Advertisement

Senckenbergiana Lethaea

, Volume 83, Issue 1–2, pp 39–52 | Cite as

The size of the siphuncle in cephalopod evolution

  • Björn Kröger
Article

Abstract

The relative siphuncle surfaces of 250 specimens of the most important clades of shelled cephalopods from the Early Palaeozoic to Cenozoic are compared. An index (si) was calculated, which gives the relative inner surface of the connecting ring relative to the volume of the phragmocone chambers. It is shown that cephalopods with very high si developed strong de-coupling spaces between the outer surface of the siphuncular epithelium and the open space of the phragmocone chambers. Additionally these cephalopods often show depressed cross sections or flattened venters. Conversely, cephalopods with low si show simple connecting rings but very different shell shapes. It is shown that fast buoyancy changes were possible in cephalopods both with high si and low si. The size of the siphuncle is therefore considered not to be a simple measure of the performance of the buoyancy apparatus. Instead it refers to the level of metabolic energy of the cephalopods. It is shown that during their entire evolution shelled cephalopods can be divided into taxa which show evidence of a high energy level metabolism and taxa which show evidence of a low energy level metabolism for buoyancy regulation. The general trend since the end of the Palaeozoic is clearly towards a more energy efficient buoyancy regulation. This trend is considered to be an effect of increasing constraints of selection through time.

