Advances in Applied Clifford Algebras

, Volume 8, Issue 1, pp 69–82 | Cite as

Bosonic symmetries of the massless Dirac equation

  • V. M. Simulik
  • I. Yu. Krivsky
Papers

Abstract

The results of spin 1 symmetries of massless Dirac equation [21] are proved completely in the space of 4-component Dirac spinors on the basis of unitary operator in this space connecting this equation with the Maxwell equations containing gradient-like sources. Nonlocal representations of conformal group are found, which generate the transformations leaving the massless Dirac equation being invariant. The Maxwell equations with gradient-like sources are proved to be invariant with respect to fermionic representations of Poincaré and conformal groups and to be the kind of Maxwell equations with maximally symmetrical properties. Brief consideration of an application of these equations in physics is discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Darwin C. G.,Proc. Roy. Soc. London,A118 N780 (1928) 654–680.CrossRefADSGoogle Scholar
  2. [2]
    Laporte O. and G. E. Uhlenbeck,Phys. Rev.,37 (1931) 1380–1397.MATHCrossRefADSGoogle Scholar
  3. [3]
    Oppenheimer J. R.,Phys. Rev.,38 (1931) 725–746.MATHCrossRefADSGoogle Scholar
  4. [4]
    Good R. H.,Phys. Rev.,105 N6 (1957) 1914–1919.MATHCrossRefADSMathSciNetGoogle Scholar
  5. [5]
    Moses H. E.,Nuovo Cimento Suppl.,7 (1958) 1–18.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    Lomont J. S.,Phys. Rev.,111 N6 (1958) 1710–1716.MATHCrossRefADSMathSciNetGoogle Scholar
  7. [7]
    Borhgardt A. A.,Sov. Phys. JETP.,34 N2 (1958) 334–341.Google Scholar
  8. [8]
    Moses H. E.,Phys. Rev.,113 N6 (1959) 1670–1679, see de Analysis of this formulation in Keller J.,International Journal of Theoretical Physics,30 (2) (1991) 137–184; Keller J., “Spinosrs, Twistors, Clifford Algebras an Quantum Deformations”, Kluwer Academic Publishers, 189–196 1993MATHCrossRefADSMathSciNetGoogle Scholar
  9. [9]
    Mignani R., E. Recami and M. Baldo,Lett. Nuov. Cim.,11 N12 (1974) 572–586.Google Scholar
  10. [10]
    Sallhofer H.,Z. Naturforsch.,A33 (1978) 1379–1381.ADSMathSciNetGoogle Scholar
  11. [11]
    Da Silveira A.,Z. Naturforsch.,A34 (1979) 646–647.ADSGoogle Scholar
  12. [12]
    Campolattaro A.,Int. J. Theor. Phys.,19 (1980) 99–126.MATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    Sallhofer H.,Z. Naturforsch.,A41 (1986) 1087–1088.ADSMathSciNetGoogle Scholar
  14. [14]
    Ljolie K.,Fortschr. Phys.,36 N1 (1988) 9–32.CrossRefMathSciNetGoogle Scholar
  15. [15]
    Sallhofer H.,Z. Naturforsch.,A46 (1991) 869–872.Google Scholar
  16. [17]
    Campolattaro A.,Int. J. Theor. Phys.,29 N2 (1990) 141–156.MATHCrossRefMathSciNetGoogle Scholar
  17. [18]
    Fushchich W. I., W. M. Shtelen and S. V. Spichak,J. Phys. A24 N8 (1991) 1683–1698.MATHADSMathSciNetGoogle Scholar
  18. [19]
    Simulik V. M.,Theor. Math. Phys.,87 N1 (1991) 386–392.CrossRefMathSciNetGoogle Scholar
  19. [20]
    Krivsky I. Yu. and V. M. Simulik, “Foundations of quantum electrodynamics in field strengths terms”, Naukova Dumka, Kiev, 1992, 288.Google Scholar
  20. [21]
    Krivsky I. Yu. and V. M. Simulik,Theor. Math. Phys.,90 N3 (1992) 265–276, 388–406.CrossRefGoogle Scholar
