Wiener Klinische Wochenschrift

, Volume 115, Issue 13–14, pp 485–504 | Cite as

Chronic myeloid leukemia: Pathophysiology, diagnostic parameters, and current treatment concepts

  • Christian Sillaber
  • Matthias Mayerhofer
  • Hermine Agis
  • Verena Sagaster
  • Christine Mannhalter
  • Wolfgang R. Sperr
  • Klaus Geissler
  • Peter Valent
Review Article


Chronic myeloid leukemia (CML) is a stem cell disease characterized by excessive accumulation of clonal myeloid (precursor) cells in hematopoietic tissues. CML cells display the translocation t(9; 22) that creates thebcr/abl oncogene. The respective oncoprotein (=BCR/ABL) exhibits constitutive tyrosine kinase activity and promotes growth and survival in CML cells. Clinically, CML can be divided into three phases: the chronic phase (CP), the accelerated phase (AP), and the blast phase (BP) that resembles acute leukemia. Progression to AP and BP is associated with occurrence of additional genetic defects that cooperate withbcr/abl in leukemogenesis and lead to resistance against antileukemic drugs. The prognosis in CML is variable depending on the phase of disease, age, and response to therapy. The only curative approach available to date is stem cell transplantation. For those who cannot be transplanted, the BCR/ABL tyrosine kinase inhibitor STI571 (Glivec, Imatinib), interferon-alpha (with or without ARAC), or other cytoreductive drugs are prescribed. Currently available data show that STI571 is a superior compound compared to other drugs in producing complete cytogenetic and molecular responses. However, despite superior initial data and high expectations for an effect on survival, long term results are not available so far, and resistance against STI571 has been reported. Forthcoming strategies are therefore attempting to prevent or counteract STI571 resistance by co-administration of other antileukemic drugs. Whether these strategies will lead to curative drug therapy in CML in the future remains at present unknown.

Key words

CML BCR/ABL targeted therapy STI571 Glivec Imatinib 

Chronische myeloische Leukämie: Pathophysiologie, Diagnostik und aktuelle Therapiekonzepte


Die chronisch myeloische Leukämie (CML) ist eine Stammzellerkrankung, die durch eine exzessive Akkumulation myeloischer Zellen gekennzeichnet ist. In den CML Zellen findet sich die spezifische Translokation t(9;22), welche dasbcr/abl Onkogen generiert. Das entsprechende Onkoprotein (=BCR/ABL) weist eine konstitutive Tyrosinkinaseaktivität auf und fördert Wachstum und Überleben der CML Zellen. Aus klinischer Sicht unterscheidet man drei Krankheitsphasen: die chronische Phase (CP), die akzelerierte Phase (AP) und die Blastenphase (BP), welche einer akuten Leukämie entspricht. Die Progression zur AP und BP ist durch das Auftreten zusätzlicher genetischer Defekte gekennzeichnet, welche mitbcr/abl kooperieren und zur Therapieresistenz führen. Die Prognose der CML ist variabel und hängt von der Krankheitsphase, dem Alter und dem Therapieresponse ab. Die einzige derzeit verfügbare kurative Therapie ist die Stammzelltransplantation. Für Patienten, welche nicht transplantiert werden können, stehen potente anti-leukämische Substanzen, wie der BCR/ABL Tyrosinkinase-Inhibitor STI571 (Glivec, Imatinib), Interferon alpha (mit und ohne ARA-C) oder andere zytoreduktive Medikamente zur Verfügung. Dabei übertrifft STI571 offensichtlich alle anderen Medikamente in Bezug auf den zytogenetischen und molekularen Response. Langzeitergebnisse mit STI571 liegen derzeit allerdings noch nicht vor, und vor kurzem wurde auch über STI571 Resistenzen berichtet. Zukünftige Strategien werden daher das Ziel verfolgen, diesen Resistenzen durch Applikation von zusätzlichen antileukämischen Substanzen entgegenzuwirken. Ob diese Strategien zu einer kurativen medikamentösen Therapie der CML führen werden, bleibt abzuwarten.


CML BCR/ABL Targeted Therapy STI571 Glivec Imatinib 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nowell PC, Hungerford DA (1960) A minute chromosome in human granulocytic leukemia. Science 132: 1497Google Scholar
  2. 2.
    Rowley JD (1973) A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 243: 290–293PubMedGoogle Scholar
  3. 3.
    Groffen J, Stephenson JR, Heisterkamp N, de Klein A, Bartram CR, Grosveld G (1984) Philadelphia chromosomal break points are clustered within a limited region, ber, on chromosome 22. Cell 36: 93–99PubMedGoogle Scholar
  4. 4.
    de Klein A, van Kessel AG, Grosveld G, Bartram CR, Hagemeijer A, Bootsma D, Spurr NK, Heisterkamp N, Groffen J, Stephenson JR (1982) A cellular oncogene is translocated to the Philadelphia chromosome in chronic myelocytic leukaemia. Nature 300: 765–767PubMedGoogle Scholar
  5. 5.
    Konopka JB, Watanabe SM, Witte ON (1984) An alteration of the human c-abl protein in K562 leukemia cells unmasks associated tyrosine kinase activity. Cell 37: 1035–1042PubMedGoogle Scholar
  6. 6.
    Deininger MW, Goldman JM, Melo JV (2000) The molecular biology of chronic myeloid leukemia. Blood 96: 3343–3356PubMedGoogle Scholar
  7. 7.
    Fialkow PJ, Jacobson RJ, Papayannopoulou T (1977) Chronic myelocytic leukemia: clonal origin in a stem cell common to the granulocyte, erythrocyte, platelet and monocyte/macrophage. Am J Med 63: 125–130PubMedGoogle Scholar
  8. 8.
    Sadamura S, Umemura T, Takahira H, Hirata J, Nishimura J, Nawata H (1992) Analysis of clonality at the level of progenitors in chronic myelogenous leukaemia using the polymerase chain reaction. Leuk Res 16: 371–377PubMedGoogle Scholar
  9. 9.
    Bartram CR, Raghavachar A, Anger B, Stain C, Bettelheim P (1987) T lymphocytes lack rearrangement of the ber gene in Philadelphia chromosome-positive chronic myelocytic leukemia. Blood 69: 1682–1685PubMedGoogle Scholar
  10. 10.
    Vardiman JW, Pierre R, Thiele J, Imbert M, Brunning RD, Flandrin G (2001) Chronic myelogenous leukaemia. In: Jaffe ES, Harris NL, Stein H, Vardiman JW (eds) Tumours of haematopoietic and lymphoid tissues. IARC Press, Lyon, pp 20–26Google Scholar
  11. 11.
    Faderl S, Kantarjian HM, Talpaz M (1999) Chronic myelogenous leukemia: update on biology and treatment. Oncology (Huntingt) 13: 169–180Google Scholar
  12. 12.
    Sawyers CL (1999) Chronic myeloid leukemia. N Engl J Med 340: 1330–1340PubMedGoogle Scholar
  13. 13.
    Krulik M, Smadja N, de Gramont A, Gonzalez-Canali G, Audebert AA, Dray C, Brissaud P, Debray J (1987) Sequential karyotype study on Ph-positive chronic myelocytic leukemia. Significance of additional chromosomal abnormalities during disease evolution. Cancer 60: 974–979PubMedGoogle Scholar
  14. 14.
    Mitelman F (1993) The cytogenetic scenario of chronic myeloid leukemia. Leuk Lymphoma 11 [Suppl]: 11–15PubMedGoogle Scholar
  15. 15.
    Klucher KM, Lopez DV, Daley GQ (1998) Secondary mutation maintains the transformed state in BaF3 cells with inducible BCR/ABL expression. Blood 91: 3927–3934PubMedGoogle Scholar
  16. 16.
    Bettelheim P, Lutz D, Majdic O, Paietta E, Haas O, Linkesch W, Neumann E, Lechner K, Knapp W (1985) Cell lineage heterogeneity in blast crisis of chronic myeloid leukaemia. Br J Haematol 59: 395–409PubMedGoogle Scholar
  17. 17.
    Griffin JD, Todd RF, Ritz J, Nadler LM, Canellos GP, Rosenthal D, Gallivan M, Beveridge RP, Weinstein H, Karp D, Schlossman SF (1983) Differentiation patterns in the blastic phase of chronic myeloid leukemia. Blood 61: 85–91PubMedGoogle Scholar
  18. 18.
    Derderian PM, Kantarjian HM, Talpaz M, O’Brien S, Cork A, Estey E, Pierce S, Keating M (1993) Chronic myelogenous leukemia in the lymphoid blastic phase: characteristics, treatment response, and prognosis. Am J Med 94: 69–74PubMedGoogle Scholar
  19. 19.
    Nair C, Chopra H, Shinde S, Barbhaya S, Kumar A, Dhond S, Yejamanam B, Sapre R, Chougule A, Advani S (1995) Immunophenotype and ultrastructural studies in blast crisis of chronic myeloid leukemia. Leuk Lymphoma 19: 309–313PubMedGoogle Scholar
  20. 20.
