Treatment concepts for elderly patients with acute myeloid leukemia

  • Wolfgang R. Sperr
  • Alexander W. Hauswirth
  • Friedrich Wimazal
  • Paul Knöbl
  • Klaus Geissler
  • Peter Valent
Review Article

Summary

The majority of patients with acute myeloid leukemia (AML) are over 60 years of age at diagnosis. Unlike treatment options for younger adults, those for older patients are limited to non-myeloablative therapy, and many patients are not treatable because of poor performance status. In those who are treatable, long-term survival can be achieved using intensive induction and consolidation chemotherapy. Such curative treatment can be administered in about 70% of elderly patients with AML. In responding patients (up to 60%) the disease-free survival may be almost comparable to that of younger adults. However, treatment-related toxicity results in a higher mortality rate in the elderly patients. Moreover, aggressive chemotherapy cannot be used for 30% of the patients, due to their poor performance status. Currently, palliative cytoreductive treatment and supportive care are considered appropriate for these patients. Recently, however, targeting antileukemic antibodies and inhibitors of signal transduction have been introduced as promising new treatment options. The therapeutic efficiency and toxicity-profiles of these novel drugs are currently under investigation in clinical trials.

Key words

Acute myeloid leukemia elderly patients intensive induction therapy consolidation chemotherapy 

Therapie der akuten myeloischen Leukämie bei älteren Patienten

Zusammenfassung

Der überwiegende Anteil der Patienten mit akuter myeloischer Leukämie (AML) ist bei Diagnosestellung bereits älter als 60 Jahre. In dieser Altersgruppe beschränken sich die therapeutischen Optionen auf nicht myeloablative Therapien, und oft erlaubt der schlechte Allgemeinzustand keine intensive Chemotherapie. Ist jedoch eine intensive zytostatische Therapie durchführbar, so kann mittels Induktionstherapie und Konsolidierungstherapien ein Langzeitüberleben erreicht werden. In zirka 70% der ältern AML-Patienten kann eine solche Therapie verabreicht werden. Bei Patienten die auf die Induktionstherapie ansprechen (bis zu 60%) ist das leukämiefreie Überleben durchaus mit dem der jüngeren Patienten vergleichbar. Es muß jedoch in Betracht gezogen werden, dass die Mortalität der älteren Patienten aufgrund der therapieassoziieten Toxizität höher ist als in der jüngern Population. Bei 30% der älteren Patienten kann wegen des schlechten Allgemeinzustandes keine intensive Chemotherapie verabreicht werden. Für diese Patienten sind palliative zytoreduktive sowie supportive Maßnahmen die derzeit etablierten Optionen. Neue Therapieansätze dürften sich durch die Entwicklung neuer zielgerichteter Substanzen wie Antikörper oder Inhibitoren der Signaltransduktion ergeben. Die Effektivität und Toxizität dieser neuen Substanzen wird derzeit in klinischen Studien evaluiert.

Schlüsselwörter

Akute myeloische Leukämie ältere Patienten intensive Induktionstherapie Konsolidierungstherapie 