Keywords

cephalopods evolution trend functional morphology siphuncle 

Kurzfassung

Die relative Oberfläche des Siphos von 250 Vertretern der wichtigsten Gehäuse — Cephalopoden des Phanerozoikums wird verglichen. Dazu wurde ein Index (si) ermittelt, welcher die relative innere Oberfläche der Siphonalröhre im Bezug zum relativen Volumen des Phragmokons angibt. Es wird gezeigt, daß Cephalopoden mit einem hohen si-Wert starke entkoppelnde Räume zwischen der äußeren Oberfläche des Sipho-Epitheliums und dem freien Volumen der Kammern ausbildeten. Zusätzlich dazu zeigen diese Cephalopoden häufig abgeflachte Venter oder flache Querschnitte. Im Gegensatz dazu zeigen Cephalopoden mit geringem si-Wert sehr einfache Siphonalröhren mit unterschiedlichen Gehäuseformen. Es kann gezeigt werden, daß schnelle Auftriebsänderungen bei Cephalopoden mit hohen als auch mit geringem si-Wert möglich sind. Die relative Größe des Siphos kann daher nicht als einfache Funktion der Leistungsstärke des Auftriebsapparates verstanden werden, sie verweist vielmehr direkt auf die Energie-Effizienz der Auftriebsregulierung. Es kann gezeigt werden, daß die Cephalopoden während ihrer gesamten Evolution funktionell in Taxa mit hohem Energieverbrauch und Taxa mit geringem Energieverbrauch für die Auftriebsregulierung aufgeteilt werden können. Der generelle Trend seit dem Ende des Paläozoikum geht deutlich in Richtung einer Energie-effizienten Auftriebsregulierung. Dieser Trend wird als Folge gestiegener Selektionszwänge seit dieser Zeit erachtet.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Appellöf, A. (1893): Die Schalen vonSepia, Spirula undNautilus. — Konglinga Svenska Vetenskaps-Akademiens Handlingar,25 (7): 1–105; Stockholm.Google Scholar
  2. Balashov, Z. G. (1968): Endoceratoidei ordovika SSSR. — 170 pp., Leningrad (Isdatielstvo Leningradskowo Universiteta).Google Scholar
  3. Bandel, K. &Boletzky, S. von (1988): Features of development and functional morphology required in the reconstruction of early coleoid cephalopods. — In:Wiedmann, J. &Kullman, J. [eds.], Cephaolopods: Present and Past: 229–246; (Schweitzerbart’sche) Stuttgart.Google Scholar
  4. Bandel, K., Reitner, J. &Stürmer, W. (1983): Coleoids from the lower Devonian black slate („Hunsrück Schiefer“) of the Hunsrück (West Germany). — Neues Jahrbuch für Geologie und Paläontologie Abhandlungen,165 (3): 397–417; Stuttgart.Google Scholar
  5. Barskov, I.S. (1999): Why ammonoids have complex septa and sutures? — In:Rozanov, A.Y. &Shevyrev, A.A. [eds.], Fossil Cephalopods: Recent Advances in their Study: 53–61; Moscow (Russian academy of sciences, Paleontological Institute).Google Scholar
  6. Becker, T.R. &Kullmann, J. (1996): Palaeozoic ammonoids in space and time. — In:Landman, N. H.;Tanabe, K. &Davis, R. A. [eds.], Ammonoid Paleobiology: 711–735, New York (Plenum Press).Google Scholar
  7. Checa, A. (1996): Origin of intracameral sheets in ammonoids. — Lethaia,29: 61–75; Oslo.CrossRefGoogle Scholar
  8. Chen, J.-Y &Teichert, C. (1983): Cambrian Cephalopoda of China. — Palaeontographica, (A)181: 1–102; Stuttgart.Google Scholar
  9. Crick, R.E. (1988): Buoyancy regulation and macroevolution in nautiloid cephalopods. — Senckenberiana lethaea,69 (1/2): 13–42; Frankfurt a. M.Google Scholar
  10. Denton, E. J. &Gilpin-Brown, J.B. (1961a): The buoyancy of the cuttlefish,Sepia officinalis (L.). — Journal of the Marine Biological Association of the United Kingdom41: 319–342; London.CrossRefGoogle Scholar
  11. Denton, E. J. &Gilpin-Brown, J.B. (1961b): The effect of light on the buoyancy of the cuttlefish. — Journal of the Marine Biological Association of the United Kingdom,41: 343–350; London.CrossRefGoogle Scholar
  12. Denton, E. J. &Gilpin-Brown, J.B. (1966): On the buoyancy of the pearlyNautilus. Journal of the Marine Biological Association of the United Kingdom,46: 723–759; London.CrossRefGoogle Scholar
  13. Denton, E. J. &Gilpin-Brown, J.B. (1973): Flotation mechanisms in modern cephalopods. — Advances in marine Biology,11: 197–268; London.CrossRefGoogle Scholar
  14. Denton, E. J., Gilpin-Brown, J. B. &Howarth, J. V. (1961): The osmotic mechanism of the cuttlebone. — Journal of the Marine Biological Association of the United Kingdom,41: 351–356; London.CrossRefGoogle Scholar
