Archives of Computational Methods in Engineering

, Volume 9, Issue 4, pp 371–402 | Cite as

Explicit approximate inverse preconditioning techniques



The numerical treatment and the production of related software for solving large sparse linear systems of algebraic equations, derived mainly from the discretization of partial differential equation, by preconditioning techniques has attracted the attention of many researchers. In this paper we give an overview of explicit approximate inverse matrix techniques for computing explicitly various families of approximate inverses based on Choleski and LU—type approximate factorization procedures for solving sparse linear systems, which are derived from the finite difference, finite element and the domain decomposition discretization of elliptic and parabolic partial differential equations. Composite iterative schemes, using inner-outer schemes in conjunction with Picard and Newton method, based on approximate inverse matrix techniques for solving non-linear boundary value problems, are presented. Additionally, isomorphic iterative methods are introduced for the efficient solution of non-linear systems. Explicit preconditioned conjugate gradient—type schemes in conjunction with approximate inverse matrix techniques are presented for the efficient solution of linear and non-linear system of algebraic equations. Theoretical estimates on the rate of convergence and computational complexity of the explicit preconditioned conjugate gradient method are also presented. Applications of the proposed methods on characteristic linear and non-linear problems are discussed and numerical results are given.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ashby S.F., Manteuffel T.A. and Saylor P.E. (1990). A taxonomy for conjugate gradient methods.SIAM J. Numer. Anal.,27, 1542–1568.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Axelsson O. (1994). Iterative solution methods. Cambridge University Press.Google Scholar
  3. 3.
    Axelsson O. and Barker A. (1984). Finite element solution of boundary value problems. Theory and computation, Academic Press.Google Scholar
  4. 4.
    Axelsson O., Carey G.F. and Lindskog G. (1989). On a class of preconditioned iterative methods for parallel computers.Inter. J. Numer. Meth. Eng.,27, 637–654.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Axelsson O. and Lindskog G. (1986). On the eigenvalue distribution of a class of preconditioning matrices.Numer. Math.,48, 479–498.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Barrett R., Berry M., Chau T., Demmel J., Donato J., Dongarra J., Eijkhout V., Pozo R., Romine C. and van der Vorst H. (1994). Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods.SIAM.Google Scholar
  7. 7.
    Belman R., Juncosa M.L. and Kalaba R. (1961). Some numerical experiments using Newton’s method for non-linear parabolic and elliptic boundary value problems.C.A.C.M.,4, 187–191.Google Scholar
  8. 8.
    Benzi M., Meyer, C.D. and Tuma M. (1996). A sparse approximate inverse preconditioner for the conjugate gradient method.SIAM J. Sci. Comput.,17, 1135–1149.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Bjorstad P.E. and Widlund O. (1984). Solving elliptic problems on regions partitioned into substructures, in Elliptic Problem Solver II. Birkhoff G. and Schoenstadt A. (Eds.), Academic Press, 245–256.Google Scholar
  10. 10.
    Bramble J.H., Pasciak J.E. and Schatz A.H. (1988). The construction of Preconditioners for elliptic problems by Substructuring II.Math Comp.,51, 415–430.MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Bramble J.H., Pasciak J.G. and Schatz A.H. (1986). The construction of preconditioners for elliptic problems by substructuring I.Math. Comp.,47, 103–134.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Bramble J.H., Pasciak J.G. and Schatz A.H. (1986). An iterative method for elliptic problems on regions partitioned in substructures.Math. Comp.,46, 361–369.MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Bramley R. and Sameh A. (1992). Row projection methods for large nonsymmetric linear systems.SIAM J. Sci. Statist. Comput.,13, 168–193.MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Buleev N.I. (1960). A numerical method for the solution of two-dimensional and three dimensional equations of diffusion.Math. Sbornik,51, 227–238.Google Scholar
  15. 15.
