsey, S.M. (1990): Caudofemoral musculature and the evolution of theropod locomotion. Paleobiology16:170–186.Google Scholar
  20. Gauthier, J. &Padian, K. (1985): Phylogenetic, functional, and aerodynamic analyses of the origin of birds and their flight. — In:M.K. Hecht, J.H. Ostrom, G. Viohl, &P. Wellnhofer [eds], The Beginnings of Birds.:185–197, 3 text-figs; Eichstätt (Brönner & Daentler).Google Scholar
  21. Gilmore, C.W. (1920): Osteology of the carnivorous Dinosauria in the United States National Museum, with special reference to the generaAntrodemus (Allosaurus) andCeratosaurus. — U.S. National. Museum Bulletin110: 1–154.Google Scholar
  22. Holland, W.J. (1910): A review of some recent criticisms of the restorations of sauropod dinosaurs existing in the museums of the United States, with special reference to that ofDiplodocus carnegiei in the Carnegie Museum. — The American Naturalist44: 259–282.CrossRefGoogle Scholar
  23. Hollinshead, W.H. (1969): Functional anatomy of the limbs and back. — 420 pp. Philadelphia (W.B. Saunders).Google Scholar
  24. Horner, J.R. &Lessem, D. (1994): The CompleteT. rex. — New York (Harper Collins).Google Scholar
  25. Hutchinson, J.R. &Gatsey, S.M. (2000): Adductors, abductors, and the evolution of archosaur locomotion. — Paleobiology26:734–751.CrossRefGoogle Scholar
  26. Jenkins, F.A. (1993): The evolution of the avian shoulder joint. — American Journal of Science293A:253–267.Google Scholar
  27. Jenkins, F.A., Dial, K.P. &Goslow, G.E. (1988): A cineradiographic analysis of bird flight: the wishbone in starlings is a spring. — Science241:1495–1498.CrossRefGoogle Scholar
  28. Lambe, L. M. (1917): The Cretaceous theropodous dinosaurGorgosaurus. — Geological Survey of Canada Memoir,100:1–85.Google Scholar
  29. Makovicky, P.J. &Currie, P.J. (1998): The presence of a furcula in tyrannosaurid theropods, and its phylogenetic and functional implications. Journal of Vertebrate Paleontology18:143–149.Google Scholar
  30. Makovicky, P.J. &Sues, H.-D. (1998): Anatomy and phylogenetic relationships of the theropod dinosaurMicrovenator celer from the Lower Cretaceous of Montana. American Museum Novitates3240:1–27.Google Scholar
  31. Madsen, J. H. (1976):Allosaurus fragilis, a revised osteology. — Utah Geological and Mineralogy Survey Bulletin109: 1–163.Google Scholar
  32. McWhinney, L.A., Carpenter, K., &Rothschild, B. (2001): Dinosaurian humeral periostitis: a case of a juxtacortical lesion in the fossil record. InD. Tanke &K. Carpenter [eds], Mesozoic Vertebrate Life: 364–377, 4 text figs.; Bloomington (Indiana University Press).Google Scholar
  33. Middleton, K. M. &Gatsey, S. M. (2000): Theropod forelimb design and evolution. — Zoological Journal of the Linnean Society,128: 149–187.CrossRefGoogle Scholar
  34. Meers, M.B. (1999): Evolution of the Crocodylian Forelimb: Anatomy, Biomechanics and Functional Morphology — Ph.D. Dissertation; Baltimore (The Johns Hopkins University School of Medicine).Google Scholar
  35. Morell, V. (1997): The origin of birds: the dinosaur debate. — Audubon, April:36–45.Google Scholar
  36. Nicholls, E.L. &Russell, A.P. (1985): Structure and function of the pectoral girdle and forelimb ofStruthiomimus altus (Theropoda: Ornithomimidae). — Palaeontology28: 543–677.Google Scholar
  37. Norell, M.A. &Makovicky, P.J. (1997): Important features of the dromaeosaur skeleton: information from a new specimen. American Museum Novitates3215: 1–28.Google Scholar
  38. Novas, F.E. &Puerta, P.F. (1997): New evidence concerning avian origins from the Late Cretaceous of Patagonia. — Nature387:390–392.CrossRefGoogle Scholar
  39. Osborn, H. (1906):Tyrannosaurus, Upper Cretaceous carnivorous dinosaur (second communication). — American Museum of Natural History Bulletin22:281–296.Google Scholar