  15. Denton, E. J., Gilpin-Brown, J.B. &Howarth, J.V. (1967): On the buoyancy of theSpirula spirula. — Journal of the Marine Biological Association of the United Kingdom,47: 181–191; London.CrossRefGoogle Scholar
  16. Diamond, J.M. &Bossert, W.H. (1967): Standing gradient osmotic flow. A mechanism for coupling of water and solute transport in epithelia. — Journal of General Physiology,50: 2061–2083; London.CrossRefGoogle Scholar
  17. Doguzhaeva, L.A., Mapes, R. &Mutvei, H. (1999): A late Carboniferous spirulid coleoid from the southern Mid Continent (USA). — In:Olóriz, F. &Rodíguez-Tovar, F.J. [eds.], Advancing research on living and fossil Cephalopods: 47–57; New York (Kluwer Academic/Plenum).Google Scholar
  18. Doguzhaeva, L.A. &Shkolin, A.A. (1999): Siphuncle of “Loxoceras” (Pseudactinoceridae) from the Lower Carboniferous of Central Russia: Ultrastructure, phylogenetic implications and functional morphology. — In:Rozanov, A.Y. &Shevyrev, A.A. [eds.] Fossil Cephalopods: Recent Advances in their Study: 271–287; Moscow (Russian Academy of Sciences, Paleontological Institute).Google Scholar
  19. Dzik, J. (1984): Phylogeny of the Nautiloidea. — Palaeontologia Polonica,45: 3–203; Warszawa.Google Scholar
  20. Dzik, J. &Korn, D. (1992): Devonian ancestors ofNautilus. — Paläontologische Zeitschrift,66: 81–98; Stuttgart.Google Scholar
  21. Flower, R.H. (1955): Saltations in nautiloid coiling. — Evolution,9: 244–260; Lawrence, Kansas.CrossRefGoogle Scholar
  22. Flower, R.H. (1957): Studies of the Actinocerida. — New Mexico State Bureau Mines & Mineral Resources. Memoir,2: 1–100; Socorro, New Mexico.Google Scholar
  23. Flower, R.H. (1964): The nautiloid order Ellesmeroceratida (Cephalopoda). — New Mexico Institute of Mining and Technology, State Bureau of Mines and Mineral Resources, Memoir12: 1–164; Socorro.Google Scholar
  24. Flower, R.H. &Kummel, B. (1950): A classification of the Nautiloidea. — Journal of Paleontology,24: 604–616, Tulsa, Oklahoma.Google Scholar
  25. Flower, R.H. &Gordon, M. (1959): More Mississippian belemnites. — Journal of Palaeontology33 (5): 805–842; Tulsa, Oklahoma.Google Scholar
  26. Flower, R.H. &Teichert C. (1957): The cephalopod order Discosorida. — University of Kansas Paleontological Contributions, Article21 (Mollusca, Article 6): 1–144; Lawrence, Kansas.Google Scholar
  27. Furnish, W.M. &Glenister, B.F. (1964): Nautiloidea-Tarphycerida. — In:Teichert, C., Kummel, B., Sweet, W.C., Stenzel, H.B., Furnish, W.M., Glenister, B.F., Erben, H.K., Moore, R.C. &Zeller, D.E.N. [eds.], Treatise on Invertebrate Paleontology, Part K, Mollusca 3, Cephalopoda, K343-K368, Boulder, Colorado (Geological Society of America & The University of Kansas Press).Google Scholar
  28. Greenwald, L., Cook, C. B. &Ward, P. D. (1982): The structure of the chamberedNautilus siphuncle: The siphonal epithelium. — Journal of Morphology,172: 5–22; London.CrossRefGoogle Scholar
  29. Greenwald, L., Verdeerber, G. &Singley, C. (1984): Localization of Na-K ATPhase activity in theNautilus siphuncle. — The Journal of Experimental Zoology,229: 481–484; London.CrossRefGoogle Scholar
  30. Heptonstall, W. B. (1970): Buoyancy control in ammonoids. — Lethaia,3: 317–328; Oslo.CrossRefGoogle Scholar
  31. Hewitt, R. A. (1996): Architecture and strength of the ammonoid shell. — In:Landman, N. H.;Tanabe, K. &Davis, R. A. [eds.], Ammonoid Paleobiology: 297–339; New York (Plenum Press)Google Scholar
  32. Hewitt, R. A. &Westermann, G. E. G. (1996): Post-mortem behaviour of Early Palaeozoic nautiloids and paleobathymetry. — Paläontologische Zeitschrift,70 (3/4): 405–424; Stuttgart.Google Scholar
  33. Hewitt, R. A. &Westermann, G. E. G. (1997): Mechanical significance of ammonoid septa with complex sutures. — Lethaia,30: 205–212; Oslo.Google Scholar
  34. Hook, S. C. &Flower, R.H. (1977): Late Canadian (Zones J, K) cephalopod faunas from southwestern United States. New Mexico Bureau of Mines and Mineral Resources Memoir,32: 1–56, Socorro.Google Scholar