    Kantarjian HM, Deisseroth A, Kurzrock R, Estrov Z, Talpaz M (1993) Chronic myelogenous leukemia: a concise update. Blood 82: 691–703PubMedGoogle Scholar
  21. 21.
    Kantarjian HM, O’Brien S, Anderlini P, Talpaz M (1996) Treatment of myelogenous leukemia: current status and investigational options. Blood 87: 3069–3081PubMedGoogle Scholar
  22. 22.
    Warmuth M, Danhauser-Riedl S, Hallek M (1999) Molecular pathogenesis of chronic myeloid leukemia: implications for new therapeutic strategies. Ann Hematol 78: 49–64PubMedGoogle Scholar
  23. 23.
    Faderl S, Talpaz M, Estrov Z, Kantarjian HM (1999) Chronic myelogenous leukemia: biology and therapy. Ann Intern Med 131: 207–219PubMedGoogle Scholar
  24. 24.
    Hehlmann R, Hochhaus A, Berger U, Reiter A (2000) Current trends in the management of chronic myelogenous leukemia. Ann Hematol 79: 345–354PubMedGoogle Scholar
  25. 25.
    Gale RP, Hehlmann R, Zhang MJ, Hasford J, Goldman JM, Heimpel H, Hochhaus A, Klein JP, Kolb HJ, McGlave PB, Passweg JR, Rowlings PA, Sobocinski KA, Horowitz MM (1998) Survival with bone marrow transplantation versus hydroxyurea or interferon for chronic myelogenous leukemia. The German CML Study Group. Blood 91: 1810–1819PubMedGoogle Scholar
  26. 26.
    Appelbaum FR, Clift R, Radich J, Anasetti C, Buckner CD (1995) Bone marrow transplantation for chronic myelogenous leukemia. Semin Oncol 22: 405–411PubMedGoogle Scholar
  27. 27.
    Cortes JE, Talpaz M, Kantarjian H (1996) Chronic myelogenous leukemia: a review. Am J Med 100: 555–570PubMedGoogle Scholar
  28. 28.
    Kolb HJ (1998) Donor leukocyte transfusions for treatment of leukemic relapse after bone marrow transplantation. EBMT Immunology and Chronic Leukemia Working Parties. Vox Sang 74 [Suppl]: 321–329PubMedGoogle Scholar
  29. 29.
    Apperley JF (1998) Hematopoietic stem cell transplantation in chronic myeloid leukemia. Curr Opin Hematol 5: 445–453PubMedGoogle Scholar
  30. 30.
    Silver RT, Woolf SH, Hehlmann R, Appelbaum FR, Anderson J, Bennett C, Goldman JM, Guilhot F, Kantarjian HM, Lichtin AE, Talpaz M, Tura S (1999) An evidence-based analysis of the effect of busulfan, hydroxyurea, interferon, and allogeneic bone marrow transplantation in treating the chronic phase of chronic myeloid leukemia: developed for the American Society of Hematology. Blood 94: 1517–1536PubMedGoogle Scholar
  31. 31.
    Guilhot F, Chastang C, Michallet M, Guerci A, Harousseau JL, Maloisel F, Bouabdallah R, Guyotat D, Cheron N, Nicolini F, Abgrall JF, Tanzer J (1997) Interferon alfa-2b combined with cytarabine versus interferon alone in chronic myelogenous leukemia. French Chronic Myeloid Leukemia Study Group. N Engl J Med 337: 223–229PubMedGoogle Scholar
  32. 32.
    Druker BJ (2003) Imatinib alone and in combination for chronic myeloid leukemia. Semin Hematol 40: 50–58PubMedGoogle Scholar
  33. 33.
    Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick H, Sultan C, Cox C (1994) The chronic myeloid leukaemias: guidelines for distinguishing chronic granulocytic, atypical chronic myeloid, and chronic myelomonocytic leukaemia. Proposals by the French-American-British Cooperative Leukaemia Group. Br J Haematol 87: 746–754PubMedGoogle Scholar
  34. 34.
    Finch SC, Linet MS (1992) Chronic leukaemias. Baillieres Clin Haematol 5: 27–56PubMedGoogle Scholar
  35. 35.
    Kantarjian HM, Kurzrock R, Talpaz M (1990) Philadelphia chromosome-negative chronic myelogenous leukemia and chronic myelomonocytic leukemia. Hematol Oncol Clin North Am 4: 389–404PubMedGoogle Scholar
  36. 36.
    Reddy KS, Grove B (1998) A Philadelphia-negative chronic myeloid leukemia with a BCR/ABL fusion gene on chromosome 9. Cancer Genet Cytogenet 107: 48–50PubMedGoogle Scholar
  37. 37.
    Miller BA, Gloeckler-Reiss LA, Hankey BF, et al (1993) SEER Cancer Statistics Review 1973–1990. National Cancer Institute. Bethesda, MD. NIH Publications No 93-2789Google Scholar
  38. 38.
    Boice JD Jr, Day NE, Andersen A, Brinton LA, Brown R, Choi NW, Clarke EA, Coleman MP, Curtis RE, Flannery JT (1985) Second cancers following radiation treatment for cervical cancer. An international collaboration among cancer registries. J Natl Cancer Inst 74: 955–975PubMedGoogle Scholar
  39. 39.
    Ichimaru M, Ishimaru T, Belsky JL (1978) Incidence of leukemia in atonic bomb survivors belonging to a fixed cohort in Hiroshima and Nagasaki, 1950–71. Radiation dose, years after exposure, age at exposure, and type of leukemia. J Radiat Res (Tokyo) 19: 262–282Google Scholar
  40. 40.
    Inskip PD, Monson RR, Wagoner JK, Stovall M, Davis FG, Kleinerman RA, Boice JD Jr (1990) Leukemia following radiotherapy for uterine bleeding. Radiat Res 122: 107–119PubMedGoogle Scholar
  41. 41.
    Ichimaru M, Tomonaga M, Amenomori T, Matsuo T (1991) Atomic bomb and leukemia. J Radiat Res (Tokyo) 32 [Suppl]: 162–167Google Scholar
  42. 42.
    Bortin MM, D’Amaro J, Bach FH, Rimm AA, van Rood JJ (1987) HLA associations with leukemia. Blood 70: 227–232PubMedGoogle Scholar
  43. 43.
    Posthuma EF, Falkenburg JH, Apperley JF, Gratwohl A, Roosnek E, Hertenstein B, Schipper RF, Schreuder GM, D’Amaro J, Oudshoorn M, van Biezen JH, Hermans J, Willemze R, Niederwieser D (1999) HLA-B8 and HLA-A3 coexpressed with HLA-B8 are associated with a reduced risk of the development of chronic myeloid leukemia. The Chronic Leukemia Working Party of the EBMT. Blood 93: 3863–3865PubMedGoogle Scholar
  44. 44.
    Clark SS, McLaughlin J, Crist WM, Champlin R, Witte ON (1987) Unique forms of the abl tyrosine kinase distinguish Phl-positive CML from Phl-positive ALL. Science 235: 85–88PubMedGoogle Scholar
  45. 45.
    Papadopoulos PC, Greenstein AM, Gaffney RA, Westbrook CA, Wiedemann LM (1990) Characterization of the translocation breakpoint sequences in Philadelphia-positive acute lymphoblastic leukemia. Genes Chromosomes Cancer 1: 233–239PubMedGoogle Scholar
  46. 46.
    Denny CT, Shah NP, Ogden S, Willman C, McConnell T, Crist W, Carroll A, Witte ON (1989) Localization of preferential sites of rearrangement within the BCR gene in Philadelphia chromosome-positive acute lymphoblastic leukemia. Proc Natl Acad Sci USA 86: 4254–4258PubMedGoogle Scholar
  47. 47.
    Maurer J, Janssen JW, Thiel E, van Denderen J, Ludwig WD, Aydemir U, Heinze B, Fonatsch C, Harbott J, Reiter A (1991) Detection of chimeric BCR-ABL genes in acute lymphoblastic leukaemia by the polymerase chain reaction. Lancet 337: 1055–1058PubMedGoogle Scholar
  48. 48.
    Saglio G, Guerrasio A, Rosso C, Zaccaria A, Tassinari A, Serra A, Rege-Cambrin G, Mazza U, Gavosto F (1990) New type of Bcr/Abl junction in Philadelphia chromosome-positive chronic myelogenous leukemia. Blood 76: 1819–1824PubMedGoogle Scholar
  49. 49.
    Quackenbush RC, Reuther GW, Miller JP, Courtney KD, Pear WS, Pendergast AM (2000) Analysis of the biologic properties of p230 Bcr-Abl reveals unique and overlapping properties with the oncogenic p185 and p210 Bcr-Abl tyrosine kinases. Blood 95: 2913–2921PubMedGoogle Scholar
  50. 50.
    Advani AS, Pendergast AM (2002) Bcr-Abl variants: biological and clinical aspects. Leuk Res 26: 713–720PubMedGoogle Scholar
  51. 51.
    Pane F, Frigeri F, Sindona M, Luciano L, Ferrara F, Cimino R, Meloni G, Saglio G, Salvatore F, Rotoli B (1996) Neutrophilic-chronic myeloid leukemia: a distinct disease with a specific molecular marker (BCR/ABL with C3/A2 junction). Blood 88: 2410–2414PubMedGoogle Scholar
  52. 52.