References

  1. 1.
    Brincker H (1985) Estimate of overall treatment results in acute nonlymphocytic leukemia based on age-specific rates of incidence and of complete remission. Cancer Treat Rep 69: 5–11PubMedGoogle Scholar
  2. 2.
    Baudard M, Marie JP, Cadiou M, Viguie F, Zittoun R (1994) Acute myelogenous leukaemia in the elderly: retrospective study of 235 consecutive patients. Br J Haematol 86: 82–91PubMedCrossRefGoogle Scholar
  3. 3.
    Taylor PR, Reid MM, Stark AN, Brown N, Hamilton PJ, Proctor PJ (1995): De novo acute myeloid leukaemia in patients over 55-years-old: a population based study of incidence, treatment and outcome, Northern Region Haematology Group. Leukemia 9: 231–237PubMedGoogle Scholar
  4. 4.
    McNally RIQ, Rowland D, Roman E, et al (1997) Age and sex distributions of haematological malignancies. UK Hematol Oncol 15: 173–189CrossRefGoogle Scholar
  5. 5.
    Pinto A, Zagonel V, Ferrara F (2001) Acute myeloid leukemia in the elderly: biology and therapeutic strategies. Crit Rev Oncol Hematol 39: 275–287PubMedCrossRefGoogle Scholar
  6. 6.
    Büchner T, Hiddemann W, Berdel W, Wormann B, Schoch C, Loffler H, et al (2002) Acute myeloid leukemia: treatment over 60. Rev Clin Exp Hematol 6: 46–59PubMedCrossRefGoogle Scholar
  7. 7.
    Johnson PRE, Liu Yin JA (1993) Acute myeloid leukaemia in the elderly: biology and treatment. Br J Haematol 83: 1–6PubMedCrossRefGoogle Scholar
  8. 8.
    Brunning RD, Matutes E, Harris NL, Flandrin G, Vardiman J, Bennett J, et al (2001) Acute myeloid leukaemia: Introduction. In: Jaffe ES, Harris NL, Stein H, Vardiman JW (eds) WHO classification of tumours: pathology and genetics of tumours of haematopoietic and lymphoid tissues. IARC Press, Lyon, pp 77–80Google Scholar
  9. 9.
    Löwenberg B (1996) Treatment of the elderly patient with acute myeloid leukaemia. Baillieres Clin Haematol 9: 147–159PubMedCrossRefGoogle Scholar
  10. 10.
    Hiddemann W, Kern W, Schoch C, Fonatsch C, Heinecke A, Wormann B, Buchner T (1999) Management of acute myeloid leukemia in elderly patients. J Clin Oncol 17: 3569–3576PubMedGoogle Scholar
  11. 11.
    Rowe JM (2000) Treatment of acute myelogenous leukemia in older adults. Leukemia 14: 480–487PubMedCrossRefGoogle Scholar
  12. 12.
    Büchner T, Hiddemann W, Schoch C, Haferlach T, Sauerland MC, Heinecke A (2001) Acute myeloid leukaemia (AML): treatment of the older patient. Best Pract Res Clin Haematol 14: 139–151PubMedCrossRefGoogle Scholar
  13. 13.
    Estey EH (2001) Therapeutic options for acute myelogenous leukemia. Cancer 92: 1059–1073PubMedCrossRefGoogle Scholar
  14. 14.
    Coeberg JWW, Janssen-Heijnen MLG, Razenberg PPA (1998) Prevalence of co-morbidity in newly diagnosed patients with cancer. Crit Rev Oncol Hematol 26: 97–100CrossRefGoogle Scholar
  15. 15.
    Cova D, Beretta G, Balducci L (1998) Cancer chemotherapy in older patients. In: Balducci L, Lyman GH, Ersheler WB (eds) Comprehensive geriatric oncology. Harwood Academic Publishers, Amsterdam, pp 429–442Google Scholar
  16. 16.
    Foon KA, Zighelboim J, Yale C, Gale RP (1981) Intensive chemotherapy is the treatment of choice for elderly patients with acute myelogenous leukemia. Blood 58: 467–470PubMedGoogle Scholar
  17. 17.
    Sebban C, Archimbaud E, Coiffier B, Guyotat D, Treille-Ritouet D, Maupas J, et al (1988) Treatment of acute myeloid leukemia in elderly patients. A retrospective study. Cancer 61: 227–231PubMedCrossRefGoogle Scholar
  18. 18.
    Löwenberg B, Zittoun R, Kerkhofs H, Jehn U, Abels J, Debusscher L, et al (1989) On the value of intensive remission-induction chemotherapy in elderly patients of 65+ years with acute myeloid leukemia: a randomized phase III study of the European Organization for Research and Treatment of Cancer Leukemia Group. J Clin Oncol 7: 1268–1274PubMedGoogle Scholar
  19. 19.
    Stasi R, Venditti A, Del Poeta G, Aronica G, Dentamaro T, Cecconi M, et al (1996) Intensive treatment of patients age 60 years and older with de novo acute myeloid leukemia: analysis of prognostic factors. Cancer 77: 2476–2488PubMedCrossRefGoogle Scholar