  35. House, M.R. (1988): Extinction and survival in the cephalopoda. — In:Larwood, G.P. [eds.] Extinction and survival in the fossil record. Systematical Association Special Volume34: 139–154, Oxford (Clarendon Press).Google Scholar
  36. Jacobs, D.K. (1996): Chambered cehalopod shells, buoyancy, structure and decoupling: history and red herrings. — Palaios,11: 610–614; Tulsa.CrossRefGoogle Scholar
  37. Jacobs, D.K. &Chamberlain, J.A.Jr. (1996): Buoyancy and hydrodynamics in ammonoids. — In:Landman, N. H., Tanabe, K. &Davis, R. A. [eds.], Ammonoid paleobiology: 169–224; New York (Plenum Press).Google Scholar
  38. Jeletzky, J.A. (1966): Comparative morphology, phylogeny and classification of fossil Coleoidea. — Paleontological Contributions University of Kansas, Mollusca7: 1–162; Lawrence.Google Scholar
  39. Kröger, B. (2002): On the efficiency of the buoyancy apparatus in ammonoids. — Evidence from sublethal shell injuries. — Lethaia,35: 31–40; OsloGoogle Scholar
  40. Kulicki, C. (1996): Ammonoid shell microstructure. — In:Landman, N. H.;Tanabe, K. &Davis, R. A. [eds.], Ammonoid Paleobiology: 65–101; New York (Plenum Press)Google Scholar
  41. Kulicki, C &Mutvei, H. (1988): Functional interpretation of ammonoid septa. — In:Wiedmann, J. &Kullman, J. [eds.], Cephaolopods: Present and Past: 215–228; (Schweitzerbart’sche) Stuttgart.Google Scholar
  42. Mangum, C.P. &Towle, D. (1982): TheNautilus siphuncle as an ion pump. — Pacific Science,36 (3): 273–282; Hawaij.Google Scholar
  43. McKinney, M.L. (1990): Classifying and analysing evolutionary trends. — In:McNamara, K.J. [eds.], Evolutionary Trends: 28–59; London (Belhaven Press).Google Scholar
  44. Meyer, J.C. (1993): Un nouveau coleoide sepioide,Ceratisepia elongata nov. gen., nov. spec. du Paléocène inférieur (Danien) du Vigny. Implications taxinomiques et phylogénétiques. — Geobios,15: 287–304; Lyon.CrossRefGoogle Scholar
  45. Mutvei, H. (1964): On the secondary internal calcaerous lining of the wall of the siphonal tube in certain fossil cephaolopods. — Arkiv för Zoologi,16 (21): 375–424; Stockholm.Google Scholar
  46. Mutvei, H. (1997a): Characterization of actinoceratoid cephalopods by their siphuncular structure. — Lethaia,29: 339–348; Oslo.CrossRefGoogle Scholar
  47. Mutvei, H. (1997b): Siphuncular structure in Ordovician endocerid cephalopods.. — Acta Palaeontologica Polonica,42 (3): 375–390; Warzawa.Google Scholar
  48. Mutvei, H. (2002): Connecting ring structure and its significance for classification of orthoceratid cephalopods. — Acta Palaeontologica Polonica,47 (1): 157–168; Warzawa.Google Scholar
  49. Packard, A. (1972): Cephalopods and fish: The limits of convergence. — Biological Revue Cambridge Philosophical Society,47: 241–307; Cambridge.CrossRefGoogle Scholar
  50. Pörtner, H.-O. &Zielinski, S. (1998): Environmental constraints and the physiology of performance in squids. — South African Journal of marine Science,20: 207–223, Cape Town.Google Scholar
  51. Shimanskiy, V.N. (1954): [Straight nautiloids and bactritoids of the Sakmarian and Artinskian stages of the southern Urals.] — Akademia Nauk SSSR, Trudy Paleontologicheskiy Instituta,44: 156 pp.; Moskwa.Google Scholar
  52. Schindewolf, O.H. (1934): Zur Stammesgeschichte der Cephalopoden. — Jahrbuch der Preussischen Geologischen Landesanstalt und Bergakademie,55: 258–283; Berlin.Google Scholar
  53. Schipp, R. (1987): General morphological and functional characteristics of the cephalopod circulatory system. An introduction. — Experienta,43: 474–477; Basel.CrossRefGoogle Scholar
  54. Schubert, H. (1982): Kapillarität in porösen Feststoffsystemen. — 343 pp., Berlin/Heidelberg/New York (Springer Verlag).Google Scholar
  55. Stürmer, W. (1985): A small coleoid cephalopod with soft parts from the Lower Devonian discovered using radiography. — Nature,318 (6041): 53–55; New York.CrossRefGoogle Scholar
  56. Stumbur, H. (1960): [Life-time injuries in some nautiloid shells]. — Paleontogicheskiy Zhurnal,1960 (4): 133–135, Moscow.Google Scholar
  57. Sweet, W.C. (1964): Nautiloidea-Oncocerida. — In:Teichert, C., Kummel, B., Sweet, W.C., Stenzel, H.B., Furnish, W.M., Glenister, B.F., Erben, H.K., Moore, R.C. &Zeller, D.E.N. [eds.], Treatise on Invertebrate Paleontology, Part K, Mollusca 3, Cephalopoda: K277-K319; Boulder, Colorado (Geological Society of America & The University of Kansas Press).Google Scholar