    Melo JV, Myint H, Galton DA, Goldman JM (1994) P190BCR-ABL chronic myeloid leukaemia: the missing link with chronic myelomonocytic leukaemia? Leukemia 8: 208–211PubMedGoogle Scholar
  53. 53.
    Verstovsek S, Lin H, Kantarjian H, Saglio G, De Micheli D, Pane F, Garcia-Manero G, Intrieri M, Rotoli B, Salvatore F, Guo JQ, Talpaz M, Specchia G, Pizzolo G, Liberati AM, Cortes J, Quackenbush RC, Arlinghaus RB (2002) Neutrophilic-chronic myeloid leukemia: low levels of p230 BCR/ABL mRNA and undetectable BCR/ABL protein may predict an indolent course. Cancer 94: 2416–2425PubMedGoogle Scholar
  54. 54.
    Daley GQ, Van Etten RA, Baltimore D (1990) Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science 247: 824–830PubMedGoogle Scholar
  55. 55.
    Million RP, Van Etten RA (2000) The Grb2 binding site is required for the induction of chronic myeloid leukemia-like disease in mice by the Bcr/Abl tyrosine kinase. Blood 96: 664–670PubMedGoogle Scholar
  56. 56.
    Daley GQ, Baltimore D (1988) Transformation of an interleukin 3-dependent hematopoietic cell line by the chronic myelogenous leukemia-specific P210bcr/abl protein. Proc Natl Acad Sci USA 85: 9312–9316PubMedGoogle Scholar
  57. 57.
    Konopka JB, Witte ON (1985) Detection of c-abl tyrosine kinase activity in vitro permits direct comparison of normal and altered abl gene products. Mol Cell Biol 5: 3116–3123PubMedGoogle Scholar
  58. 58.
    Huettner CS, Zhang P, Van ER, Tenen DG (2000) Reversibility of acute B-cell leukaemia induced by BCR-ABLI. Nat Genet 24: 57–60PubMedGoogle Scholar
  59. 59.
    Gordon MY, Dowding CR, Riley GP, Goldman JM, Greaves MF (1987) Altered adhesive interactions with marrow stroma of haematopoietic progenitor cells in chronic myeloid leukaemia. Nature 328: 342–344PubMedGoogle Scholar
  60. 60.
    Verfaillie CM, Hurley R, Lundell BI, Zhao C, Bhatia R (1997) Integrin-mediated regulation of hematopoiesis: do BCR/ABL-induced defects in integrin function underlie the abnormal circulation and proliferation of CML progenitors? Acta Haematol 97: 40–52PubMedGoogle Scholar
  61. 61.
    Jiang Y, Zhao RC, Verfaillie CM (2000) Abnormal integrin-mediated regulation of chronic myelogenous leukemia CD34+ cell proliferation: BCR/ABL up-regulates the cyclin-dependent kinase inhibitor, p27Kip, which is relocated to the cell cytoplasm and incapable of regulating cdk2 activity. Proc Natl Acad Sci USA 97: 10538–10543PubMedGoogle Scholar
  62. 62.
    Pendergast AM, Quilliam LA, Cripe LD, Bassing CH, Dai Z, Li N, Batzer A, Rabun KM, Der CJ, Schlessinger J (1993) BCR-ABL-induced oncogenesis is mediated by direct interaction with the SH2 domain of the GRB-2 adaptor protein. Cell 75: 175–185PubMedGoogle Scholar
  63. 63.
    Skorski T, Bellacosa A, Nieborowska-Skorska M, Majewski M, Martinez R, Choi JK, Trotta R, Wlodarski P, Perrotti D, Chan TO, Wasik MA, Tsichlis PN, Calabretta B (1997) Transformation of hematopoietic cells by BCR/ ABL requires activation of a PI-3k/Akt-dependent pathway. EMBO J 16: 6151–6161PubMedGoogle Scholar
  64. 64.
    Cortez D, Kadlec L, Pendergast AM (1995) Structural and signaling requirements for BCR-ABL-mediated transformation and inhibition of apoptosis. Mol Cell Biol 15: 5531–5541PubMedGoogle Scholar
  65. 65.
    Amarante-Mendes GP, McGahon AJ, Nishioka WK, Afar DE, Witte ON, Green DR (1998) Bcl-2-independent Bcr-Abl-mediated resistance to apoptosis: protection is correlated with up regulation of Bcl-xL. Oncogene 16: 1383–1390PubMedGoogle Scholar
  66. 66.
    Cirinna M, Trotta R, Salomoni P, Kossev P, Wasik M, Perrotti D, Calabretta B (2000) Bcl-2 expression restores the leukemogenic potential of a BCR/ABL mutant defective in transformation. Blood 96: 3915–3921PubMedGoogle Scholar
  67. 67.
    Sillaber C, Gesbert F, Frank DA, Sattler M, Griffin JD (2000) STAT5 activation contributes to growth and viability in Bcr/Abl-transformed cells. Blood 95: 2118–2125PubMedGoogle Scholar
  68. 68.
    Gesbert F, Griffin JD (2000) Bcr/Abl activates transcription of the Bcl-X gene through STAT5. Blood 96: 2269–2276, 2269–2276PubMedGoogle Scholar
  69. 69.
    Nieborowska-Skorska M, Wasik MA, Slupianek A, Salomoni P, Kitamura T, Calabretta B, Skorski T (1999) Signal transducer and activator of transcription (STAT)5 activation by BCR/ABL is dependent on intact Src homology (SH)3 and SH2 domains of BCR/ABL and is required for leukemogenesis. J Exp Med 189: 1229–1242PubMedGoogle Scholar
  70. 70.
    Skorski T (2002) BCR/ABL regulates response to DNA damage: the role in resistance to genotoxic treatment and in genomic instability. Oncogene 21: 8591–8604PubMedGoogle Scholar
  71. 71.
    Janowska-Wieczorek A, Majka M, Marquez-Curtis L, Wertheim JA, Turner AR, Ratajczak MZ (2002) Bcr-abl-positive cells secrete angiogenic factors including matrix metalloproteinases and stimulate angiogenesis in vivo in Matrigel implants. Leukemia 16: 1160–1166PubMedGoogle Scholar
  72. 72.
    Mayerhofer M, Valent P, Sperr WR, Griffin JD, Sillaber C (2002) BCR/ABL induces expression of vascular endothelial growth factor and its transcriptional activator, hypoxia inducible factor-1alpha, through a pathway involving phosphoinositide 3-kinase and the mammalian target of rapamycin. Blood 100: 3767–3775PubMedGoogle Scholar
  73. 73.
    Ebos JM, Tran J, Master Z, Dumont D, Melo JV, Buchdunger E, Kerbel RS (2002) Imatinib mesylate (STI-571) reduces Bcr-Abl-mediated vascular endothelial growth factor secretion in chronic myelogenous leukemia. Mol Cancer Res 1: 89–95PubMedGoogle Scholar
  74. 74.
    Carlesso N, Frank DA, Griffin JD (1996) Tyrosyl phosphorylation and DNA binding activity of signal transducers and activators of transcription (STAT) proteins in hematopoietic cell lines transformed by Bcr/Abl. J Exp Med 183: 811–820PubMedGoogle Scholar
  75. 75.
    Ilaria RL Jr, Van Etten RA (1996) P210 and P190(BCR/ABL) induce the tyrosine phosphorylation and DNA binding activity of multiple specific STAT family members. J Biol Chem 271: 31704–31710PubMedGoogle Scholar
  76. 76.
    Cortez D, Reuther G, Pendergast AM (1997) The Bcr-Abl tyrosine kinase activates mitogenic signaling pathways and stimulates G1-to-S phase transition in hematopoietic cells. Oncogene 15: 2333–2342PubMedGoogle Scholar
  77. 77.
    Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, Greenberg ME (1997) Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91: 231–241PubMedGoogle Scholar
  78. 78.
    del Peso L, Gonzalez-Garcia M, Page C, Herrera R, Nunez G (1997) Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science 278: 687–689PubMedGoogle Scholar
  79. 79.
    Kunz J, Henriquez R, Schneider U, Deuter-Reinhard M, Movva NR, Hall MN (1993) Target of rapamycin in yeast, TOR2, is an essential phosphatidylinositol kinase homolog required for G1 progression. Cell 73: 585–596PubMedGoogle Scholar
  80. 80.
    Klejman A, Schreiner SJ, Nieborowska-Skorska M, Slupianek A, Wilson M, Smithgall TE, Skorski T (2002) The Src family kinase Hck couples BCR/ABL to STAT5 activation in myeloid leukemia cells. EMBO J 21: 5766–5774PubMedGoogle Scholar
  81. 81.
    Nelson KL, Rogers JA, Bowman TL, Jove R, Smithgall TE (1998) Activation of STAT3 by the c-Fes protein-tyrosine kinase. J Biol Chem 273: 7072–7077PubMedGoogle Scholar
  82. 82.