  20. 20.
    Tilly H, Castaigne S, Bordessoule D, Casassus P, Le Prise PY, Tertian G, et al (1990) Low-dose cytarabine versus intensive chemotherapy in the treatment of acute nonlymphocytic leukemia in the elderly. J Clin Oncol 8: 272–279PubMedGoogle Scholar
  21. 21.
    Bassan R, Buelli M, Viero P, Minotti C, Barbui T (1992) The management of acute myelogenous leukemia in the elderly: ten-year experience in 118 patients. Hematol Oncol 10: 251–260PubMedCrossRefGoogle Scholar
  22. 22.
    Löwenberg B, Downing JR, Burnett A (1999) Acute myeloid leukemia. N Engl J Med 341: 1051–1062PubMedCrossRefGoogle Scholar
  23. 23.
    Yunis JJ (1984) Recurrent chromosomal defects are found in most patients with acute nonlymphocytic leukemia. Cancer Genet Cytogenet 11: 125–137PubMedCrossRefGoogle Scholar
  24. 24.
    Rowley JD (1980) Chromosome changes in acute leukaemia. Br J Haematol 44: 339–346PubMedCrossRefGoogle Scholar
  25. 25.
    Bitter MA, Le Beau MM, Rowley JD, Larson RA, Golomb HM, Vardiman JW (1987) Associations between morphology, karyotype, and clinical features in myeloid leukemias. Hum Pathol 18: 211–225PubMedCrossRefGoogle Scholar
  26. 26.
    Baer MR, Bloomfield CD (1991) Multidrug resistance in acute myeloid leukemia. J Natl Cancer Inst 83: 663–665PubMedCrossRefGoogle Scholar
  27. 27.
    Grimwade D, Walker H, Oliver F, Wheatley K, Harrison C, Harrison G, et al (1998) The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children’s Leukaemia Working Parties. Blood 92: 2322–2333PubMedGoogle Scholar
  28. 28.
    Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR, et al (1976) Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group. Br J Haematol 33: 451–458PubMedCrossRefGoogle Scholar
  29. 29.
    Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR, et al (1985) Proposed revised criteria for the classification of acute myeloid leukemia. A report of the French-American-British Cooperative Group. Ann Intern Med 103: 620–625PubMedGoogle Scholar
  30. 30.
    Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR, et al (1985) Criteria for the diagnosis of acute leukemia of megakaryocyte lineage (M7). A report of the French-American-British Cooperative Group. Ann Intern Med 103: 460–462PubMedGoogle Scholar
  31. 31.
    Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR, et al (1991) Proposal for the recognition of minimally differentiated acute myeloid leukaemia (AML-M0). Br J Haematol 78: 325–329PubMedCrossRefGoogle Scholar
  32. 32.
    Brunning RD, Matutes E, Flandrin G, Vardiman J, Bennett J, Head D, et al (2001) Acute myeloid leukaemia with recurrent genetic abnormalities. In: Jaffe ES, Harris NL, Stein H, Vardiman JW (eds) WHO classification of tumours: Pathology and genetics of tumours of haematopoietic and lymphoid tissues. IARC Press, Lyon, pp 81–87Google Scholar
  33. 33.
    Brunning RD, Matutes E, Harris NL, Flandrin G, Vardiman J, Bennett J, et al (2001) Acute myeloid leukaemia with multilineage dysplasia. In: Jaffe ES, Harris NL, Stein H, Vardiman JW (eds) WHO classification of tumours: Pathology and genetics of tumours of haematopoietic and lymphoid tissues. IARC Press, Lyon, pp 88–89Google Scholar
  34. 34.
    Brunning RD, Matutes E, Flandrin G, Vardiman J, Bennett J, Head D, et al (2001) Acute myeloid leukaemia and myelodysplastic syndromes, therapy related. In: Jaffe ES, Harris NL, Stein H, Vardiman JW (eds) WHO classification of tumours: pathology and genetics of tumours of haematopoietic and lymphoid tissues. IARC Press Lyon, pp 89–91Google Scholar
  35. 35.
    Brunning RD, Matutes E, Flandrin G, Vardiman J, Bennett J, Head D, et al (2001) Acute myeloid leukaemia not otherwise categorised. In: Jaffe ES, Harris NL, Stein H, Vardiman JW (eds) WHO classification of tumours: Pathology and genetics of tumours of haematopoietic and lymphoid tissues, IARC Press Lyon, pp 91–105Google Scholar
  36. 36.
    Hamblin TH (1995) Disappointments in treating acute myeloid leukemia in the elderly. N Engl J Med 332: 1712–1773PubMedCrossRefGoogle Scholar
  37. 37.