    Bruaset A.M., Tveito A. and Winther R. (1990). On the stability of relaxed incomplete LU factorizations.Math. Comp.,54, 701–719.MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Chan T.F. and Goovaerts D. (1990). A note on the efficiency of domain decomposed incomplete factorizations.SIAM J. Sci. Stat. Comput.,11, 794–803.MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Chan T.F. (1987). Analysis of preconditioners for domain decomposition.SIAM J. Num. Anal.,24, 382–390.MATHCrossRefGoogle Scholar
  18. 18.
    Chan T., Glowinski R., Periaux J., and Widlund O. (1988). Domain Decomposition Methods. SIAM. Proceedings of theSecond International Symposium on Domain Decomposition Methods.Google Scholar
  19. 19.
    Chan T.F. and Mathew T. (1994). Domain decomposition algorithms. Acta Numerica, 61–144.Google Scholar
  20. 20.
    Cosgrove J.D.F., Dias J.C. and Griewank A. (1992). Approximate inverse preconditioning for sparse linear systems.Inter. J. Comp. Math.,44, 91–110.MATHCrossRefGoogle Scholar
  21. 21.
    Cuthill E. and Mckee J. (1969). Reducing the bandwidth of sparse symmetric matrices. ACM Proceedings of the24th National Conference.Google Scholar
  22. 22.
    DeLong M.A. and Ortega J.M. (1995). SOR as a preconditioner.Applied Numerical Mathematics,18, 431–440.MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Demmel J., Heath M. and van der Vorst H. (1993). Parallel numerical linear algebra. In Acta Numerica 1993, Cambridge University Press.Google Scholar
  24. 24.
    Dongarra J., Duff I., Sorensen D. and van der Vorst H. (1991). Solving linear systems on vector and shared memory computers. SIAM.Google Scholar
  25. 25.
    Dongarra J. and van der Vorst H. (1992). Performance of various computers using standard sparse linear equations solving techniques.Supercomputer,9 (5), 17–29.Google Scholar
  26. 26.
    Dryja M. (1984). A finite element capacitance method for elliptic problems on regions partitioned into subregions.Num. Math.,44, 153–168.MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Dryja M. (1982). A capacitance matrix method for Dirichlet problem on polygonal region.Num. Math.,39, 51–64.MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Dubois P., Greenbaum A. and Rodrigue G. (1979). Approximating the inverse of a matrix for use in iterative algorithms on vector processors.Computing,22, 257–268.MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Duff I. (2000). The impact of high performance computing in the solution of linear systems: trends and problems.J. Comp. Applied Math.,123, 515–530.MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Duff I., Erisman M. and Reid J. (1986).Direct methods for sparse matrices. Oxford University Press.Google Scholar
  31. 31.
    Dupont T., Kendall R. and Rachford H. (1968). An approximate factorization procedure for solving self-adjoint elliptic difference equations.SIAM J. Numer. Anal.,5, 559–573.MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Eisenstat S.C. (1983). A note on the generalized conjugate gradient method.SIAM J. Numer. Anal.,20, 358–361.MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Elman H.C. (1989). Relaxed and stabilized incomplete factorization for non-self-adjoint linear systems.BIT,29, 890–915.MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Elman H.C. (1986). A stability analysis of incomplete LU factorizations.Math. Comp.,47, 191–217.MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Evans D.J. (1985).Sparsity and its Applications. Cambridge University Press.Google Scholar
  36. 36.
    Evans, D.J. (1983).Preconditioning Methods: Theory and Applications. Gordon and Breach Science Publishers.Google Scholar
  37. 37.
    Evans, D.J. (1967). The use of Preconditioning in iterative methods for solving linear equations with symmetric positive definite matrices.J.I.M.A.,4, 295–314.CrossRefGoogle Scholar
  38. 38.