    Horita M, Andreu EJ, Benito A, Arbona C, Sanz C, Benet I, Prosper F, Fernandez-Luna JL (2000) Blockade of the Bcr-Abl kinase activity induces apoptosis of chronic myelogenous leukemia cells by suppressing signal transducer and activator of transcription 5-dependent expression of Bcl-xL. J Exp Med 191: 977–984PubMedGoogle Scholar
  83. 83.
    Carroll M, Ohno-Jones S, Tamura S, Buchdunger E, Zimmermann J, Lydon NB, Gilliland DG, Druker BJ (1997) CGP 57148, a tyrosine kinase inhibitor, inhibits the growth of cells expressing BCR-ABL, TEL-ABL, and TEL-PDGFR fusion proteins. Blood 90: 4947–4952PubMedGoogle Scholar
  84. 84.
    Druker B (2001) Signal transduction inhibition: results from phase I clinical trials in chronic myeloid leukemia. Semin Hematol 38: 9–14PubMedGoogle Scholar
  85. 85.
    Druker BJ (2002) STI571 (Gleevec) as a paradigm for cancer therapy. Trends Mol Med 8: S14-S18PubMedGoogle Scholar
  86. 86.
    Ishikura H, Yufu Y, Yamashita S, Abe Y, Okamura T, Motomura S, Nishimura J, Nawata H (1997) Biphenotypic blast crisis of chronic myelogenous leukemia: abnormalities of p53 and retinoblastoma genes. Leuk Lymphoma 25: 573–578PubMedGoogle Scholar
  87. 87.
    Marasca R, Luppi M, Barozzi P, Ferrari MG, Morselli M, Torelli G (1996) P53 gene mutations in chronic myelogenous leukemia medullary and extramedullary blast crisis. Leuk Lymphoma 24: 175–182PubMedGoogle Scholar
  88. 88.
    Ahuja H, Bar-Eli M, Advani SH, Benchimol S, Cline MJ (1989) Alterations in the p53 gene and the clonal evolution of the blast crisis of chronic myelocytic leukemia. Proc Natl Acad Sci USA 86: 6783–6787PubMedGoogle Scholar
  89. 89.
    Stuppia L, Calabrese G, Peila R, Guanciali-Franchi P, Morizio E, Spadano A, Palka G (1997) p53 loss and point mutations are associated with suppression of apoptosis and progression of CML into myeloid blastic crisis. Cancer Genet Cytogenet 98: 28–35PubMedGoogle Scholar
  90. 90.
    Serra A, Guerrasio A, Gaidano G, Rosso C, Rege-Cambrin G, Petroni D, Mazza U, Saglio G (1993) Molecular defects associated with the acute phase CML. Leuk Lymphoma 11 [Suppl 1]: 25–28PubMedGoogle Scholar
  91. 91.
    Sawyers CL, Callahan W, Witte ON (1992) Dominant negative MYC blocks transformation by ABL oncogenes. Cell 70: 901–910PubMedGoogle Scholar
  92. 92.
    Sanchez-Garcia I, Martin-Zanca D (1997) Regulation of Bcl-2 gene expression by BCR-ABL is mediated by Ras. J Mol Biol 267: 225–228PubMedGoogle Scholar
  93. 93.
    Cortez D, Stoica G, Pierce JH, Pendergast AM (1996) The BCR-ABL tyrosine kinase inhibits apoptosis by activating a Ras-dependent signaling pathway. Oncogene 13: 2589–2594PubMedGoogle Scholar
  94. 94.
    Cuenco GM, Ren R (2001) Cooperation of BCR-ABL and AMLI/MDSI/EVII in blocking myeloid differentiation and rapid induction of an acute myelogenous leukemia. Oncogene 20: 8236–8248PubMedGoogle Scholar
  95. 95.
    Hirose Y, Masaki Y, Kawabata H, Ogawa N, Wano Y, Sugai S (2002) Double Ph-positive megakaryoblastic transformation of chronic myeloid leukemia. Eur J Haematol 69: 122–125PubMedGoogle Scholar
  96. 96.
    Asimakopoulos FA, Shteper PJ, Krichevsky S, Fibach E, Polliack A, Rachmilewitz E, Ben Neriah Y, Ben Yehuda D (1999) ABL1 methylation is a distinct molecular event associated with clonal evolution of chronic myeloid leukemia. Blood 94: 2452–2460PubMedGoogle Scholar
  97. 97.
    Nguyen TT, Mohrbacher AF, Tsai YC, Groffen J, Heisterkamp N, Nichols PW, Yu MC, Lubbert M, Jones PA (2000) Quantitative measure of c-abl and p15 methylation in chronic myelogenous leukemia: biological implications. Blood 95: 2990–2992PubMedGoogle Scholar
  98. 98.
    Sun B, Jiang G, Zaydan MA, La Russa VF, Safah H, Ehrlich M (2001) ABL1 promoter methylation can exist independently of BCR-ABL transcription in chronic myeloid leukemia hematopoietic progenitors. Cancer Res 61: 6931–6937PubMedGoogle Scholar
  99. 99.
    Di Croce L, Raker VA, Corsaro M, Fazi F, Fanelli M, Faretta M, Fuks F, Lo CF, Kouzarides T, Nervi C, Minucci S, Pelicci PG (2002) Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science 295: 1079–1082PubMedGoogle Scholar
  100. 100.
    Savage DG, Szydlo RM, Goldman JM (1997) Clinical features at diagnosis in 430 patients with chronic myeloid leukaemia seen at a referral centre over a 16-year period. Br J Haematol 96: 111–116PubMedGoogle Scholar
  101. 101.
    Schmid C, Frisch B, Beham A, Jager K, Kettner G (1990) Comparison of bone marrow histology in early chronic granulocytic leukemia and in leukemoid reaction. Eur J Haematol 44: 154–158PubMedGoogle Scholar
  102. 102.
    Thiele J, Kvasnicka HM, Fischer R (1999) Bone marrow histopathology in chronic myelogenous leukemia (CML) — evaluation of distinctive features with clinical impact. Histol Histopathol 14: 1241–1256PubMedGoogle Scholar
  103. 103.
    Aguayo A, Kantarjian H, Manshouri T, Gidel C, Estey E, Thomas D, Koller C, Estrov Z, O’Brien S, Keating M, Freireich E, Albitar M (2000) Angiogenesis in acute and chronic leukemias and myelody splastic syndronmes, Blood 96: 2240–2245PubMedGoogle Scholar
  104. 104.
    Lundberg LG, Lerner R, Sundelin P, Rogers R, Folkman J, Palmblad J (2000) Bone marrow in polycythemia vera, chronic myelocytic leukemia, and myelofibrosis has an increased vascularity. Am J Pathol 157: 15–19PubMedGoogle Scholar
  105. 105.
    Kantarjian HM, Giles FJ, O’Brien SM, Talpaz M (1998) Clinical course and therapy of chronic myelogenous leukemia with interferon-alpha and chemotherapy Hematol Oncol Clin North Am 12: 31–80PubMedGoogle Scholar
  106. 106.
    Hasford J, Ansari H, Pfirrmann M, Hehlmann R (1996) Analysis and validation of prognostic factors for CML. German CML Study Group. Bone Marrow Transplant 17 [Suppl 3]: S49–54Google Scholar
  107. 107.
    Hasford J, Baccarani M, Hehlmann R, Anseri H, Tura S, Zuffa E (1996) Interferon-alpha and hydroxyurea in early chronic myeloid leukemia: a comparative analysis of the italian and German chronic myeloid leukemia trials with interferon-alpha. Blood 87: 5384–5391PubMedGoogle Scholar
  108. 108.
    Wadhwa J, Szydlo RM, Apperley JF, Chase A, Bua M, Marin D, Olavarria E, Kanfer E, Goldman JM (2002) Factors affecting duration of survival after onset of blastic transformation of chronic myeloid leukemia. Blood 99: 2304–2309PubMedGoogle Scholar
  109. 109.
    Sacchi S, Kantarjian HM, O’Brien S, Cortes J, Rios MB, Giles FJ, Beran M, Koller CA, Keating MJ, Talpaz M (1999) Chronic myelogenous leukemia in nonlymphoid blastic phase: analysis of the results of first salvage therapy with three different treatment approaches for 162 patients. Cancer 86: 2632–2641PubMedGoogle Scholar
  110. 110.
    Sokal JE, Cox EB, Baccarani M, Tura S, Gomez GA, Robertson JE, Tso CY, Braun TJ Clarkson BD Cervantes F (1984) Prognostic discrimination in “good-risk” chronic granulocytic leukemia. Blood 63: 789–799PubMedGoogle Scholar
  111. 111.
    Hasford J, Pfirrmann M, Hehlmann R, Allan NC, Baccarani M, Kluin-Nelemans JC, Alimena G, Steegmann JL, Ansari H (1998) A new prognostic score for survival of patients with chronic myeloid leukemia treated with interferon alfa. Writing Committee for the Collaborative CML Prognostic Factors Project Group. J Natl Cancer Inst 90: 850–858PubMedGoogle Scholar
  112. 112.
    Kantarjian HM, Smith TL, O’Brien S, Beran M, Pierce S, Talpaz M (1995) Prolonged survival in chronic myelogenous leukemia after cytogenetic response to interferon-alpha therapy. The Leukemia Service. Ann Intern Med 122: 254–261PubMedGoogle Scholar
  113. 113.
