Advertisement

The Tyrannosaurid metatarsus: Bone strain and inferred ligament function

  • Eric Snively
  • Anthony Russell
Functional Morphology and Biomechanics

Abstract

Tyrannosaurid dinosaurs possess a metatarsus with an arctometatarsalian proximal constriction of metatarsal III, and strongly interlocking proximal articulations. Bone and inferred ligament morphologies are suggestive of modes of locomotor energy transmission. CT scanning and Finite Element Analysis (FEA) ofGorgosaurus libratus metatarsals test two hypotheses of tyrannosaurid arctometatarsus function: ligaments mediated transfer of energy from the central metatarsal to the outer elements, and ligaments arrested anterodorsal rotation of the distal portion of the central metatarsal. The results have implications for the use of FEA in functional morphology: 1) strain artifacts are identifiable under low-resolution modeling, but higher resolution is better; and 2) bone strain aids in testing hypotheses of ligament function. Concentrations of bone strain energy under postulated loading regimes forGorgosaurus support the hypothesis of axial energy transmission for the tyrannosaurid metatarsus, and indirectly support the rotation damping hypothesis. Palaeopathology provides a vital complement to engineering tests of these hypotheses.

Key words

Tyrannosauridae functional morphology locomotion finite element metatarsus ligament paleopathology 