    Evans D.J. and Lipitakis E.A. (1983). Implicit semi-direct methods based on root-free sparse factorization procedures.BIT,23, 194–208.MATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Evans and Sutti C. (1988). Parallel Computing: Methods, Algorithms and Applications. Proceedings of theInternational Meeting on Parallel Computing, Adam Hilger.Google Scholar
  40. 40.
    Faber V. and Manteuffel T. (1984). Necessary and sufficient conditions for the existence of a conjugate gradient method.SIAM J. Numer. Anal.,21, 315–339.CrossRefMathSciNetGoogle Scholar
  41. 41.
    Fadeeva V.N. (1959). Computational methods of Linear Algebra. Transl. C.D. Benster, Dover.Google Scholar
  42. 42.
    Fisher D., Golub G., Hald O., Leiva C. and Widlund O. (1974). On Fourier-Toeplitz methods for separable elliptic problems.Math Comp.,28, 349–368.CrossRefMathSciNetGoogle Scholar
  43. 43.
    Glowinski R., Periaux J., Shi Z.C. and Windlund O. (1997).Domain decomposition methods in sciences and engineering. Wiley.Google Scholar
  44. 44.
    Glowinski R., Golub G. H., Meurant G. A. and Periaux J. (1988). Domain Decomposition Methods for Partial Differential Equations. SIAM.Google Scholar
  45. 45.
    Golub G.H. and van Loan C. (1996).Matrix Computations. The Johns Hopkins University Press.Google Scholar
  46. 46.
    Golub G.H. and O’Leary D.P. (1989). Some history of the conjugate gradient and lanczos algorithms: 1948–1976,SIAM Review,31, 50–102.MATHCrossRefMathSciNetGoogle Scholar
  47. 47.
    Gragg B. and Harrod W. (1984). The numerically stable reconstruction of Jacobi matrix from spectral data.Numer. Math.,44, 317–355.MATHCrossRefMathSciNetGoogle Scholar
  48. 48.
    Gravvanis G.A. (2001). A note on the rate of convergence and complexity of domain decomposition approximate inverse preconditioning.Computational Fluid and Solid Mechanics, Proceedings of theFirst MIT Conference on Computational Fluid and Solid Mechanics, eds. K.J. Bathe, Vol. 2, Elsevier, 1586–1589.Google Scholar
  49. 49.
    Gravvanis G.A. (2001). Finite difference schemes using fast generalized approximate inverse banded matrix techniques. Proceedings of theInternational Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA 2001), H.R. Arabnia (Eds.), Vol. IV, 1755–1761, CSREA Press.Google Scholar
  50. 50.
    Gravvanis G.A. (2000). Explicit preconditioned generalized domain decomposition methods.I. J. Applied Mathematics,4(1), 57–71.MATHMathSciNetGoogle Scholar
  51. 51.
    Gravvanis G.A. (2000). Solving initial value problems by explicit domain decomposition approximate inverses. CD-ROM Proceedings of theEuropean Congress on Computational Methods in Applied Sciences and Engineering 2000.Google Scholar
  52. 52.
    Gravvanis G.A. (2000), Domain decomposition approximate inverse preconditioning for solving fourth order equations. Proceedings of theInternational Conference on Parallel and Distributed Processing Techniques and Applications 2000, H.R. Arabnia (Eds.), Vol. I, CSREA Press, 1–7.Google Scholar
  53. 53.
    Gravvanis G.A. (2000). Fast explicit approximate inverses for solving linear and non-linear finite difference equations.I. J. Differential Equations & Applications,1 (4), 451–473.Google Scholar
  54. 54.
    Gravvanis G.A. (2000). Generalized approximate inverse preconditioning for solving non-linear elliptic boundary-value problems,I. J. Applied Mathematics,2 (11), 1363–1378.MATHMathSciNetGoogle Scholar
  55. 55.
    Gravvanis G.A. (2000). Domain decomposition approximate inverse matrix techniques.I. J. Differential Equations and Applications,1 (3), 323–334.MATHMathSciNetGoogle Scholar
  56. 56.