    Steegmann JL, Odriozola J, Rodriguez-Salvanes F, Giraldo P, Garcia-Larana J, Ferro MT, Benitez E, Perez-Pons C, Giralt M, Escribano L, Lavilla E, Miguel A, Areal C, Perez-Encinas M, Abad A, Maldonado J, Massague I, Fernandez-Ranada JM (1999) Stage, percentage of basophils at diagnosis, hematologic response within six months, cytogenetic response in the first year: the main prognostic variables affecting outcome in patients with chronic myeloid leukemia in chronic phase treated with interferon-alpha. Results of the CML89 trial of the Spanish Collaborative Group on interferon-alpha2a and CML. Haematologica 84: 978–987PubMedGoogle Scholar
  114. 114.
    Hasford J, Pfirrmann M, Hehlmann R, Baccarani M, Guilhot F, Mahon FX, Kluin-Nelemans HC, Ohnishi K, Thaler J, Steegmann JL (2003) Prognosis and prognostic factors for patients with chronic myeloid leukemia: nontransplant therapy. Semin Hematol 40: 4–12PubMedGoogle Scholar
  115. 115.
    Verstovsek S, Kantarjian H, Manshouri T, Cortes J, Giles FJ, Rogers A, Albitar M (2002) Prognostic significance of cellular vascular endothelial growth factor expression in chronic phase chronic myeloid leukemia. Blood 99: 2265–2267PubMedGoogle Scholar
  116. 116.
    Denburg JA, Browman G (1988) Prognostic implications of basophil differentiation in chronic myeloid leukemia. Am J Hematol 27: 110–114PubMedGoogle Scholar
  117. 117.
    Verstovsek S, Kantarjian H, Manshouri T, O’Brien S, Faderl S, Talpaz M, Cortes J, Albitar M (2002) Prognostic significance of Tie-I protein expression in patients with early chronic phase chronic myeloid leukemia. Cancer 94: 1517–1521PubMedGoogle Scholar
  118. 118.
    Kantarjian HM, Keating MJ, Smith TL, Talpaz M, McCredie KB (1990) Proposal for a simple synthesis prognostic staging system in chronic myelogenous leukemia. Am J Med 88: 1–8PubMedGoogle Scholar
  119. 119.
    Gratwohl A, Hermans J, Goldman JM, Arcese W, Carreras E, Devergie A, Frassoni F, Gahrton G, Kolb HJ, Niederwieser D, Ruutu T, Vernant JP, de Witte T, Apperley J (1998) Risk assessment for patients with chronic myeloid leukaemia before allogeneic blood or marrow transplantation. Chronic Leukemia Working Party of the European Group for Blood and Marrow Transplantation. Lancet 352: 1087–1092PubMedGoogle Scholar
  120. 120.
    Goldman JM, Druker BJ (2001) Chronic myeloid leukemia: current treatment options. Blood 98: 2039–2042PubMedGoogle Scholar
  121. 121.
    Serra A, Guerrasio A, Gaidano G, Rosso C, Rege-Cambrin G, Petroni D, Mazza U, Saglio G (1993) Molecular defects associated with the acute phase CML. Leuk Lymphoma 11 [Suppl]: 25–28PubMedGoogle Scholar
  122. 122.
    Hochhaus A, Kreil S, Corbin AS, La Rosee P, Muller MC, Lahaye T, Hanfstein B, Schoch C, Cross NC, Berger U, Gschaidmeier H, Druker BJ, Hehlmann R (2002) Molecular and chromosomal mechanisms of resistance to imatinib (ST1571) therapy. Leukemia 16: 2190–2196PubMedGoogle Scholar
  123. 123.
    Merx K, Muller MC, Kreil S, Lahaye T, Paschka P, Schoch C., Weisser A, Kuhn C, Berger U, Gschaidmeier H, Hehlmann R, Hochhaus A (2002) Early reduction of BCR-ABL mRNA transcript levels predicts cytogenetic response in chronic phase CML patients treated with imatinib after failure of interferon alpha. Leukemia 16: 1579–1583PubMedGoogle Scholar
  124. 124.
    Hochhaus A, Weisser A, La Rosee P, Emig M, Muller MC, Saussele S, Reiter A, Kuhn C, Berger U, Hehlmann R, Cross NC (2000) Detection and quantification of residual disease in chronic myelogenous leukemia. Leukemia 14: 998–1005PubMedGoogle Scholar
  125. 125.
    Barbouti A, Johansson B, Hoglund M, Mauritzson N, Strombeck B, Nilsson PG, Tanke HJ, Hagemeijer A, Mitelman F, Fioretos T (2002) Multicolor COBRA-FISH analysis of chronic myeloid leukemia reveals novel cryptic balanced translocations during disease progression. Genes Chromosomes Cancer 35: 127–137PubMedGoogle Scholar
  126. 126.
    Buhring HJ, Simmons PJ, Pudney M, Muller R, Jarrossay D, van Agthoven A, Willheim M, Brugger W, Valent P, Kanz L (1999) The monoclonal antibody 97A6 defines a novel surface antigen expressed on human basophils and their multipotent and unipotent progenitors. Blood 94: 2343–2356PubMedGoogle Scholar
  127. 127.
    Bettelheim P, Valent P (1989) Radioimmunometric determination of histamine in myeloproliferative syndromes. Wien Klin Wochenschr 101: 706–710PubMedGoogle Scholar
  128. 128.
    Clift RA, Storb R (1996) Marrow transplantation for CML: the Seattle experience. Bone Marrow Transplant 17 [Suppl 3]: S1–3Google Scholar
  129. 129.
    Gratwohl A, Hermans J, Niederwieser D, Frassoni F, Arcese W, Gahrton G, Bandini G, Carreras E, Vernant JP, Bosi A (1993) Bone marrow transplantation for chronic myeloid leukemia: long-term results. Chronic Leukemia Working Party of the European Group for Bone Marrow Transplantation. Bone Marrow Transplant 12: 509–516PubMedGoogle Scholar
  130. 130.
    van Rhee F, Szydlo RM, Hermans J, Devergie A, Frassoni F, Arcese W, de Witte T, Kolb HJ, Niederwiser D, Jacobsen N, Gahrton G, Bandini G, Carreras E, Bacigalupo A, Michallet M, Ruutu T, Reiffers J, Goldman JM, Apperley J, Gratwohl A (1997) Long-term results after allogeneic bone marrow transplantation for chronic myelogenous leukemia in chronic phase: a report from the Chronic Leukemia Working Party of the European Group for Blood and Marrow Transplantation. Bone Marrow Transplant 20: 553–560PubMedGoogle Scholar
  131. 131.
    Goldman JM, Szydlo R, Horowitz MM, Gale RP, Ash RC, Atkinson K, Dicke KA, Gluckman E, Herzig RH, Marmont A (1993) Choice of pretransplant treatment and timing of transplants for chronic myelogenous leukemia in chronic phase. Blood 82: 2235–2238PubMedGoogle Scholar
  132. 132.
    Hansen JA, Gooley TA, Martin PJ, Appelbaum F, Chauncey TR, Clift RA, Petersdorf EW, Radich J, Sanders JE, Storb RF, Sullivan KM, Anasetti C (1998) Bone marrow transplants from unrelated donors for patients with chronic myeloid leukemia. N Engl J Med 338: 962–968PubMedGoogle Scholar
  133. 133.
    Reiter E, Greinix HT, Keil F, Brugger S, Rabitsch W, Schulenburg A, Mannhalter C, Schwarzinger I, Worel N, Volc-Platzer B, Fischer G, Dieckmann K, Hinterberger W, Schneider B, Haas OA, Geissler K, Kalhs P (1999) Long-term follow-up of patients after related- and unrelated-donor bone marrow transplantation for chronic myelogenous leukemia. Ann Hematol 78: 507–513PubMedGoogle Scholar
  134. 134.
    Gratwohl A, Hermans J, Niederwieser D, van Biezen A, van Houwelingen HC, Apperley J (2001) Female donors influence transplant-related mortality and relapse incidence in male recipients of sibling blood and marrow transplants. Hematol J 2: 363–370PubMedGoogle Scholar
  135. 135.
    McGlave P, Bartsch G, Anasetti C, Ash R, Beatty P, Gajewski J, Kerman NA (1993) Unrelated donor marrow transplantation therapy for chronic myelogenous leukemia: initial experience of the National Marrow Donor Program. Blood 81: 543–550PubMedGoogle Scholar
  136. 136.
    Horowitz MM, Rowlings PA, Passweg JR (1996) Allogeneic bone marrow transplantation for CML: a report from the International Bone Marrow Transplant Registry. Bone Marrow Transplant 17 [Suppl 3]: S5–6Google Scholar
  137. 137.
    Hehlmann R, Hochhaus A, Kolb HJ, Hasford J, Gratwohl A, Heimpel H, Siegert W, Finke J, Ehninger G, Holler E, Berger U, Pfirrmann M, Muth A, Zander A, Fauser AA, Heyll A, Nerl C, Hossfeld DK, Loffler H, Pralle H, Queisser W, Tobler A (1999) Interferon-alpha before allogeneic bone marrow transplantation in chronic myelogenous leukemia does not affect outcome adversely: provided it is discontinued at least 90 days before the procedure. Blood 94: 3668–3677PubMedGoogle Scholar
  138. 138.
