Advertisement

Senckenbergiana maritima

, Volume 32, Issue 1–2, pp 165–175 | Cite as

The cornucopia of chilly winters: Ocean quahog (Arctica islandica L., Mollusca) master chronology reveals bottom water nutrient enrichment during colder winters (North Sea)

  • Bernd R. Schöne
  • Ingrid Kröncke
  • Stephen D. Houk
  • Antuané D. Freyre Castro
  • Wolfgang Oschmann
Article

Abstract

We studied variations in annual shell growth rates of ten live-collectedArctica islandica specimens from three localities at the Dogger Bank in the central North Sea. Synchronous growth curves from contemporaneous specimens enabled the construction of a 65-year multi-locality master chronology. Stepwise multiple linear correlation analysis indicated a highly significant (p<0.01) negative relationship between annual shell growth and winter sea surface temperatures (SST) during the period of 1953 to 1995. Up to 27.5% of the variation in the annual shell growth is explained by winter temperature. We explain the higher growrh levels in colder winters by higher food supply. During warmer winters both the stratification and bottom water currents in the study area seem to be stronger and prevent downward-mixing of nutrients as well as settlement of food on the sea floor. During colder winters, however, the stratification weakens and phytoplankton produced in the cold surface layer reaches the sea floor. Long-term changes in shell growth rates are thus directly connected to hydrographic changes in the North Sea, which in turn are relared to fluctuations of the North Atlantic Oscillation (NAO).

Our study demonstrates the usefulness ofArctica islandica for long-term, high-resolution environmental reconstructions and contributes to further understanding natural and anthropogenic variability in the environmental history of the North Sea.

Keywords

Arctica islandica shell growth master chronology nutrients SST hydrography NAO Dogger Bank North Sea 

Zusammenfassung

Die vorliegende Studie beschäftigt sich mit Variationen im jährlichen Schalenzuwachs von zehn lebend gefangenenArctica islandica Individuen von drei Lokalitäten auf der Doggerbank in der zentralen Nordsee. Aufgrund synchroner Verläufe der Wachstumskurven zeitgleich lebender Individuen konnten wir eine 65 Jahre umfassende Master-Chronologie erstellen. Schrittweise multiple lineare Korrelation indiziert einen hochsignifikanten (p<0.01) negativen Zusammenhang zwischen jährlichem Schalenzuwachs und Oberflächenwassertemperaturen (SST) während der Wintermonate über den Zeitraum von 1953 bis 1995. Bis zu 27,5% der Variation im jährlichen Zuwachs läßt sich durch Schwankungen der Wintertemperaturen erklären. Wir nehmen an, daß die höheren jährlichen Schalenzuwächse in kälteren Wintern mit höherem Nahrungsangebot zusammenhängen. Während wärmerer Winter scheint die vertikale Schichtung der Wassersäule im Nordosten der Doggerbank stärker zu sein. In Verbindung mit erhöhten Strömungen beeinträchtigt sie das Absinken des Phytoplanktons zum Meeresboden und verhindert ein Durchmischen von nährstoffreichen Oberflächenwassern und tieferen Wassermassen. Über längere Zeiträume sind die Nahrungsverfügbarkeit und damit das Schalenwachstum von Muscheln (hierArctica islandica) direkt an hydroklimatische Veränderungen gekoppelt, die in Verbindung mit der Variabilität der Nordatlantischen Oszillation (NAO) stehen.