References

  1. Alexander, R.M. (1977): Terrestrial locomotion. — In:Alexander R.M. &Goldspink G. [eds]. Mechanics and energetics of animal locomotion. London. (Chapman & Hall.). pp. 168–203.Google Scholar
  2. Alexander, R.M., Maloiy, G.M.O., Njau, R., &Jayes, A.S. (1979): Mechanics of running in the ostrich (Struthio camelus). — J. Zool., Lond.187: 169–178.CrossRefGoogle Scholar
  3. Beaupre, G.S. &Carter, D.R. (1992): Finite element analysis in biomechanics. — In:Biewener A.A. [ed]. Biomechanics-Structures and Systems. Oxford. (Oxford University Press). pp. 149–174.Google Scholar
  4. Carrano, M.T. (1998): Locomotion in non-avian dinosaurs: integrating data from hindlimb kinematics, in vivo bone strains, and bone morphology. — Paleobiology24: 430–469.Google Scholar
  5. Carter, D.R., Fyhrie, D.P., &Whalen, R.T. (1987): Trabecular bone density and loading history: regulation of connective tissue biology by mechanical energy. — J. Biomechanics20: 785–794.CrossRefGoogle Scholar
  6. Christiansen, P. (1999): Long bone scaling and limb posture in non-avian theropods: Evidence for differential allometry. — J. Vert. Paleont.19: 666–680.Google Scholar
  7. Christiansen, P. (2000): Strength indicator values of theropod long bones, with comments on limb proportions and cursorial potential. — Gaia15: 241–255.Google Scholar
  8. Cowin, S.C. (1989): Bone Mechanics. — Boca Raton. (CRC Press.).Google Scholar
  9. Currie, P.J. (2000): Possible evidence of gregarious behavior in tyrannosaurids. Gaia15: 271–277.Google Scholar
  10. Currie, P.J. &Carpenter, K. (2000): A new specimen ofAcrocanthosaurus atokensis (Theropoda, Dinosauria) from the Lower Cretaceous Antlers Formation (Lower Cretaceous, Aptian) of Oklahoma, USA. — Geodiversitas22: 207–236.Google Scholar
  11. Daniel, T.M., Helmuth, B., Saunders, W.B., &Ward, P.D. (1997): Septal complexity in ammonoid cephalopods increased mechanical risk and limited depth. — Paleobiol.,23(4): 478–481.Google Scholar
  12. Fischer, K.J., Jacobs, C.R. andCarter, D.R. 1993: Determination of bone and joint loads from bone density distributions. — Trans., Orthopaedic Research Soc.18: 529.Google Scholar
  13. Guillet, A., Doyle, W.S., &Ruther, H. 1985. The combination of photogrammetry and finite elements for a fine grained analysis of anatomical structures. —Zoomorph. 105: 51–59.CrossRefGoogle Scholar
  14. Holtz, T.R. Jr. 1994: The phylogenetic position of the Tyrannosauridae: Implications for theropod systematics. — J. Paleont.68: 1100–1117.Google Scholar
  15. Holtz, T.R. Jr. 1995: The arctometatarsalian pes, an unusual structure of the metatarsus of Cretaceous Theropoda (Dinosauria: Saurischia). — J. Vert. Paleont.14: 480–519.Google Scholar
  16. Holtz, T.R. Jr. 2000. A new phylogeny of the carnivorous dinosaurs. — Gaia15: 5–61.Google Scholar
  17. Holtz, T.R. Jr. 2001. The phylogeny and taxonomy of the Tyranosauridae. — In:Tanke, D.H. andCarpenter, K. [eds] Mesozoic Vertebrate Life: New Research Inspired by the Paleontology of Philip J. Currie. Bloomington (Indiana University Press). pp. 64–81.Google Scholar
  18. Hutchinson, J.R. (2000): Hindlimb function in extinct theropod dinosaurs: integrating osteological, soft tissue, and biomechanical data. —J. Vert. Paleont. 25 (Supplement to 3): 50A.Google Scholar
  19. Jenkins, I. (1997): Cranial dynamics in Permian gorgonopsians. — J. Vert. Paleont.17 (Supplement to 3): 55A.Google Scholar
  20. Lambe, L.M. (1917): The Cretaceous theropodous dinosaurGorgosaurus. — Geol. Surv. Canada, Mem.100: 1–84.Google Scholar
  21. Maleev, E.A. (1974): Giant carnivorous dinosaurs of the family Tyrannosauridae. — Sovm. Sov.-Mong. Paleontol. Exped. Trudy1:131–191.Google Scholar
  22. Moss, M.L. (1985): The application of the finite element method to the analysis of craniofacial growth and form. — Acta Morph. Neerl.-Scand.23: 323–356.Google Scholar
  23. Moss, M.L. (1988): Finite element method comparison of murine mandibular form differences. — J. Craniofacial Genetics and Dev. Biol.8: 3–20.Google Scholar
  24. Paul, G.S. (1988): Predatory Dinosaurs of the World. — New York (Simon & Schuster). 403 pp.Google Scholar
  25. Rayfield, J.E. (1999): A three dimensional model of the skull ofAllosaurus fragilis analyzed using finite element analysis. — J. Vert. Paleont.24 (Supplement to 3): 69A.Google Scholar
  26. Rensberger, J.M. (1995): Determination of stresses in mammalian dental enamel and their relevance to the interpretation of feeding behavior in extinct taxa. — In:Thomason, J.J. [ed] Functional Morphology in Vertebrate Paleontology. Cambridge (Cambridge University Press.). pp. 151–172.Google Scholar
  27. Sereno, P.C. (1999): The evolution of dinosaurs. — Science284: 2137–2147.CrossRefGoogle Scholar
  28. Snively, E. (1994): Metatarsal biomechanics and function in theropod dinosaurs. — J. Vert. Paleont.14(Supplement to 3):46A.Google Scholar
  29. Stokes, I.A.F., Hutton, W.C., &Stott, J.R.R. (1979): Forces acting on the metatarsals during normal walking. — J. Anat.129: 579–590.Google Scholar
  30. Wilson, M.C. &Currie, P.J. (1985):Stenonychosaurus inequalis (Saurischia: Therepoda) from the Judith River (Oldman) Formation of Alberta: New findings on metatarsal structure. — Can. J. Earth. Sci.22: 1813–1817.Google Scholar

Copyright information

© E. Schweizerbart’sche Verlagsbuchhandlung 2002

Authors and Affiliations

  • Eric Snively
    • 1
  • Anthony Russell
    • 1
  1. 1.Vertebrate Morphology and Palaeontology Research Group. Department of Biological SciencesThe University of CalgaryCalgary AlbertaCanada

Personalised recommendations