    Gale RP, Horowitz MM, Ash RC, Champlin RE, Goldman JM, Rimm AA, Ringden O, Stone JA, Bortin MM (1994) Identical-twin bone marrow transplants for leukemia. Ann Intern Med 120: 646–652PubMedGoogle Scholar
  139. 139.
    Gamis AS, Haake R, McGlave P, Ramsay NK (1993) Unrelated-donor bone marrow transplantation for Philadelphia chromosome-positive chronic myelogenous leukemia in children. J Clin Oncol 11: 834–838PubMedGoogle Scholar
  140. 140.
    Gajewski J, Gjertson D, Cecka M, Tonai R, Przepiorka D, Hunt L, Giralt S, Chan KW, Feig S, Territo M, Andersson B, van Besien K, Khouri I, Fischer H, Babbitt L, Ippolitti C, Schiller G, Lill M, Warkentin D, Neumann J, Petz L, Terasaki P, Champlin R (1997) The impact of T-cell depletion on the effects of HLA DR beta 1 and DQ beta allele matching in HLA serologically identical unrelated donor bone marrow transplantation. Biol Blood Marrow Transplant 3: 76–82PubMedGoogle Scholar
  141. 141.
    Devergie A, Apperley JF, Labopin M, Madrigal A, Jacobsen N, Carreras E, Prentice HG, Jouet JP, Kolb HJ, Herstenstein B, Bacigalupo A, Evensen SA, Ljungman P, de Witte T, Reiffers J, Nagler A, Clark RE, Goldman JM, Gratwohl A (1997) European results of matched unrelated donor bone marrow transplantation for chronic myeloid leukemia. Impact of HLA class II matching. Chronic Leukemia Working Party of the European Group for Blood and Marrow Transplantation. Bone Marrow Transplant 20: 11–19PubMedGoogle Scholar
  142. 142.
    Arcese W, Goldman JM, D’Arcangelo E, Schattenberg A, Nardi A, Apperley JF, Frassoni F, Aversa F, Prentice HG, Ljungman P (1993) Outcome for patients who relapse after allogeneic bone marrow transplantation for chronic myeloid leukemia. Chronic Leukemia Working Party. European Bone Marrow Transplantation Group. Blood 82: 3211–3219PubMedGoogle Scholar
  143. 143.
    Mrsic M, Horowitz MM, Atkinson K, Biggs JC, Champlin RE, Ehninger G, Gajewski JL, Gale RP, Herzig RH, Prentice HG (1992) Second HLA-identical sibling transplants for leukemia recurrence. Bone Marrow Transplant 9: 269–275PubMedGoogle Scholar
  144. 144.
    Higano CS, Raskind WH, Singer JW (1992) Use of alpha interferon for the treatment of relapse of chronic myelogenous leukemia in chronic phase after allogeneic bone marrow transplantation. Blood 80: 1437–1442PubMedGoogle Scholar
  145. 145.
    Collins RH Jr, Shpilberg O, Drobyski WR, Porter DL, Giralt S, Champlin R, Goodman SA, Wolff SN, Hu W, Verfaillie C, List A, Dalton W, Ognoskie N, Chetrit A, Antin JH, Nemunaitis J (1997) Donor leukocyte infusions in 140 patients with relapsed malignancy after allogeneic bone marrow transplantation. J Clin Oncol 15: 433–444PubMedGoogle Scholar
  146. 146.
    Kolb HJ, Schattenberg A, Goldman JM, Hertenstein B, Jacobsen N, Arcese W, Ljungman P, Ferrant A, Verdonck L, Niederwieser D (1995) Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. European Group for Blood and Marrow Transplantation Working Party Chronic Leukemia. Blood 86: 2041–2050PubMedGoogle Scholar
  147. 147.
    Kolb HJ, Mittermuller J, Clemm C, Holler E, Ledderose G, Brehm G, Heim M, Wilmanns W (1990) Donor leukocyte transfusions for treatment of recurrent chronic myelogenous leukemia in marrow transplant patients. Blood 76: 2462–2465PubMedGoogle Scholar
  148. 148.
    Fischer T (2002) Results up to now of administration of STI-571 (Glivec) in recurrence after allogenic and autologous stem cell transplantation in chronic myeloid leukemia. Med Klin 97 [Suppl]: 22–27Google Scholar
  149. 149.
    Wassmann B, Klein SA, Scheuring U, Pfeifer H, Martin H, Gschaidmeier H, Hoelzer D, Ottmann OG (2001) Hematologic and cytogenetic remission by ST1571 (Glivec) in a patient relapsing with accelerated phase CML after second allogeneic stem cell transplantation. Bone Marrow Transplant 28: 721–724PubMedGoogle Scholar
  150. 150.
    Kantarjian H, Sawyers C, Hochhaus A, Guilhot F, Schiffer C, Gambacorti-Passerini C, Niederwieser D, Resta D, Capdeville R, Zoellner U, Talpaz M, Druker B, Goldman J, O’Brien SG, Russell N, Fischer T, Ottmann O, Cony-Makhoul P, Facon T, Stone R, Miller C, Tallman M, Brown R, Schuster M, Loughran T, Gratwohl A, Mandelli F, Saglio G, Lazzarino M, Russo D, Baccarani M, Morra E (2002) Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia. N Engl J Med 346: 645–652PubMedGoogle Scholar
  151. 151.
    Alimena G, Morra E, Lazzarino M, Liberati AM, Montefusco E, Inverardi D, Bernasconi P, Mancini M, Donti E, Grignani F (1988) Interferon alpha-2b as therapy for Ph’-positive chronic myelogenous leukemia: a study of 82 patients treated with intermittent or daily administration. Blood 72: 642–647PubMedGoogle Scholar
  152. 152.
    Ozer H, George SL, Schiffer CA, Rao K, Rao PN, Wurster-Hill DH, Arthur DD, Powell B, Gottlieb A, Peterson BA (1993) Prolonged subcutaneous administration of recombinant alpha 2b interferon in patients with previously untreated Philadelphia chromosome-positive chronic-phase chronic myelogenous leukemia: effect on remission duration and survival: Cancer and Leukemia Group B study 8583. Blood 82: 2975–2984PubMedGoogle Scholar
  153. 153.
    Mahon FX, Faberes C, Pueyo S, Cony-Makhoul P, Salmi R, Boiron JM, Marit G, Bilhou-Nabera C, Carrere A, Montastruc M, Pigneux A, Bernard P, Reiffers J (1998) Response at three months is a good predictive factor for newly diagnosed chronic myeloid leukemia patients treated by recombinant interferon-alpha. Blood 92: 4059–4065PubMedGoogle Scholar
  154. 154.
    Larson RA (2002) Imatinib (STI571, Gleevec) as Initial Therapy for Patients with Newly Diagnosed Ph+ Chronic Myeloid Leukemia (CML): Results of a Randomized Phase III Study vs Interferon-Alfa+Cytarabine (IFN+AraC). Blood 100: 2aGoogle Scholar
  155. 155.
    Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM, Lydon NB, Kantarjian H, Capdeville R, Ohno-Jones S, Sawyers CL (2001) Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 344: 1031–1037PubMedGoogle Scholar
  156. 156.
    O’Dwyer ME, Druker BJ (2000) STI571: an inhibitor of the BCR-ABL tyrosine kinase for the treatment of chronic myelogenous leukaemia. Lancet Oncol 1: 207–211PubMedGoogle Scholar
  157. 157.
    Kantarjian HM, Talpaz M, Cortes J, O’Brien S, Faderl S, Thomas D, Giles F, Rios MB, Shan J, Arlinghaus R (2003) Quantitative polymerase chain reaction monitoring of BCR-ABL during therapy with imatinib mesylate (STI571; Gleevec) in chronic-phase chronic myelogenous leukemia. Clin Cancer Res 9: 160–166PubMedGoogle Scholar
  158. 158.
    Druker BJ, Sawyers CL, Kantarjian H, Resta DJ, Reese SF, Ford JM, Capdeville R, Talpaz M (2001) Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med 344: 1038–1042PubMedGoogle Scholar
  159. 159.
    Marin D, Marktel S, Bua M, Armstrong L, Goldman JM, Apperley JF, Olavarria E (2002) The use of imatinib (STI571) in chronic myelod leukemia: some practical considerations. Haematologica 87: 979–988PubMedGoogle Scholar
  160. 160.
    Esmaeli B, Prieto VG, Butler CE, Kim SK, Ahmadi MA, Kantarjian HM, Talpaz M (2002) Severe periorbital edema secondary to STI571 (Gleevec). Cancer 95: 881–887PubMedGoogle Scholar
  161. 161.
    Beham-Schmid C, Apfelbeck U, Sill H, Tsybrovsky O, Hofler G, Haas OA, Linkesch W (2002) Treatment of chronic myelogenous leukemia with the tyrosine kinase inhibitor STI571 results in marked regression of bone marrow fibrosis. Blood 99: 381–383PubMedGoogle Scholar
  162. 162.