    Burnett AK (1999) Tailoring the treatment of acute myeloid leukemia. Curr Opin Oncol 11: 14–19PubMedCrossRefGoogle Scholar
  38. 38.
    Hoyle CF, de Bastos M, Wheatley K, Sherrington PD, Fischer PJ, Rees JK, et al (1989) AML associated with previous cytotoxic therapy, MDS or myeloproliferative disorderes: Results from the MRC 9th AML trial. Br J Haematol 72: 45–53PubMedCrossRefGoogle Scholar
  39. 39.
    Hamblin TJ (1992) The treatment of acute myeloid leukaemia preceded by the myelodysplastic syndrome. Leuk Res 16: 4101–4108Google Scholar
  40. 40.
    Larson RA (1996) Treatment of acute myeloid leukemia with a antecedent myelodysplastic syndrome. Leukemia 10 [Suppl 1]: 32–25Google Scholar
  41. 41.
    Hassan HT, Rees JKH (1990) Relation between age and blast cell differentiation in acute myeloid leukemia patients. Oncology 47: 439–442PubMedGoogle Scholar
  42. 42.
    Goasguen JE, Matsuo T, Cox C, Bennett JM (1992) Evaluation of the dysmyelopoiesis in 337 patients with de novo acute myeloid leukemia: major importance of dysgranulopoiesis for remission and survival. Leukemia 6: 520–525PubMedGoogle Scholar
  43. 43.
    Brito-Babapulle F, Catowsky D, Galton DAG (1987) Clinical and laboratory features of de novo acute myeloid leukemia with trilineage myelodysplasia. Br J Haematol 66: 445–470PubMedCrossRefGoogle Scholar
  44. 44.
    Estey E, Thall P, Beran M, Kantarjan H, Pierce S, Keating M (1996) Effect of diagnosis (refractory anaemia with excess of blasts, refractory anaemia with excess of blasts in transformation, or acute myeloid leukemia [AML]) on outcome of AML-type chemotherapy. Blood 1997: 2969–2977Google Scholar
  45. 45.
    Fenaux P, Preudhomme C, Lai JL, Morel P, Beuscart R, Bauters F (1989) Cytogenetics and their prognostic value in de novo acute myeloid leukaemia: a report on 283 cases. Br J Haematol 73: 61–67PubMedCrossRefGoogle Scholar
  46. 46.
    Rowley JD, Alimena G, Garson OM, Hagemeijer A, Mitelman F, Prigogina AL (1982) A collaborative study on the relationship of the morphologic type of acute nonlymphocytic leukemia with patient age and karyotyp. Blood 59: 1013–1022PubMedGoogle Scholar
  47. 47.
    Schiffer CA, Lee EJ, Takafumi T, Wiernik PH, Testa JR (1989) Prognostic impact of cytogenetic abnormalities in patients with de novo acute nonlymphocytic leukemia. Blood 73: 263–270PubMedGoogle Scholar
  48. 48.
    Swansbury GJ, Lawler SD, Alimena G, Arthur D, Berger R, Berghe H, et al (1994) Long-term survival in acute myeloid leukemia: a second follow-up of the Fouth International Workshop on Chromosomes in Leukaemia. Cancer Genet Cytogenet 73: 127–134CrossRefGoogle Scholar
  49. 49.
    Slovak ML, Kopecky KJ, Cassileth PA, Harrington DH, Theil KS, Mohamed A, et al (2000) Karyotypic analysis predicts outcome of preremission and postremission therapy in adult myeloid leukaemia: a Southwest Oncology Group/Eastern Cooperative Oncology Group study. Blood 96: 4075–4083PubMedGoogle Scholar
  50. 50.
    Willman CL (1997) The prognostic significance of the expression and function of of multidrug resistance transporter proteins in acute myeloid leukemia: Studies of the Southwest Oncology Group leukemia research program. Semin Hematol 4 [Suppl 5]: 25–33Google Scholar
  51. 51.
    Leith CP, Kopecky KJ, Godwin J, McConnell T, Slovak ML, Chen IM, et al (1997) Acute myeloid leukemia in the elderly: assessment of multidrug resistance (MDR1) and cytogenetics distinguishes biologic, subgroups with remarkably distinct responses to standard chemotherapy. A Southwest Oncology Group study. Bood 89: 3323–3329Google Scholar
  52. 52.
    Leith CP, Kopecky KJ, Chen IM, Eijdems L, Slovak ML, McConnell TS, et al (1999) Frequency and clinical significance of the expression of multidrug resistance proteins MDR1/P-glycoprotein, MRP1, and LRP in acute myeloid leukemia. A Southwest Oncology Group study. Blood 94: 1086–1099PubMedGoogle Scholar
  53. 53.
    Michieli M, Damiani D, Ermacora A, Geromin A, Michelutti A, Masolini P, et al (2000) P-glycoprotein (PGP), lung resistance-related protein (LRP) and multidrug resistance-associated protein (MRP) expression in acute promyelocytic leukaemia. Br J Haematol 108: 703–709PubMedCrossRefGoogle Scholar