    Gravvanis G.A. (2000). Using explicit preconditioned domain decomposition methods for solving singular perturbed linear problems.Applications of High Performance Computing in Engineering VI, M. Ingber, H. Power, & C.A. Brebbia (Eds.), WIT Press, 457–466.Google Scholar
  57. 57.
    Gravvanis G.A. (2000). Explicit preconditioning conjugate gradient schemes for solving biharmonic problems.Engineering Computations,17, 154–165.MATHCrossRefGoogle Scholar
  58. 58.
    Gravvanis G.A. (2000). Explicit isomorphic iterative methods for solving arrow-type linear systems.I. J. Comp. Math.,74 (2), 195–206.MATHCrossRefMathSciNetGoogle Scholar
  59. 59.
    Gravvanis G.A. (1999). Generalized approximate inverse finite element matrix techniques.Neural Parallel and Scientific Computations,7(4), 487–500.MATHMathSciNetGoogle Scholar
  60. 60.
    Gravvanis G.A. (1999). Approximate inverse banded matrix techniques.Engineering Computations 16(3), 337–346.MATHCrossRefGoogle Scholar
  61. 61.
    Gravvanis G.A. (1999). Preconditioned iterative methods for solving 3D boundary value problems.I. J. Comp. Math.,71, 117–136.MATHCrossRefMathSciNetGoogle Scholar
  62. 62.
    Gravvanis G.A. (1998). An approximate inverse matrix technique for arrowhead matrices.I. J. Comp. Math.,70, 35–45.MATHCrossRefMathSciNetGoogle Scholar
  63. 63.
    Gravvanis G.A. (1998). Parallel matrix techniques.Computational Fluid Dynamics 98, K.D. Papailiou, D. Tsahalis, J. Periaux, C. Hirsch, M. Pandolfi (Eds.) Vol. I, Part 1, Wiley, 472–477.Google Scholar
  64. 64.
    Gravvanis G.A. (1998). Solving non-linear boundary value problems in three dimensions by explicit preconditioning. Proceedings of theInternational Conference on Advanced Computational Methods in Engineering, R. Van Keer, B. Verhegghe, M. Hogge, E. Noldus (Eds.), Part 2: Contributed Papers Shaker Publishing, 755–762.Google Scholar
  65. 65.
    Gravvanis G.A. (1997). On the numerical modelling and solution of non-linear boundary value problems.Numerical Methods in Thermal Problems, R.W. Lewis and J.T. Cross (eds.), Vol. X, Pineridge Press, 898–909.Google Scholar
  66. 66.
    Gravvanis G.A. (1996). The rate of convergence of explicit, approximate inverse preconditioning.I. J. Comp. Math.,60, 77–89.MATHCrossRefGoogle Scholar
  67. 67.
    Gravvanis G.A. (1995). Explicit preconditioned methods for solving 3D boundary value problems by approximate inverse finite element matrix techniques.I. J. Comp. Math.,56, 77–93.MATHCrossRefGoogle Scholar
  68. 68.
    Gravvanis G.A. (1994). A three dimensional symmetric linear equation solver.Communications in Numerical Methods in Engineering,10, 717–730.MATHCrossRefMathSciNetGoogle Scholar
  69. 69.
    Gravvanis G.A. and Lipitakis E.A. (1996). An explicit sparse unsymmetric finite element solver.Commum. Numer Meth. in Engin.,12, 21–29.MATHCrossRefGoogle Scholar
  70. 70.
    Gravvanis G.A. and Lipitakis E.A. (1996). A three dimensional explicit preconditioned solver.Comp. Math. with Appl.,32, 111–131.MATHCrossRefMathSciNetGoogle Scholar
  71. 71.