  21. [22]
    Simulik V. M.,Z. Naturforsch.,A49 (1994) 1074–1076.Google Scholar
  22. [23]
    Simulik V. M. and I. Yu. Krivsky, An electrodynamical version of the hydrogen spectrum, in Proceedings. of the 28th European Group for Atomic Spectroscopy Conference, Graz., Austria, 1996, edited by L. Windholz, European Physical Society, Paris, 41–42.Google Scholar
  23. [24]
    Krivsky I. Yu. and V. M. Simulik,Advances in Applied Clifford Algebras,6 N2 (1996) 249–259.MATHMathSciNetGoogle Scholar
  24. [25]
    Krivsky I. Yu. and V. M. Simulik,Proc. Acad. of Sci., Ukraine N8 (1996) 79–85.Google Scholar
  25. [26]
    Simulik V. M. and I. Yu. Krivsky, On a bosonic structure of electron and muon, in Proceedings. of the 29th European Group for Atomic Spectroscopy Conference, Berlin, (1997), edited by H.-D. Kronfeldt European Physical Society, Paris, 154–155.Google Scholar
  26. [27]
    Simulik V. M. and I. Yu. Krivsky, Theoretical derivation of atomic spectra in the classical electrodynamical model of atom, in Proceedings. of the 29th European Group for Atomic Spectroscopy Conference, Berlin, 1997, edited by H.-D. Kronfeldt European Physical Society, Paris, 198–199.Google Scholar
  27. [28]
    Simulik V. M.,Ukrainian Phys. Journ.,42 N4 (1997) 406–407.Google Scholar
  28. [29]
    Simulik V. M.,Ukranian Math. Journ.,49, N7 (1997) 958–970.MATHMathSciNetGoogle Scholar
  29. [30]
    Ibragimov N. H.,Theor. Math. Phys.,1 N3 (1969) 350–359.CrossRefGoogle Scholar
  30. [31]
    Fushchich W. I. and A. G. Nikitin, “Symmetries of Maxwell’s equations”, Naukova Dumka, Kiev, 1983, 200.Google Scholar
  31. [32]
    Simulik V. M. and I. Yu. Krivsky,Advances in Applied Clifford Algebras,7 N1 (1997) 25–34.MATHCrossRefMathSciNetGoogle Scholar
  32. [33]
    Keller J.,Advances in Applied Clifford Algebras,7 (S) 1997 3–26.CrossRefMathSciNetGoogle Scholar
  33. [34]
    Vaz Jr. J. and W. A. Rodrigues Jr., On the Equivalence of Dirac and Maxwell Equations and Quantum Mechanics,Int. J. Theor. Phys.,32 (1993) 945–955.MATHCrossRefMathSciNetGoogle Scholar
  34. [35]
    Vaz Jr. J. and W. A. Rodrigues Jr., Maxwell and Dirac Equations as an Already Unitied Theory,Advances in Applied Clifford Algebras,7 (S), 1997 369–386.CrossRefMathSciNetGoogle Scholar
  35. [36]
    Rodrigues Jr. W. A. and J. Vaz. Jr., From Electromagnetism to Relativistic Quantum Mechanics, in pressFound. Physics (special-issue dedicated to A. O. Barut), (1998).Google Scholar
  36. [37]
    Rodrigues Jr. W. A. and J. E. Maiorino, A Unified Theory for construction of Arbitrary Speeds 0≤v<∞ Solutions of the Relativistic Wave Equations,Random Oper. Stoch. Eq. 4, (1996) 355–400.MathSciNetCrossRefGoogle Scholar
  37. [38]
    Rodrigues Jr. W. A. and J. Y. Lu, On the Existence of Undistorted Progressive Waves (UPWs) of Arbitrary Speeds 0<-v<∞ in Nature,Found. Phys.,27, (1997) 435–508.CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Birkhäuser-Verlag 1998

Authors and Affiliations

  • V. M. Simulik
    • 1
  • I. Yu. Krivsky
    • 2
  1. 1.Institute of Electron PhysicsUkrainian National Academy of SciencesUzhgorodUkraine
  2. 2.Institute of Electron PhysicsUkrainian National Academy of SciencesUzhgorodUkraine

Personalised recommendations