  54. 54.
    Raspadori T, Lauria F, Ventura MA, Rondelli D, Visani G, de Vivo A, et al (1997) Incidence and prognostic relevance of CD34 expression in acute myeloblastic leukemia: analysis of 141 cases. Leuk Res 21: 603–607PubMedCrossRefGoogle Scholar
  55. 55.
    Venditti A, Del Poeta G, Buccisano F, Tamburini A, Cox-Froncillo MC, Aronica G, et al (1998) Prognostic relevance of the expression of TdT and CD7 in 335 cases of acute myeloid leukemia. Leukemia 12: 1056–1063PubMedCrossRefGoogle Scholar
  56. 56.
    López A, de la Rubia J, Martin G, Martinez J, Cervera J, Jarque I, et al (2001) Recent improvements in outcome for elderly patients with de novo acute myeloblastic leukamia. Leuk Res 25: 685–692PubMedCrossRefGoogle Scholar
  57. 57.
    Zagonel V, Fratino L, Sacco C (1996) Reducing chemotherapy associated toxicity in elderly cancer patients. Cancer Treat Rev 22: 223–244PubMedCrossRefGoogle Scholar
  58. 58.
    Yates J, Glidewell O, Wiernik P, Cooper MR, Steinber D, Dosik H, et al (1982) Cytosine Arabinoside with Daunorubicin or Adriamycin for therapy of acute myelocytic leukamia: a CALGB study. Blood 60: 454–462PubMedGoogle Scholar
  59. 59.
    Liu Yin JA, Johnson PR, Davies JM, Flanagan NG, Gorst DW, Lewis MJ (1991) Mitozantrone and cytosine arabinoside as first-line therapy in elderly patients with acute myeloid leukaemia. Br J Haematol 79: 415–420PubMedCrossRefGoogle Scholar
  60. 60.
    Feldman EJ, Seiter K, Damon L, Linker C, Rugo H, Ries C, et al (1997) A randomized trial of high- vs standard-dose mitoxantrone with cytarabine in elderly patients with acute myeloid leukemia. Leukemia 11: 485–489PubMedCrossRefGoogle Scholar
  61. 61.
    Löwenberg B, Suciu S, Archimbaud E, Ossenkopele G, Verhoef GEG, Vellenga E, et al (1997) Use of recombinant granulocyte-macrophage colony-stimulating factor during and after remission induction chemotherapy in patients aged 61 years and older with acute myeloid leukemia: Final report of AML-11, a phase III randomised study of the Leukemia Cooperative Group of the European Organisation for the Research and Treatment of Cancer (EORTC-LCG) and the Dutch Belgian Hemato-Oncology Cooperative Group (HOVON). Blood 90: 2952–2961PubMedGoogle Scholar
  62. 62.
    Archimbaud E, Jehn U, Thomas X, De Cataldo F, Fillet G, Belhabri A, et al (1999) Multicenter randomized phase II trial of idarubicin vs mitoxantrone, combined with VP-16 and cytarabine for induction/consolidation therapy, followed by a feasibility study of autologous peripheral blood stem cell transplantation in elderly patients with acute myeloid leukemia. Leukemia 13: 843–849PubMedCrossRefGoogle Scholar
  63. 63.
    Stone RM, Berg DT, George SL, Dodge RK, Paciucci PA, Schulman P, et al (1995) Granulocyte-macrophage colony-stimulating factor after initial chemotherapy for elderly patients with primary acute myelogenous leukemia. Cancer and Leukemia Group B. N Engl J Med 332: 1671–1677PubMedCrossRefGoogle Scholar
  64. 64.
    Goldstone AH, Burnett AK, Wheatley K, Smith AG, Hutchinson RM, Clark RE (2001) Attempts to improve treatment outcomes in acute myeloid leukemia (AML) in older patients: the results of the United Kingdom Medical Council AMLI 1 trial. Blood 96: 1302–1311CrossRefGoogle Scholar
  65. 65.
    Rowe JM, Andersen JW, Mazza JJ, Bennett JM, Paietta E, Hayes FA, et al (1995) A randomized placebo-controlled phase III study of granulocyte-macrophage colony-stimulating factor in adult patients (>55 to 70 years of age) with acute myelogenous leukemia: a study of the Eastern Cooperative Oncology Group (E1490). Blood 86: 457–462PubMedGoogle Scholar
  66. 66.
    Baudard M, Beauchamp-Nicoud A, Delmer A, Rio B, Blanc C, Zittoun R, et al (1999) Has the prognosis of adult patients with acute myeloid leukemia improved over years? A single institution experience of 784 consecutive patients over a 16-year period. Leukemia 13: 1481–1490PubMedCrossRefGoogle Scholar
  67. 67.