    Gravvanis G.A. and Lipitakis E.A. (1995). On the numerical modelling and solution of initial/boundary value problems. Proc. of the9th Inter. Conference on Numerical Methods in Thermal Problems, Lewis R.W. and Durbetaki P. (Eds.), Vol. IX, Part 2, Pineridge Press, 782–793.Google Scholar
  72. 72.
    Gravvanis G.A. and Lipitakis E.A. (1994). Using generalized approximate inverse finite element methods for the numerical solution of initial/boundary value problems. Proceedings of theSecond Hellenic-European Conference on Mathematics and Informatics, E.A. Lipitakis (Ed.), Vol. 2, 829–838, Hellenic Mathematical Society.MathSciNetGoogle Scholar
  73. 73.
    Gravvanis, G.A., Platis, A.N., Violentis I. and Giannoutakis K. (2002). Performability evaluation of replicated database systems by explicit approximate inverses. Proceedings of theInternational Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA ’2002), H.R. Arabnia (Ed.), Vol. 1, 114–120, CSREA Press.Google Scholar
  74. 74.
    Greenbaum A. (1997). Iterative methods for solving linear systems. SIAM.Google Scholar
  75. 75.
    Gropp W.D. and Keyes D.E. (1992). Domain decomposition with local mesh refinement.,SIAM J. Sci. Statist. Comput.,13, 967–993.MATHCrossRefMathSciNetGoogle Scholar
  76. 76.
    Grote M.J. and Huckle T. (1997). Parallel preconditioning with sparse approximate inverses.SIAM J. Sci. Comput.,18, 838–853.MATHCrossRefMathSciNetGoogle Scholar
  77. 77.
    Gustafsson I. (1978). A class of first order factorization methods.BIT,18, 142–156.MATHCrossRefMathSciNetGoogle Scholar
  78. 78.
    Gutknecht M.H. (1993). Variants of BICGSTAB for matrices with complex spectrum.SIAM J. Sci. Comput.,14, 1020–1033.MATHCrossRefMathSciNetGoogle Scholar
  79. 79.
    Hackbusch W. (1994).Iterative solution of large linear systems of equations. Springer.Google Scholar
  80. 80.
    Hageman L.A. and Young D.M. (1981).Applied Iterative Methods. Academic Press.Google Scholar
  81. 81.
    Hestenes M.R. (1975). Pseudoinverses and Conjugate gradients.Commun. of A.C.M.,18, 40–43.MathSciNetGoogle Scholar
  82. 82.
    Hestenes M.R. and Stiefel E. (1954). Methods of conjugate gradients for solving linear systems.J. Res. Natl. Bur. Stand.,49, 409–436.MathSciNetGoogle Scholar
  83. 83.
    Huckle T. (1999). Approximate, sparsity patterns for the inverse of a matrix and preconditioning.Applied Numerical Mathematics,30, 291–303.MATHCrossRefMathSciNetGoogle Scholar
  84. 84.
    Huckle T. (1998). Efficient computations of sparse approximate inverses.Numer. Linear Alg. with Appl.,5, 57–71.MATHCrossRefMathSciNetGoogle Scholar
  85. 85.
    Jea K. and Young D. (1980). Generalized conjugate-gradient acceleration of nonsymmetrizable iterative methods.Linear Algebra Appl.,34, 159–194.MATHCrossRefMathSciNetGoogle Scholar
  86. 86.
    Kaporin I. (1994). New convergence results and preconditioning strategies for the conjugate gradient method.Numer. Linear Alg. Appl.,1, 179–210.MATHCrossRefMathSciNetGoogle Scholar
  87. 87.
    Keyes D.E., Chan T.F., Meurant G., Scroggs J.S., and Voigt R.G. (1992). Domain Decomposition Methods For Partial Differential Equations. SIAM.Google Scholar
  88. 89.
    Kincaid D.R. and Hayes, L.J. (1990).Iterative methods for Lange Linear Systems. Academic Press.Google Scholar
  89. 89.