  58. Tanabe, K. &Landman, N. (1996): Septal neck-siphuncular complex of Ammonoids. — In:Landman, N.H. (ed.), Ammonoid Paleobiology: 129–165, New York (Plenum Press).Google Scholar
  59. Tanabe, K., Mapes, R.H., Sasaki, T. &Landman, N.H. (2000): Soft-part anatomy of the siphuncle in Permian prolecanitid ammonoids. — Lethaia,33: 83–91; Oslo.CrossRefGoogle Scholar
  60. Teichert, C. (1933): Der Bau der actinoceroiden Cephalopoden. — Palaeontographica, (A)77: 111–230; Stuttgart.Google Scholar
  61. Troedsson, G. T. (1926): On the Middle and Upper Ordovician faunas of northern Greenland. I. Cephalopods. — Meddelendse Gronland,71: 1–157, Kobnhavn.Google Scholar
  62. Ulrich, E.O., Foerste, A.F. &Miller, A.K. (1943): Ozarkian and Canadian cephalopods. Part II. Brevicones. — Geological Society of America Special Papers,58: 1–157; New York.Google Scholar
  63. Ulrich, E.O., Foerste, A.F., Miller, A.K. &Unklesbay, A.G. (1944): Ozarkian and Canadian Cephalopods Part III: Longicones and summary. — Geological Society of America Special Papers,59: 1–226; New York.Google Scholar
  64. Vermeij, G.J. (1987): Evolution and escalation. An ecological history of life. — 527 pp., Princeton (Princeton Universiy Press).Google Scholar
  65. Ward, P. D. (1979): Cameral liquid inNautilus and ammonites. — Paleobiology,5 (1): 40–49; Davis.Google Scholar
  66. Ward, P. D. (1982): The relationship of siphuncle size to emptying rates in chambered cephalopods: Implications for cephalopod paleobiology. — Paleobiology,8 (4): 426–433; Davis.Google Scholar
  67. Ward, P.D. (1986): Rates and Processes of Compensatory Buoyancy Change inNautilus macromphalus. —Veliger,28 (4): 356–368; Berkeley.Google Scholar
  68. Ward, P.D. (1987): The natural History ofNautilus. — 267 pp., Winchester (Allen & Unwin).Google Scholar
  69. Ward, P. D. &Greenwald, L. (1981): Chamber refilling inNautilus. — Journal of the Marine biological Association of the United Kingdom,62: 469–475; London.CrossRefGoogle Scholar
  70. Wells, M.J. (1988): The mantle muscle and mantle cavity of cephalopods. — In:Trueman, E.R. &Clark, M.R. [eds.], The Mollusca,11, Form and Function: 287–300; New York (Academic Press).Google Scholar
  71. Wells, M.J. &Wells, J. (1991) IsSepia really anOctopus? — In:Boucaud-Camou, E. [eds.], La Seiche, The Cuttlefish: 79–92, Caen (Université de Caen).Google Scholar
  72. Weitschat, W. &Bandel, K. (1991): Organic components in phragmocones of Boreal Triassic ammonoids: implications for ammonoid biology. — Paläontologische Zeitschrift,65 (3/4): 269–303; Stuttgart.Google Scholar
  73. Westermann, G.E.G. (1971): Form, structure and function of shell and siphuncle in coiled Mesozoic ammonoids. — Life Science Contributions Royal Ontario Museum78: 1–39; Ontario.Google Scholar
  74. Westermann, G.E.G. (1999): Life Habits of Nautiloids. — In:Savazzi, E. [eds.]: Functional Morphology of the Invertebrate Skeleton: 263–297; New York / London (Wiley & Sons Ltd.).Google Scholar
  75. Yochelson, E.L.;Flower, R.H. &Webers, G.F. (1973): The bearing of the new Late Cambrian monoplacophoran genusKnightoceras upon the origin of the Cephalopoda. — Lethaia,6: 275–310, Oslo.CrossRefGoogle Scholar
  76. Young, R.E., Veccione, M. &Donovan, D.T. (1998) The evolution of coleoid cephalopods and their present biodiversity and ecology. — South African Journal of marine Science,20: 393–420, Cape Town.Google Scholar
  77. Zhuravleva, F. A. (1972): Devonskiy nautiloidei. Otryad Discosorida. — Trudy Paleontologicheskovo Instituta Akademiya Nauk SSSR,134: 3–307; Moskwa.Google Scholar
  78. Zhuravleva, F. A. (1974): Devonskiy nautiloidei. Otryady Oncoceratida, Tarphyceratida, Nautilida. — Trudy Paleontologicheskovo Instituta Akademiya Nauk SSSR,142: 5–142; Moskwa.Google Scholar
  79. Zhuravleva, F.A. (1994): Septal necks in the evolution of the cephalopods. — Paleontological Journal28 (3): 67–83; Moscow.Google Scholar

Copyright information

© Senckenbergische Naturforschende Gesellschaft 2003

Authors and Affiliations

  1. 1.Geologisch-Paläontologisches InstitutUniversität HamburgHamburg

Personalised recommendations