    Yoshida S, Kuriyama K, Miyazaki Y, Taguchi J, Fukushima T, Honda M, et al (2001) De novo acute myeloid leukaemia in the elderly; a consistent fraction of long-term survivors by standard dose chemotherapy. Leuk Res 25: 33–38PubMedCrossRefGoogle Scholar
  68. 68.
    Wiernik PH, Banks PLC, Case DC, Arlin ZA, Periman PO, Todd MB, et al (1992) Cytarabine plus idarubicin or daunorubicin as induction and consolidation therapy for previously untrated adult patients with acute myeloid leukaemia. Blood 79: 313–319PubMedGoogle Scholar
  69. 69.
    Berman E, Arlin ZA, Gaynar J, Miller W, Gee T, Kempin SJ, et al (1989) Comparative trial of cytarabine and thioguanine in combination with amsacrine or daunorubicin in patients with untreated acute nonlymphocytic leukemia: results of the L-16M protokoll. Leukemia 3: 115–121PubMedGoogle Scholar
  70. 70.
    Arlin Z, Zase DC Jr, Moore J, Wiernik P, Feldman E, Saletan S, et al (1990) Randomized multicenter trial of cytosine arabinoside with mithoxantrone or daunorubicin in previously untreated adult patients with acute nonlymphocytic leukemia (ANLL). Lederle Cooperative Group. Leukemia 4: 177–183PubMedGoogle Scholar
  71. 71.
    Mandelli F, Petti MC, Ardia A, Di Pietro N, Di Raimondo F, Ganzina F, et al (1991) A randomized clinical trial comparing idarubicin and cytarabine to daunorubicin and cytarabine in the treatment of acute non-lymphoid leukemia: a multicentric study from the Italian Co-operative Group GIMEMA. Eur J Cancer 27: 750–755PubMedCrossRefGoogle Scholar
  72. 72.
    AML Collaborative Group (1998) A systematic collaborative overview of randomized trials comparing idarubicin with daunorubicin (or other anthracyclines) as induction for acute myeloid leukemia. Br J Haematol 103: 100–109CrossRefGoogle Scholar
  73. 73.
    Embury SH, Elias L, Heller PH, Hood CE, Greenberg PL, Schrier SL (1977) Remission maintenance therapy in acute myelogenous leukemia. West J Med 126: 267–272PubMedGoogle Scholar
  74. 74.
    Cassileth PA, Harrington DP, Hines JD, Oken MM, Mazza JJ, McGlave P, et al (1988) Maintenance chemotherapy prolongs remission duration in adult acute nonlymphocytic leukemia. J Clin Oncol 6: 583–587PubMedGoogle Scholar
  75. 75.
    Cassileth PA, Lynch E, Hines JD, Oken MM, Mazza JJ, Bennett JM, et al (1992) Varying intensity of postremission therapy in acute myeloid leukemia. Blood 79: 1924–1930PubMedGoogle Scholar
  76. 76.
    Stone RM, Berg DT, George SL, Dodge RK, Paciucci PA, Schulman PP, et al (2001) Postremission therapy in older patients with de novo acute myeloid leukemia: a randomized trial comparing mitoxantrone and intermediate-dose cytarabine with standard-dose cytarabine. Blood 98: 548–553PubMedCrossRefGoogle Scholar
  77. 77.
    Mayer RJ, Davis RB, Schiffer CA, Berg DT, Powell BL, Schulman P, et al (1994) Intensive postremission chemotherapy in adults with acute myeloid leukemia. Cancer and Leukemia Group B. N Engl J Med 331: 896–903PubMedCrossRefGoogle Scholar
  78. 78.
    Sperr WR, Piribauer M, Wimazal F, Fonatsch C, Thalhammer-Scherrer R, Schwarzinger I, et al. A novel effective and safe consolidation regimen for elderly patients with AML: intermediate dose intermittent ARA-C (IDAC) (manuscript submitted)Google Scholar
  79. 79.
    Ruutu T, Almqvist A, Hallman H, Honkanen T, Jarvenpaa E, Jarventie G, et al (1994) Oral induction and consolidation of acute myeloid leukemia with etoposide, 6-thioguanine, and idarubicin (ET1) in elderly patients: a randomized comparison with 5-day TAD. Finnish Leukemia Group. Leukemia 8: 11–15PubMedGoogle Scholar
  80. 80.
    Schiffer CA, Anderson KC, Bennett CL, Bernstein S, Elting LS, Goldsmith M, et al (2001) Platelet Transfusion for Patients With Cancer: Clinical Practice Guidelines of the American Society of Clinical Oncology. J Clin Oncol 15: 1519–1538Google Scholar
  81. 81.
    Gaya H (1988) Ampirical therapy of infections in neutropenic patients. Br J Haematol 101: 5–9Google Scholar
  82. 82.
    Madani TA (2000) Clinical infections and bloodstream isolates associated with fever in patients undergoing chemotherapy for acute myeloid leukemia. Infection 28: 367–373PubMedCrossRefGoogle Scholar