    Kolotilina L.Y. and Yeremin A.Y. (1993). Factorized sparse approximate inverse preconditioning.SIAM J. Matrix Anal. Appl.,14, 45–58.MATHCrossRefMathSciNetGoogle Scholar
  90. 90.
    Lanczos, C. (1952). Solution of systems of linear equations by minimized iterations.J. Res. Natl. Bur. Stand,49, 33–53.MathSciNetGoogle Scholar
  91. 91.
    Lanczos C. (1950). An iteration method for the solution of the eigenvalue problem of linear differential and integral operators.J. Res. Natl. Bur. Stand,45, 225–280.MathSciNetGoogle Scholar
  92. 92.
    Lipitakis E.A. (1986). Approximate root-free factorization techniques for solving elliptic difference equations in three-space variables.Linear Algebra and its Applications,76, 247–269.MATHCrossRefMathSciNetGoogle Scholar
  93. 93.
    Lipitakis E.A. (1984). Generalized extended to the limit sparse factorization techniques for solving unsymmetric finite element systems.Computing,32, 255–270.MATHCrossRefMathSciNetGoogle Scholar
  94. 94.
    Lipitakis E.A. (1983). A normalized sparse linear equation solver.J. Comp. and Applied Maths,9, 287–298.MATHCrossRefGoogle Scholar
  95. 95.
    Lipitakis, E.A. and Evans D.J. (1987). Explicit semi-direct methods based on approximate inverse matrix techniques for solving boundary-value problems on parallel processors.Math. and Computers in Simulation,29, 1–17.MATHCrossRefGoogle Scholar
  96. 96.
    Lipitakis, E.A. and Evans D.J. (1986). Numerical solution of non-linear elliptic boundary-value problems by isomorphic iterative methods.I. J. Comp. Math.,20, 261–282.MATHCrossRefGoogle Scholar
  97. 97.
    Lipitakis E.A. and Gravvanis G.A. (1995). Explicit preconditioned iterative methods for solving large unsymmetric finite element systems.Computing,54, 167–183.MATHCrossRefMathSciNetGoogle Scholar
  98. 98.
    Lipitakis E.A. and Gravvanis G.A. (1994). Explicit preconditioned methods for computing the inverse and pseudoinverse solutions of unsymmetric finite element systems of linear equations.I. J. Mathematical Modelling and Scientific Computing,4, 886–893.Google Scholar
  99. 99.
    Lipitakis E.A. and Gravvanis G.A. (1993) Hybrid Implicit-Explicit schemes by approximate inverse finite element matrix techniques for solving parabolic partial differential equations. Proceedings of theFirst Conference on Mathematics and Informatics, E.A. Lipitakis (Ed.), 345–456, Hellenic Mathematical Society.Google Scholar
  100. 100.
    Lipitakis E.A. and Gravvanis G.A. (1992). The use of explicit preconditioned iterative methods for solving singular perturbed linear problems.Numerical Methods in Engineering ’92, Hirsch C., Zienkiewicz O.C. and Onate E. (Eds.), 827–832, Elsevier Science Publishers.Google Scholar
  101. 101.
    Lipitakis E.A. and Gravvanis G.A. (1991). The numerical solution of large finite elements by explicit preconditioning semi-direct methods.Bulletin of the Greek Mathematical Society, Special Issue on Computer Mathematics,32, 63–82.MATHMathSciNetGoogle Scholar
  102. 102.
    Lipitakis E.A. and Gravvanis G.A. (1991). Implicit preconditioned methods based on root-free sparse finite element factorization techniques. Proc. of the13th IMACS World Congress on Computation and Applied Mathematics, Vichnevetsky, R. and Miller, J.J.H. (Eds.), Vol.1, 449–450.Google Scholar
  103. 103.