Unsere Untersuchungen demonstrieren, daß sichArctica islandica für langzeitliche und hochauflösende Umweltrekonstruktionen eignet. Unsere Studie leistet darüber hinaus einen Beitrag zum besseren Verständnis natürlicher und anthropogener Variabilitäten der Umweltgeschichte der Nordsee.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ansell, A. D. (1968): The rate of growth of the hard clamMercenaria mercenaria (L) throughout the geographic range. — J. Cons, permanent internat. Explor. Mer,31: 364–409.Google Scholar
  2. Becker, B. &Kroner, B. &Trimborn, P. (1991): A stable isotope tree-ring timescale of the Late Glacial/Holocene boundary. — Nature,353: 647–649.CrossRefGoogle Scholar
  3. Bradley, R. S. (1999): Paleoclimatology: Reconstructing Climates of the Quaternary. — 613 pp.; San Diego CA, London (Academic Press).Google Scholar
  4. Briffa, K. R. &Bartholin, T. S. &Eckstein, D. &Jones, P. D. &Karlen, W. &Schweingruber, F. H. &Zetterberg, R. (1990): A 1,400-year tree-ring record of summer temperatures in Fennoscandia. — Nature,346: 434–439.CrossRefGoogle Scholar
  5. Briffa, K. R. &Jones, P. D. &Schweingruber, F. H. &Osborn, T. J. (1998): Influence of volcanic eruptions on Northern Hemisphere summer temperature over the past 600 years. — Nature,393: 450–455.CrossRefGoogle Scholar
  6. Brown, J. &Hill, A. E. &Fernand, L. &Horsburgh, K. J. (1999): Observations of a seasonal jet-like circulation at the central North Sea cold pool margin. — Estuar. Coast. Shelf Sci.,48: 343–355.CrossRefGoogle Scholar
  7. Cook, E. R. &Kairiukstis, L. A. [Eds.] (1990): Methods of Dendrochronology. Applications in the Environmental Sciences. — XII + 394 pp.; Dordrecht (Klüver).Google Scholar
  8. Davenport, C. B. (1938): Growth lines in fossil pectens as indicators of past climates. — J. Paleont.,12: 514–515.Google Scholar
  9. Ehrich, S. &Stransky, C. (2001): Spatial and temporal changes in the southern species component of North Sea bottom fish assemblages. — Senckenbergiana mark.,31: 143–150.Google Scholar
  10. Feng, X. &Epstein, S. (1996): Climatic trends from isotopic records of tree rings: The past 100–200 years. — Climatic Change,33: 551–562.CrossRefGoogle Scholar
  11. Goodwin, D. H. &Flessa, K. W. &Dettman, D. L. &Schöne, B. R. (2001): Cross-calibration of daily growth increments, stable isotope variation, and temperature in the Gulf of California bivalve molluskChione cortezi: Implications for paleoenvironmental analysis. — Palaios,16: 387–398.Google Scholar
  12. Grossman, E. L. &Ku, T.-L. (1986): Oxygen and carbon isotope fractionation in biogenic aragonite; temperature effects. — Chem. Geol., Isot. Geosci. Sect.,59: 59–74.CrossRefGoogle Scholar
  13. Hall, C. A. Jr. &Dollase, W. A. &Corbatö, C. E. (1974): Shell growth inTivela stultorum (Mawe, 1823) andCallista chione (Linnaeus, 1758) (Bivalvia): Annual periodicity, latitudinal differences, and diminution with age. — Palaeogeogr., Palaeoclimatol., Palaeoecol.,15: 33–61.CrossRefGoogle Scholar
  14. Henderson, J. T. (1929): Lethal temperatures of Lamellibranchiata. — Contr. Can. Biol. Fish.,4: 399–411.Google Scholar
  15. Jones, D. S. (1980): Annual cycle of shell growth increment formation in two continental shelf bivalves and its paleoecologic significance. — Paleobiology,6: 331–340.Google Scholar
  16. Jones, D. S. &Arthur, M. A. &Allard, D.J. (1989): Sclerochronological records of temperature and growth from shells ofMercenaria mercenaria from Narragansett Bay, Rhode Island. — Mar. Biol.,102: 225–234.CrossRefGoogle Scholar
  17. Jones, P. D. &Osborn, T.J. &Briffa, K. R (2001): The evolution of climate over the last millennium. — Science,292: 662–667.PubMedCrossRefGoogle Scholar
  18. Kennish, M.J. &Olsson, R. K. (1975): Effects of thermal discharges on the microstructural growth ofMercenaria mercenaria. — Environ. Geol.,1: 41–64.CrossRefGoogle Scholar
  19. Kröncke, I. &Dippner, J. W. &Heyen, H. &Zeiss, B. (1998): Long-term changes in the macrofauna communities off Norderney (East Frisia, Germany) in relation to climate variability. — Mar. Ecol. Prog. Ser.,167: 25–36.CrossRefGoogle Scholar
  20. Leuenberger, M. &Borella, S. &Stocker, T. &Saurer, M. &Siegwolf, R. &Schweingruber, F. &Matyssek, R. (1998): Stable isotopes in tree rings as climate and stress indicators. — Final sei. Rep. Nat. Res. Programme “Climate Changes and Natural Disasters”, NRP,31: 1–202; Zürich (vdf Hochschulverlag).Google Scholar