  40. Osborn, H.F. (1916): Skeletal adaptations ofOrnitholestes, Struthiomimus, Tyrannosaurus. — American Museum of Natural History Bulletin35:733–771.Google Scholar
  41. Osmólska, H., &Roniewicz, E. (1970): Deinocheiridae, a new family of theropod dinosaur. — Palaeontologica Polonica21:5–19.Google Scholar
  42. Osmólska, H., Roniewicz, E. &Barsbold, R. (1972): A new dinosaur,Gallimimus bullatus, n.gen., n.sp. (Ornithomimidae), from the Upper Cretaceous of Mongolia. — Palaeontologica Polonica27:103–143.Google Scholar
  43. Ostrom, J. (1969): Osteology ofDeinonychus antirrhopus, an unusual theropod from the Lower Cretaceous of Montana. — Peabody Museum of Natural History Bulletin30: 1–165.Google Scholar
  44. Ostrom, J. (1974): The pectoral girdle and forelimb function ofDeinonychus (Reptilia: Saurischia): a correction. — Postilla165:1–11.Google Scholar
  45. Ostrom, J. (1976):Archaeopteryx and the origin of birds. — Biological Journal of the Linnean Society8:91–182.CrossRefGoogle Scholar
  46. Ostrom, J. (1978): The osteology ofCompsognathus longipes Wagner. — Zitteliana,4:73–118.Google Scholar
  47. Ostrom, J. (1995): Wing biomechanics and the origin of bird flight. — Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen195: 253–266.Google Scholar
  48. Padian, K. &Chiappe, L.M. (1998): The origin and early evolution of birds. — Biological Review73:1–42.CrossRefGoogle Scholar
  49. Paul, G.S. (1988): Predatory Dinosaurs of the World. — 464pp., New York (Simon & Schuster).Google Scholar
  50. Perle A., L.M. Chiappe, Barsbold R., Clark, J.M., &Norell, M.A. (1994): Skeletal morphology ofMononykus olecranus (Theropoda: Avialae) from the Late Cretaceous of Mongolia. — American Museum Novitates3105:1–29.Google Scholar
  51. Poore, S.O., Ashcroft, A., Sánchez-Haiman, A., &Goslow, G.E. (1997): The contractile properties of the M. supracoracoideus in the pigeon and starling: a case for long-axis rotation of the humerus. — Journal of Experimental Biology200:2987–3002.Google Scholar
  52. Russell, D. A. &Dong Z.M. (1993): A nearly complete skeleton of a new troodontid dinosaur from the Early Cretaceous of the Orodos Basin, Inner Mongolia, People’s Republic of China. — Canadian Journal of Earth Sciences30: 2163–2173.Google Scholar
  53. Russell, D.A., &Russell, D.E. (1993): Mammal-dinosaur convergence. — National Geographic Research & Exploration9: 70–79.Google Scholar
  54. Sereno, P.C. (1993): The pectoral girdle and forelimb of the basal theropodHerrerasaurus ischigualastensis. Journal of Vertebrate Paleontology,13: 425–450.Google Scholar
  55. Smith, M., &Carpenter, K. (1990): Forelimb biomechanics ofTyrannosaurus rex. Journal of Vertebrate Paleontology10 (Sup.#3):43A.Google Scholar
  56. Tarsitano, S. (1991):Archaeopteryx: Quo Vadis? — In:,H.-P. Schultze &,L. Trueb [eds], Origins of the Higher Groups of Tetrapods.:541–57616 text figs.; Ithaca, NY (Cornell University Press).Google Scholar
  57. Vazquez, R.J. (1992): Functional osetology of the avian wrist and the evolution of flapping flight. — Journal of Morphology211:259–268.CrossRefGoogle Scholar
  58. Walker, A.D. (1977): Evolution of the pelvis in birds and dinosaurs. — In: S.M.Andrews, R.S,Miles, & A.D.Walker [eds], Problems in Vertebrate Evolution. Linnean Society Symposium Series4:319–357.Google Scholar
  59. Wesihampel, D.B. (1981): Acoustic analysis of potential vocalization in lambeosaurine dinosaurs (Reptilia: Ornithischia). — Paleobiology7: 252–261.Google Scholar

Copyright information

© E. Schweizerbart’sche Verlagsbuchhandlung 2002

Authors and Affiliations

  • Kenneth Carpenter
    • 1
  1. 1.Department of earth and Space SciencesDenver Museum of Natural HistoryDenverUSA

Personalised recommendations