    Lipitakis E.A. and Gravvanis G.A. (1990). A fast direct method for solving elliptic boundary value problems on multiprocessor systems. Proc. of theInter. Conf. on Numerical Methods in Engineering: Theory and Applications, Pande, G.N. and Middleton, J. (eds.), Elsevier Applied Science, 622–632.Google Scholar
  104. 104.
    Manteuffel T. (1977). The Tchebychev iteration for nonsymmetric linear systems.Numer. Math.,28, 307–327.MATHCrossRefMathSciNetGoogle Scholar
  105. 105.
    Meijerink J.A. and van der Vorst H.A. (1977). An, iterative solution method for linear systems of which the coefficient matrix is a symmetric M-matrix.Math. Comp.,31, 148–162.MATHCrossRefMathSciNetGoogle Scholar
  106. 106.
    Meurant G. (1988). Domain decomposition methods for partial differential equations on parallel computers.Int. J. Supercomputing Appls.,2, 5–12.CrossRefGoogle Scholar
  107. 107.
    Munksgaard N. (1980). Solving sparse symmetric, sets of linear equations by preconditioned conjugate gradients.ACM Trans. Math. Software,6, 206–219.MATHCrossRefGoogle Scholar
  108. 108.
    Nachtigal N.M., Reddy S.C. and Trefethen L.N. (1992). How fast are nonsymmetric matrix iterations?SIAM J. Matrix Anal. Appl.,13, 778–795.MATHCrossRefMathSciNetGoogle Scholar
  109. 109.
    Notay Y. (1993). On the convergence rate of the conjugate gradients in presence of rounding errors.Numer. Math.,65, 301–317.MATHCrossRefMathSciNetGoogle Scholar
  110. 110.
    Oden J.T. and Reddy J.N. (1976).An introduction to the mathematical theory of Finite Elements. Wiley.Google Scholar
  111. 111.
    O’Leary D. and Stewart G. (1990). Computing the eigenproblem and eigenvectors of arrowhead matrices.J. Comp. Physics,90, 497–505.MATHCrossRefMathSciNetGoogle Scholar
  112. 112.
    Ortega J.M. (1988).Introduction to Parallel and Vector Solution of Linear Systems. Plenum Press.Google Scholar
  113. 113.
    Ortega J.M. and Rheinboldt W.C. (1970).Iterative solution of non-linear equations in several variables. Academic Press.Google Scholar
  114. 114.
    Papadrakakis M. (1977).Parallel solution methods in computational mechanics. Wiley.Google Scholar
  115. 115.
    Parlet B. (1980).The symmetric eigenvalue problem. Prentice-Hall.Google Scholar
  116. 116.
    Peaceman D. and Rachford J.H.H. (1955). The numerical solution of parabolic and elliptic differential equations.J. Soc. Indust. Appl. Math.,3, 28–41.MATHCrossRefMathSciNetGoogle Scholar
  117. 117.
    Pinder G.F. and Gray W.G. (1977).Finite element simulation in surface subsurface hydrology. Academic Press.Google Scholar
  118. 118.
    Platis A.N. and Gravvanis G.A. (2002). Dependability evaluation by explicit approximate inverse preconditioning. AcceptedI. J. Computational and Numerical Analysis and Applications.Google Scholar
  119. 119.
    Porsching T.A. (1976). On the origins and numerical solution of some sparse non-linear systems. In the book: “Sparse Matrix Computations.”, Academic Press.Google Scholar
  120. 120.
    Quarteroni A., Periaux J., Kuznetsov Y. and Widlund O. (1992). Domain Decomposition Methods in Science and Engineering. Contemporary Mathematics 157, AMS.Google Scholar
  121. 121.
    Reid J. (1971). On the method of conjugate gradients for the solution of large sparse systems of linear equations. In Large Sparse Sets of Linear Equations, Reid J. (Ed.), Academic Press, 231–254.Google Scholar
  122. 122.
    Saad Y. (1996).Iterative methods for sparse linear systems. PWS.Google Scholar
  123. 123.