    Weisberg E, Griffin JD (2000) Mechanism of resistance to the ABL tyrosine kinase inhibitor STI571 in BCR/ABL-transformed hematopoietic cell lines. Blood 95: 3498–3505PubMedGoogle Scholar
  163. 163.
    Krystal GW (2001) Mechanisms of resistance to imatinib (STI571) and prospects for combination with conventional chemotherapeutic agents. Drug Resist Updat 4: 16–21PubMedGoogle Scholar
  164. 164.
    Hochhaus A, Kreil S, Corbin A, La Rosee P, Lahaye T, Berger U, Cross NC, Linkesch W, Druker BJ, Hehlmann R, Passerini C, Corneo G, D’Incalci M (2001) Roots of clinical resistance to STI-571 cancer therapy. Science 293: 2163PubMedGoogle Scholar
  165. 165.
    Muller MC, Lahaye T, Hochhaus A (2002) Resistance to tumor specific therapy with imatinib by clonal selection of mutated cells. Dtsch Med Wochenschr 127: 2205–2207PubMedGoogle Scholar
  166. 166.
    Talpaz M, Silver RT, Druker BJ, Goldman JM, Gambacorti-Passerini C, Guilhot F, Schiffer CA, Fischer T, Deininger MW, Lennard AL, Hochhaus A, Ottmann OG, Gratwohl A, Baccarani M, Stone R, Tura S, Mahon FX, Fernandes-Reese S, Gathmann I, Capdeville R, Kantarjian HM, Sawyers CL (2002) Imatinib induces durable hematologic and cytogenetic responses in patients with accelerated phase chronic myeloid leukemia: results of a phase 2 study. Blood 99: 1928–1937PubMedGoogle Scholar
  167. 167.
    Kantarjian HM, Cortes J, O’Brien S, Giles FJ, Albitar M, Rios MB, Shan J, Faderl S, Garcia-Manero G, Thomas DA, Resta D, Talpaz M (2002) Imatinib mesylate (STI571) therapy for Philadelphia chromosome-positive chronic myelogenous leukemia in blast phase. Blood 99: 3547–3553PubMedGoogle Scholar
  168. 168.
    Sawyers CL, Hochhaus A, Feldman E, Goldman JM, Miller CB, Ottmann OG, Schiffer CA, Talpaz M, Guilhot F, Deininger MW, Fischer T, O’Brien SG, Stone RM, Gambacorti-Passerini CB, Russell NH, Reiffers JJ, Shea TC, Chapuis B, Coutre S, Tura S, Morra E, Larson RA, Saven A, Peschel C, Gratwohl A, Mandelli F, Ben Am M, Gathmann I, Capdeville R, Paquette RL, Druker BJ (2002) Imatinib induces hematologic and cytogenetic responses in patients with chronic myelogenous leukemia in myeloid blast crisis: results of a phase II study. Blood 99: 3530–3539PubMedGoogle Scholar
  169. 169.
    Ohnishi K, Ohno R, Tomonaga M, Kamada N, Onozawa K, Kuramoto A, Dohy H, Mizoguchi H, Miyawaki S, Tsubaki K (1995) A randomized trial comparing interferon-alpha with busulfan for newly diagnosed chronic myelogenous leukemia in chronic phase. Blood 86: 906–916PubMedGoogle Scholar
  170. 170.
    The Italian Cooperative Study Group on Chronic Myeloid Leukemia (1994) Interferon alfa-2a as compared with conventional chemotherapy for the treatment of chronic myeloid leukemia. N Engl J Med 330: 820–825Google Scholar
  171. 171.
    The Italian Cooperative Study Group on Chronic Myeloid Leukemia (1998) Long-term follow-Up of the Italian trial of interferon-alpha versus conventional chemotherapy in chronic myeloid leukemia. Blood 92: 1541–1548Google Scholar
  172. 172.
    Sacchi S, Kantarjian HM, O’Brien S, Beran M, Koller C, Pierce S, Korablau S, Estey E, Keating MJ, Talpaz M (1997) Long-term follow-up results of alpha-interferon-based regimens in patients with late chronic phase chronic myelogenous leukemia. Leukemia 11: 1610–1616PubMedGoogle Scholar
  173. 173.
    Arthur CK, Ma DD (1993) Combined interferon alfa-2a and cytosine arabinoside as first-line treatment for chronic myeloid leukemia. Acta Haematol 89 [Suppl]: 15–21PubMedGoogle Scholar
  174. 174.
    Kantarjian HM, Keating MJ, Estey EH, O’Brien S, Pierce S, Beran M, Koller C, Feldman E, Talpaz M (1992) Treatment of advanced stages of Philadelphia chromosome-positive chronic myelogenous leukemia with inter-feron-alpha and low-dose cytarabine. J Clin Oncol 10: 772–778PubMedGoogle Scholar
  175. 175.
    Kantarjian HM, O’Brien S, Smith TL, Rios MB, Cortes J, Beran M, Koller C, Giles FJ, Andreeff M, Kornblau S, Giralt S, Keating MJ, Talpaz M (1999) Treatment of Philadelphia chromosome-positive early chronic phase chronic myelogenous leukemia with daily doses of interferon alpha and low-dose cytarabine. J Clin Oncol 17: 284–292PubMedGoogle Scholar
  176. 176.
    Thaler J, Hilbe W, Apfelbeck U, Linkesch W, Sill H, Seewann H, Pont J, Bernhart M, Stoger M, Niessner H, Abbrederis K, Geissler D, Hausmaninger H, Lin W, Ludwig H, Lang A, Duba C, Fluckinger T, Greil R, Grunewald K, Konwalinka G, Niederwieser D Fridrik M (1997) Interferon-alpha-2C and LD ara-C for the treatment of patients with CML: results of the Austrian multicenter phase II study. Leuk Res 21: 75–80PubMedGoogle Scholar
  177. 177.
    Sacchi S, Kantarjian H, O’Brien S, Cohen PR, Pierce S, Talpaz M (1995) Immune-mediated and unusual complications during interferon alfa therapy in chronic myelogenous leukemia. J Clin Oncol 13: 2401–2407PubMedGoogle Scholar
  178. 178.
    Zuffa E, Vianelli N, Martinelli G, Tazzari P, Cavo M, Tura S (1996) Autoimmune mediated thrombocytopenia associated with the use of interferon-alpha in chronic myeloid leukemia. Haematologica 81: 533–535PubMedGoogle Scholar
  179. 179.
    Steegmann JL, Requena MJ, Garcia-Buey ML, Granados E, Romero R, Fernandez-Ranada JM, Moreno R (1998) Severe autoimmune hepatitis in a chronic myeloid leukemia patient treated with interferon alpha and with complete genetic response. Am J Hematol 59: 95–97PubMedGoogle Scholar
  180. 180.
    Thiele J, Kvasnicka HM, Schmitt-Graeff A, Spohr M, Diehl V, Zankovich R, Niederle N, Leder LD (2000) Effects of interferon and hydroxyurea on bone marrow fibrosis in chronic myelogenous leukaemia: a comparative retrospective multicentre histological and clinical study. Br J Haematol 108: 64–71PubMedGoogle Scholar
  181. 181.
    Stentoft J (1990) The toxicity of cytarabine. Drug Saf 5: 7–27PubMedGoogle Scholar
  182. 182.
    Hehlmann R, Heimpel H, Hasford J, Kolb HJ, Pralle H, Hossfeld DK, Queisser W, Loffler H, Heinze B, Georgii A (1993) Randomized comparison of busulfan and hydroxyurea in chronic myelogenous leukemia: prolongation of survival by hydroxyurea. The German CML Study Group. Blood 82: 398–407PubMedGoogle Scholar
  183. 183.
    Hehlmann R, Heimpel H, Hasford J, Kolb HJ, Pralle H, Hossfeld DK, Queisser W, Loffler H, Hochhaus A, Heinze B (1994) Randomized comparison of interferon-alpha with busulfan and hydroxyurea in chronic myelogenous leukemia. The German CML Study Group. Blood 84: 4064–4077PubMedGoogle Scholar
  184. 184.
    O’Brien S, Kantarjian H, Keating M, Beran M, Koller C, Robertson LE, Hester J, Rios MB, Andreeff M, Talpaz M (1995) Homoharringtonine therapy induces responses in patients with chronic myelogenous leukemia in late chronic phase. Blood 86: 3322–3326PubMedGoogle Scholar
  185. 185.
    O’Brien S, Kantarjian H, Koller C, Feldman E, Beran M, Andreeff M, Giralt S, Cheson B, Keating M, Freireich E, Rios MB, Talpaz M (1999) Sequential homoharringtonine and interferon-alpha in the treatment of early chronic phase chronic myelogenous leukemia. Blood 93: 4149–4153PubMedGoogle Scholar
  186. 186.
    Issa JP, Baylin SB, Herman JG (1997) DNA methylation changes in hematologic malignancies: biologic and clinical implications. Leukemia 11 [Suppl]: S7–11Google Scholar
  187. 187.