  83. 83.
    Persson L, Vikerfors T, Sjoberg L, Engervall P, Tidefelt U (2000) Increased incidence of bacteraemia due to viridans streptococci in an unselected population of patients with acute myeloid leukaemia. Scand J Infect Dis 32: 615–621PubMedCrossRefGoogle Scholar
  84. 84.
    Kanda Y, Yamamoto R, Chizuka A, Hamaki T, Suguro M, Arai C, et al (2000) Prophylactic action of oral fluconazole against fungal infection in neutropenic patients. A meta-analysis of 16 randomized, controlled trials. Cancer 89: 1611–1625PubMedCrossRefGoogle Scholar
  85. 85.
    Heil G, Hoelzer D, Sanz MA, Lechner K, Liu Yin JA, Papa G, et al (1997) A randomized, double-blind, place-bo-controlled, phase III study of filgrastim in remission induction and consolidation therapy for adults with de novo acute myeloid leukemia. The International Acute Myeloid Leukemia Study Group. Blood 90: 4710–4718PubMedGoogle Scholar
  86. 86.
    Estey EH (2001) Growth factors in acute myeloid leukaemia. Best Pract Res Clin Haematol 14: 175–187PubMedCrossRefGoogle Scholar
  87. 87.
    Ozer H, Armitage JO, Bennett CL, Crawford J, Demetri GD, Pizzo PA, et al (2000) 2000 update of recommendations for the use of hematopoietic colony-stimulating factors: evidence-based, clinical practice guidelines, American Society of Clinical Oncology Growth Factors Expert Panel. J Clin Oncol 18: 3558–3585PubMedGoogle Scholar
  88. 88.
    Sandmaier BM, McSweeney P, Yu C, Storb R (2000) Nonmyeloablative transplants: preclinical and clinical results. Semin Oncol 27 [Suppl]: 78–81PubMedGoogle Scholar
  89. 89.
    Storb RF, Champlin R, Riddell SR, Murata M, Bryant S, Warren EH (2001) Non-myeloablative transplants for malignant disease. Hematology (Am Soc Hematol Educ Program): 375–391Google Scholar
  90. 90.
    Zaucha JA, Yu C, Lothrop CD Jr, Nash RA, Sale G, Georges G, et al (2001) Severe canine hereditary hemolytic anemia treated by nonmyeloablative marrow transplantation. Biol Blood Marrow Transplant 7: 14–24PubMedCrossRefGoogle Scholar
  91. 91.
    Hamann PR, Hinman LM, Hollander I, Beyer CF, Lindh D, Holcomb R, et al (2002) Gemtuzumab ozogamicin, a potent and selective anti-CD33 antibody-calicheamicin conjugate for treatment of acute myeloid leukemia. Bioconjug Chem 13: 47–58PubMedCrossRefGoogle Scholar
  92. 92.
    Sievers EL, Larson RA, Stadtmatter EA, Estey E, Lowenberg B, Dombret H, et al (2001) Efficacy and safety of gemtuzumab ozogamicin in patients with CD 33-positive acute myeloid leukemia in first relapse. J Clin Oncol 19: 3244–3254PubMedGoogle Scholar
  93. 93.
    Larson RA, Boogaerts M, Estey E, Karanes C, Stadimauer EA, Sievers EL, et al (2002) Antibody-targeted chemotherapy of older patients with acute myeloid leukemia in first relapse using Mylotarg (gemtuzumab ozogamicin). Leukemia 16: 1627–1636PubMedCrossRefGoogle Scholar
  94. 94.
    Rozemuller H, Terpstra W, Rombouts EJ, Lawler M, Byrne C, FitzGerald DJ, et al (1998) GM-CSF receptor targeted treatment of primary AML in SCID mice using Diphtheria toxin fused to huGM-CSF. Leukemia 12: 1962–1970PubMedCrossRefGoogle Scholar
  95. 95.
    Feuring-Buske M, Frankel A, Gerhard B, Hogge D (2000) Variable cytotoxicity of diphtheria toxin 388-granulocyte-macrophage colony-stimulating factor fusion protein for acute myelogenous leukemia stem cells. Exp Hematol 28: 1390–1400PubMedCrossRefGoogle Scholar
  96. 96.
    Alexander RL, Ramage J, Kucera GL, Caligiuri MA, Frankel AE (2001) High affinity interleukin-3 receptor expression on blasts from patients with acute myelogenous leukemia correlates with cytotoxicity of a diphtheria toxin/IL-3 fusion protein. Leuk Res 25: 875–881PubMedCrossRefGoogle Scholar
  97. 97.
    Jordan CT, Upchurch D, Szilvassy SJ, Guzman ML, Howard DS, Pettigrew AL, et al (2000) The interleukin-3 receptor alpha chain is a unique marker for human acute myelogenous leukemia stem cells. Leukemia 14: 1777–1784PubMedCrossRefGoogle Scholar
  98. 98.