    Saad Y. and Schultz M.H. (1986). GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems.SIAM J. Sci. Statist. Comput.,7, 856–869.MATHCrossRefMathSciNetGoogle Scholar
  124. 124.
    Saad Y. and Schultz M.H. (1985). Conjugate Gradient-like algorithms for solving nonsymmetric linear systems.Math. Comp.,44, 417–424.MATHCrossRefMathSciNetGoogle Scholar
  125. 125.
    Saad Y. and van der Vorst H.A. (2000). Iterative solution of linear systems in the 20th century.J. Comp. Applied Math.,123, 1–33.MATHCrossRefGoogle Scholar
  126. 126.
    Schwarz H.R. (1989).Finite Element Methods. Academic Press.Google Scholar
  127. 127.
    Sleijpen G.L.G. and van der Vorst H.A. (1995). Maintaining convergence properties of BICGSTAB methods in finite precision arithmetic.Numerical Algorithms,10, 203–223. Finite Element MethodsMATHCrossRefMathSciNetGoogle Scholar
  128. 128.
    van der Sluis A. and van der Vorst H.A. (1986). The rate of convergence of conjugate gradients.Numer. Math.,48, 543–560.MATHCrossRefMathSciNetGoogle Scholar
  129. 129.
    Sonneveld P. (1989). CGS: a fast Lanczos-type solver for nonsymmetric linear systems.SIAM J. Sci. Statist. Comput.,10, 36–52.MATHCrossRefMathSciNetGoogle Scholar
  130. 130.
    van der Vorst H.A. (1992). Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of non-symmetric linear systems.SIAM J. Sci. Statist. Comput.,13, 631–644.MATHCrossRefMathSciNetGoogle Scholar
  131. 131.
    van der Vorst H.A. (1989). High performance preconditioning.SIAM J. Sci. Stat. Comput.,10, 1174–1185.MATHCrossRefGoogle Scholar
  132. 132.
    van der Vorst H.A. (1982). A vectorizable variant of some ICCG methods.SIAM J. Sci. Stat. Comput.,3, 350–356.MATHCrossRefGoogle Scholar
  133. 133.
    van der Vorst H.A. and Vuik C. (1994). GMRESR: a family of nested GMRES methods.Numer. Linear Alg. Appl.,1(4), 369–386.MATHCrossRefGoogle Scholar
  134. 134.
    Vuik C. and van der Vorst H.A. (1992). A comparison of some GMRES-like methods.Linear Alg. Appl.,160, 131–162.MATHCrossRefGoogle Scholar
  135. 135.
    Varga R.S. (1962).Matrix Iterative Analysis. Prentice-HallGoogle Scholar
  136. 136.
    Waugh F.V. and Dwyer P.S. (1945). Compact computation of the inverse of a matrix.Ann. Math. Stat.,16, 259–271.MATHCrossRefMathSciNetGoogle Scholar
  137. 137.
    Whiteman J.R. (1975). Some aspects of the mathematics of FE, in the Mathematics of FE and Applications II.MAFELAP 1975, Academic Press.Google Scholar
  138. 138.
    Wittum G. (1989). On the robustness of ILU smoothing.SIAM J. Sci. Stat. Comput.,10, 699–717.MATHCrossRefMathSciNetGoogle Scholar
  139. 139.
    Wozniakowski H. (1977). Numerical stability of the Chebyshev method for the solution of large linear systems.Num. Math.,28, 191–209.MATHCrossRefMathSciNetGoogle Scholar
  140. 140.
    Young D.M. (1971).Iterative solution of large linear systems. Academic Press.Google Scholar
  141. 141.
    Zienkiewicz O.C. (1977).The finite element method Mc Graw-Hill.Google Scholar

Copyright information

© CIMNE 2002

Authors and Affiliations

  1. 1.Department of Information and Communication Systems EngineeringUniversity of the AegeanSamosGreece

Personalised recommendations