    Kantarjian HM, O’Brien SM, Keating M, Beran M, Estey E, Giralt S, Kornblau S, Rios MB, de Vos D, Talpaz M (1997) Results of decitabine therapy in the accelerated and blastic phases of chronic myelogenous leukemia. Leukemia 11: 1617–1620PubMedGoogle Scholar
  188. 188.
    Kantarjian HM, O’Brien SM, Estey E, Giralt S, Beran M, Rios MB, Keating M, de Vos D, Talpaz M (1997) Decitabine studies in chronic and acute myelogenous leukemia. Leukemia 11 [Suppl]: S35-S36PubMedGoogle Scholar
  189. 189.
    Talpaz M, O’Brien S, Rose E, Gupta S, Shan J, Cortes J, Giles FJ, Faderl S, Kantarjian HM (2001) Phase 1 study of polyethylene, glycol formulation of interferon alpha-2B (Schering 54031) in Philadelphia chromosome-positive chronic myelogenous leukemia. Blood 98: 1708–1713PubMedGoogle Scholar
  190. 190.
    Cortes J, Albitar M, Thomas D, Giles F, Kurzrock R, Thibault A, Rackoff W, Koller C, O’Brien S, Garcia-Manero G, Talpaz M, Kantarjian H (2003) Efficacy of the farnesyl transferase inhibitor R115777 in chronic myeloid leukemia and other hematologic malignancies. Blood 101: 1692–1697PubMedGoogle Scholar
  191. 191.
    de Fabritiis P, Petti MC, Montefusco E, De Propris MS, Sala R, Bellucci R, Mancini M, Lisci A, Bonetto F, Geiser T, Calabretta B, Mandelli F (1998) BCR-ABL antisense oligodeoxynucleotide in vitro purging and autologous bone marrow transplantation for patients with chronic myelogenous leukemia in advanced phase. Blood 91: 3156–3162PubMedGoogle Scholar
  192. 192.
    Ratajczak MZ, Kant JA, Luger SM, Hijiya N, Zhang J, Zon G, Gewirtz AM (1992) In vivo treatment of human leukemia in a seid mouse model with c-myb antisense oligodeoxynucleotides. Proc Natl Acad Sci USA 89: 11823–11827PubMedGoogle Scholar
  193. 193.
    Maran A, Waller CF, Paranjape JM, Li G, Xiao W, Zhang K, Kalaycio ME, Maitra PK, Lichtin AE, Brugger W, Torrence PF, Silverman RH (1998) 2′,5′-Oligoadenylate-antisense chimeras cause R Nase L to selectively degrade ber/abl mRNA in chronic myelogenous leukemia cells. Blood 92: 4336–4343PubMedGoogle Scholar
  194. 194.
    Scherr M, Battmer K, Winkler T, Heidenreich O, Ganser A, Eder M (2003) Specific inhibition of bcr-abl gene expression by small interfering RNA. Blood 101: 1566–1569PubMedGoogle Scholar
  195. 195.
    Topaly J, Zeller WJ, Fruehauf S (2002) Combination therapy with imatinib mesylate (STI571): synopsis of in vitro studies. Br J Haematol 119: 3–14PubMedGoogle Scholar
  196. 196.
    Hoover RR, Mahon FX, Melo JV, Daley GQ (2002) Overcoming STI571 resistance with the farnesyl transferase inhibitor SCH66336. Blood 100: 1068–1071PubMedGoogle Scholar
  197. 197.
    La Rosee P, O’Dwyer ME, Druker BJ (2002), Insights from pre-clinical studies for new combination treatment regimens with the Bcr-Abl kinase inhibitor imatinib mesylate (Gleevec/Glivec) in chronic, myelogenous leukemia: a translational perspective. Leukemia 16: 1213–1219PubMedGoogle Scholar
  198. 198.
    Thiesing JT, Ohno-Jones S, Kolibaba KS, Druker BJ (2000) Efficacy of STI571, an abl tyrosine kinase inhibitor, in conjunction with other antileukemic agents against bcr-abl-positive cells. Blood 96: 3195–3199PubMedGoogle Scholar
  199. 199.
    Hochhaus A, Fischer T, Brümmendorf TH, Schoch C, Müller MC, Merx K, Bostel T, Rose MT, Gschaidmeier H, Hehlmann R (2003) Imatinib (Glivec) and pegylated interferon a2a (Pegasys) phase I/II combination study in chronic phase chronic myelogenous leukemia (CML). Blood 100: 164aGoogle Scholar
  200. 200.
    Hasserjian RP, Boecklin F, Parker S, Chase A, Dhar S, Zaiac M, Olavarria E, Lampert I, Henry K, Apperley JF, Goldman JM (2002) STI571 (imatinib mesylate) reduces bone marrow cellularity and normalizes morphologic features irrespective of cytogenetic response. Am J Clin Pathol 117: 360–367PubMedGoogle Scholar
  201. 201.
    Bonifazi F, de Vivo A, Rosti G, Guilhot F, Guilhot J, Trabacchi E, Hehlmann R, Hochhaus A, Shepherd PC, Steegmann JL, Kluin-Nelemans HC, Thaler J, Simonsson B, Louwagie A, Reiffers J, Mahon FX, Montefusco E, Alimena G, Hasford J, Richards S, Saglio G, Testoni N, Martinelli G, Tura S, Baccarani M (2001) Chronic myeloid leukemia and interferon-alpha: a study of complete cytogenetic responders. Blood 98: 3074–3081PubMedGoogle Scholar
  202. 202.
    Hochhaus A, Reiter A, Saussele S, Reichert A, Emig M, Kaeda J, Schultheis B, Berger U, Shepherd PC, Allan NC, Hehlmann R, Goldman JM, Cross NC (2000) Mblecular heterogeneity in complete cytogenetic responders after interferon-alpha therapy for chronic myelogenous leukemia: low levels of minimal residual disease are associated with continuing remission. German CML Study Group and the UK MRC CML Study Group. Blood 95: 62–66PubMedGoogle Scholar
  203. 203.
    Dewald GW, Wyatt WA, Juneau AL, Carlson RO, Zinsmeister AR, Jalal SM, Spurbeck JL, Silver RT (1998) Highly sensitive fluorescence in situ hybridization method to detect double BCR/ABL fusion and monitor response to therapy in chronic myeloid leukemia. Blood 91: 3357–3365PubMedGoogle Scholar
  204. 204.
    Muhlmann J, Thaler J, Hilbe W, Bechter O, Erdel M, Utermann G, Duba HC (1998) Fluorescence in situ hybridization (FISH) on peripheral blood smears for monitoring Philadelphia chromosome-positive chronic myeloid leukemia (CML) during interferon treatment: a new strategy for remission assessment. Genes Chromosomes Cancer 21: 90–100PubMedGoogle Scholar
  205. 205.
    Seong DC, Kantarjian HM, Ro JY, Talpaz M, Xu J, Robinson JR, Deisseroth AB, Champlin RE, Siciliano MJ (1995) Hypermetaphase fluorescence in situ hybridization for quantitative monitoring of Philadelphia chromosomepositive cells in patients with chronic myelogenous leukemia during treatment. Blood 86: 2343–2349PubMedGoogle Scholar
  206. 206.
    Chomel JC, Brizard F, Veinstein A, Rivet J, Sadoun A, Kitzis A, Guilhot F, Brizard A (2000) Persistence of BCR-ABL genomic rearrangement in chronic myeloid leukemia patients in complete and sustained cytogenetic remission after interferon-alpha therapy or allogeneic bone marrow transplantation. Blood 95: 404–408PubMedGoogle Scholar
  207. 207.
    Kaeda J, Chase A, Goldman JM (2002) Cytogenetic and molecular monitoring of residual disease in chronic myeloid leukaemia. Acta Haematol 107: 64–75PubMedGoogle Scholar
  208. 208.
    Guo JQ, Lin H, Kantarjian H, Talpaz M, Champlin R, Andreeff M, Glassman A, Arlinghaus RB (2002) Comparison of competitive-nested PCR and real-time PCR in detecting BCR-ABL fusion transcripts in chronic myeloid leukemia patients. Leukemia 16: 2447–2453PubMedGoogle Scholar
  209. 209.
    Lee WI, Kantarjian H, Glassman A, Talpaz M, Lee MS (2002) Quantitative measurement of BCR/abl transcripts using real-time polymerase chain reaction. Ann Oncol 13: 781–788PubMedGoogle Scholar

Copyright information

© Springer 2003

Authors and Affiliations

  • Christian Sillaber
    • 1
  • Matthias Mayerhofer
    • 1
  • Hermine Agis
    • 1
  • Verena Sagaster
    • 1
  • Christine Mannhalter
    • 2
  • Wolfgang R. Sperr
    • 1
  • Klaus Geissler
    • 3
  • Peter Valent
    • 1
  1. 1.Abteilung Hämatologie und HämostaseologieUniversitätsklinik für Innere Medizin I, AKH-WienWienAustria
  2. 2.Klinisches Institut für medizinische und chemische LaboratoriumsdiagnostikAKH-WienViennaAustria
  3. 3.5. Medizinische Abteilung mit OnkologieKrankenhaus LainzViennaAustria

Personalised recommendations