  21. Marchitto, T. A. &Jones, G. A. &Goodfriend, G. A. &Weidman, C. R. (2000): Precise temporal correlation of Holocene mollusk shells using sclerochronology. — Quat. Res.,53: 236–246.CrossRefGoogle Scholar
  22. Otto, L. &Zimmermann, I. T. F. &Furnes, G. K. &Mork, M. &Saetre, R. &Becker, G. (1990): Review of the physical oceanography of the North Sea. — Netherl. J. Sea Res.,25: 161–238.CrossRefGoogle Scholar
  23. Reid, P. C. &Edwards, M. (2001): Long-term-changes in the pelagos, benthos and fishery of the North Sea. — Sencken-bergiana mark.,31: 107–115.Google Scholar
  24. Robertson, I. &Switsur, V. R. &Carter, A. H. C. &Barker, A. C. &Waterhouse, J. S. &Briffa, K. R. &Jones, P. D. (1997): Signal strength and climate relationships in the13C/12C ratios of tree ring cellulose from oak in east England. — J. Geophys. Res.,102: 19507–19516.CrossRefGoogle Scholar
  25. Schöne, B. R. (2003): A ‘clam-ring’ master-chronology constructed from a short-lived bivalve mollusc from the northern Gulf of California, USA. — Holocene,13: 39–49.CrossRefGoogle Scholar
  26. Schöne, B. R. &Bentley, D. (2002): Use of HMDS (hexamethyl-disilazane) to dry organic microstructures in etched bivalve mollusk and barnacle shells. — Nautilus,116: 25–31.Google Scholar
  27. Schöne, B. R. &Lega, J. &Flessa, K. W. &Goodwin, D. H. &Dettman, D. L. (2002): Reconstructing daily temperatures from growth rates of the intertidal bivalve molluskChione cortezi (northern Gulf of California, Mexico). — Palaeogeogr., Palaeoclimatol., Palaeoecol.,184: 131–146CrossRefGoogle Scholar
  28. Schöne, B. R. &Tanabe, K. &Dettman, D. L. &Sato, S. (in press): Environmental controls on shell growth rates and δ18O of the shallow-marine bivalve molluskPhacosoma japonicum in Japan. — Mar Biol.Google Scholar
  29. Schweingruber, F. H. &Briffa, K. R. &Jones, P. D. (1991): Yearly maps of summer temperatures in Western Europe from A. D. 1750 to 1975 and Western North America from 1600 to 1972. — Vegetatio,92: 5–71.Google Scholar
  30. Scuderi, L. A. (1993): A 2000-year tree ring record of annual temperatures in the Sierra Nevada Mountains. — Science,259: 1433–1436.PubMedCrossRefGoogle Scholar
  31. Svendsen, E. &Magnusson, A. K. (1992): Climatic variability in the North Sea. — ICES mar. Sci. Symp.,195: 144–158.Google Scholar
  32. Vaganov, E. A. &Shiyatov, S. G. &Hantemirov, P. M. &Naurzbaev, M. M. (1998): The summer temperature variation in high latitudes of the northern hemisphere during last 1,5 thousand years: a comparative analysis of tree-ring data and ice cores. — Proc. Acad. Sci.,338: 681–684. — [in Russian].Google Scholar
  33. Wieking, G. &Kröncke, I. (2001): Decadal changes in macrofaunal communities on the Dogger Bank caused by large-scale climate variability. — Senckenbergiana mark.,31: 125–141.Google Scholar
  34. Wieking, G. &Kröncke, I. (2003a): Benthic communities of the Dogger Bank (central North Sea) in the late 90s: Spatial distribution, species composition and trophic structure. — Helgol. Mar. Res.,57: 34–46.Google Scholar
  35. Wieking, G. &Kröncke, I. (2003b): Abundance and growth of the sea urchinEchinocardium cordatum in the central North Sea in the late 80s and 90s. — Senckenbergiana mark.,32 (1/2): 113–124.Google Scholar
  36. Witbaard, R. (1996): Growth variations inArctica islandka L. (Mollusca): a reflection of hydrography-related food supply. — ICES J. mar. Sci.,53: 981–987.CrossRefGoogle Scholar
  37. Witbaard, R. (1997): Tree of the sea — The use of the internal growth lines in the shell ofArctica islandka (Bivalvia, Mollusca) for the retrospective assessment of marine environmental change. — Dissertation Thesis Univ. Groningen/NIOZ: 149 pp. Groningen (Rijksuniversiteit).Google Scholar
  38. Witbaard, R. &Duineveld, G. C. A. &Wilde, P. A. W. J. de (1997): A long-term growth record derived fromArctica islandka (Mollusca, Bivalvia) from the Fladen Ground (northern North Sea). — J. Mar. Biol. Ass. U.K.,77: 801–816.CrossRefGoogle Scholar

Copyright information

© E. Schweizerbart’sche Verlagsbuchhandlung 2003

Authors and Affiliations

  • Bernd R. Schöne
    • 1
  • Ingrid Kröncke
    • 2
  • Stephen D. Houk
    • 1
  • Antuané D. Freyre Castro
    • 1
  • Wolfgang Oschmann
    • 1
  1. 1.Forschungsgruppe INCREMENTSJohann Wolfgang Goerhe-Universität Geologisch-Paläontologisches InstitutFrankfurt am MainGermany
  2. 2.Abteilung für MeeresforschungForschungsinstitut SenckenbergWilhelmshavenGermany

Personalised recommendations