    Feuring-Buske M, Frankel AE, Alexander RL, Gerhard B, Hogge DE (2002) A diphtheria toxin-interleukin 3 fusion protein is cytotoxic to primitive acute myeloid leukemia progenitors but spares normal progenitors. Cancer Res 62: 1730–1736PubMedGoogle Scholar
  99. 99.
    Elad G, Paz A, Haklai R, Marciano D, Cox A, Kloog Y (1999) Targeting of K-Ras 4B by S-trans, trans-farnesyl thiosalicylic acid. Biochem Biophys Acta 1452: 228–242PubMedCrossRefGoogle Scholar
  100. 100.
    Karp JE, Lancet JE, Kaufmann SH, End DW, Wright JJ, Bol K, et al (2001) Clinical and biologic activity of the farnesyltransferase inhibitor R115777 in adults with refractory and relapsed acute leukemias: a phase 1 clinical-laboratory correlative trial. Blood 97: 3361–3369PubMedCrossRefGoogle Scholar
  101. 101.
    Talpaz M, Silver RT, Druker BJ, Goldman JM, Gambacorti-Passerini C, Guilhot F, et al (2002) Imatinib induces durable hematologic and cytogenetic responses in patients with accelerated phase chronic myeloid leukemia: results of a phase 2 study. Blood 99: 1928–1937PubMedCrossRefGoogle Scholar
  102. 102.
    Apperley JF, Gardembas M, Melo JV, Russell-Jones R, Bain BJ, Baxter EJ, et al (2002) Response to imatinib mesylate in patients with chronic myeloproliferative diseases with rearrangements of the platelet-derived growth factor receptor beta. N Engl J Med 347: 481–487PubMedCrossRefGoogle Scholar
  103. 103.
    Spiekermann K, Faber F, Voswinckel R, Hiddemann W (2002) The protein tyrosine kinase inhibitor SU5614 inhibits VEGF-induced endothelial cell sprouting and induces growth arrest and apoptosis by inhibition of c-kit in AML cells. Exp Hematol 30: 767–773PubMedCrossRefGoogle Scholar
  104. 104.
    Mesters RM, Padro T, Bieker R, Steins M, Kreuter M, Goner MR, et al (2001) Stable remission after administration of the receptor tyrosine kinase inhibitor SU5416 in a patient with refractory acute myeloid leukemia. Blood 98: 241–243PubMedCrossRefGoogle Scholar
  105. 105.
    Smolich BD, Yuen HA, West KA, Giles FJ, Albitar M, Cherrington JM (2001) The antiangiogenic protein kinase inhibitors SU5416 and SU6668 inhibit the SCF receptor (c-kit) in a human myeloid leukemia cell line and in acute myeloid leukemia blasts. Blood 97: 1413–1421PubMedCrossRefGoogle Scholar
  106. 106.
    Schwartsmann G, Fernandes MS, Schaan MD, Moschen M, Gerhardt LM, Di Leone L, et al (1997) Decitabine (5-Aza-2-deoxycytidine; DAC) plus daunorubicin as a first line treatment in patients with acute myeloid leukemia: preliminary observations. Leukemia 11 [Suppl 1]: S28-S31PubMedGoogle Scholar
  107. 107.
    Milella M, Kornblau SM, Estrov Z, Carter BZ, Lapillonne H, Harris D, et al (2001) Therapeutic targeting of the MEK/MAPK signal transduction module in acute myeloid leukemia. J Clin Invest 108: 851–859PubMedGoogle Scholar
  108. 108.
    Gilliland DG, Griffin JD (2002) Role of FLT3 in leukemia. Curr Opin Hematol 9: 274–281PubMedCrossRefGoogle Scholar
  109. 109.
    Weisberg E, Boulton C, Kelly LM, Manley P, Fabbro D, Meyer T, et al (2002) Inhibition of mutant FLT3 receptors in leukemia cells by the small molecule tyrosine kinase inhibitor PKC412. Cancer Cell 1: 433–443PubMedCrossRefGoogle Scholar
  110. 110.
    Teller S, Kramer D, Bonmer SA, Tse KF, Small D, Mahboobi S, et al (2002) Bis(IH-2-indolyl)-1-methanones as inhibitors of the hematopoietic tyrosine kinase Flt3. Leukemia 16: 1528–1534PubMedCrossRefGoogle Scholar
  111. 111.
    Birkenkamp KU, Esselink MT, Kruijer W, Vellenga E (2000) An inhibitor of PI3-K differentially affects proliferation and IL-6 protein secretion in normal and leukemic myeloid cells depending on the stage of differentiation. Exp Hematol 28: 1239–1249PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2003

Authors and Affiliations

  • Wolfgang R. Sperr
    • 1
  • Alexander W. Hauswirth
    • 1
  • Friedrich Wimazal
    • 1
  • Paul Knöbl
    • 1
  • Klaus Geissler
    • 2
  • Peter Valent
    • 1
  1. 1.Department of Internal Medicine I, Division of Hematology and HemostaseologyUniversity of ViennaViennaAustria
  2. 2.Fifth Medical Department OncologyHospital LainzViennaAustria

Personalised recommendations