Advertisement

Wiener Klinische Wochenschrift

, Volume 115, Issue 9, pp 291–297 | Cite as

Osteoprotegerin serum levels in women: Correlation with age, bone mass, bone turnover and fracture status

  • Astrid Fahrleitner-Pammer
  • Harald Dobnig
  • Claudia Piswanger-Soelkner
  • Christine Bonelli
  • Hans-Peter Dimai
  • Georg Leb
  • Barbara Obermayer-Pietsch
Original Article

Summary

Pre-clinical data have shown that osteoprotegerin (OPG) inhibits osteoclast function and therefore plays an important role in bone remodelling. This study aimed to evaluate theclinical value of serum OPG. Do higher OPG serum levels reflect decreased bone resorption and perhaps higher bone mass in women?

Serum OPG levels were measured in 177 healthy women (aged 17–85 years) and in 48 untreated patients (mean age 71±5) with established osteoporosis, and related to age, bone mass, markers of bone turnover and, in the case of patients with osteoporosis, to pre-existing vertebral fractures.

In healthy women OPG levels showed a positive correlation with age (r=0.25, p<0.001) but not to bone mass or markers of bone turnover. In women with osteoporosis, however, there was a strong relationship between serum OPG and markers of bone turnover (serum c-terminal crosslinked telopeptides of type I collagen (sCTX): r=+0.82, p<0.0001; osteocalcin (OC): r=+0.69, p<0.0001), with patients who had higher levels of bone-turnover markers showing higher serum levels of OPG. After adjustment for bone mass and bone markers, patients with pre-existing vertebral fractures had significantly lower serum OPG levels than patients without fractures (57±8 vs. 97±10 pg/ml, [mean±SE], p<0.01).

The age-dependent increase of OPG as an antiresorptive factor may reflect an insufficient paracrine mechanism of bone cells to compensate for bone loss in older age. In patients with osteoporosis, however, OPG correlated strongly with markers of bone turnover; this may point toward a higher level of RANKL/OPG expression in these patients.

Finally, low OPG serum levels seem to be associated with vertebral fractures. We hypothesise that low OPG levels in preset conditions of bone turnover may indicate a higher risk of fracture in patients with osteoporosis.

Key words

Osteoprotegerin RANKL fracture risk bone turnover bone mass 

Serum-Osteoprotegerinspiegel bei Frauen: Korrelation zu Alter, Knochendichte, Knochenstoffwechsel und Frakturstatus

Zusammenfassung

In präklinischen Studien wurde gezeigt, dass Osteoprotegerin (OPG) einen hemmenden Einfluss auf die Osteoklasten ausübt und daher eine wesentliche Rolle im Knochenstoffwechsel spielt. Ziel dieser Studie war es denklinischen Stellenwert von OPG zu evaluieren. Ist auch bei Menschen ein hoher Serum-OPG Spiegel mit niedriger Knochenresorption und konsekutiv höherer Knochendichte verbunden?

Bei 177 gesunden Frauen (17–85 Jahre) und bei 48 unbehandelten Patientinnen (71±5 Jahre) mit primärer postmenopausaler Osteoporose wurde OPG im Serum gemessen und in Relation zu Alter, Knochendichte, Knochenstoffwechselparametern un — im Fall der Patientinnen mit Osteoporose — zu prävalenten Wirbelkörperfrakturen gestellt.

Bei den gesunden Probanden korrelierte OPG positiv mit dem Alter (r=0,25, p<0,001), während kein Zusammenhang mit der Knochendichte oder den Knochenumbauparametern gefunden wurde. Bei den Osteoporose-Patientinnen hingegen zeigte sich eine klare Korrelation mit den Knochenmarkern: Serum-Crosslaps r=+0.82, p<0.0001; Osteokalzin r=+0,69; p<0,0001.

Nach Normalisierung der Serum-OPG Werte für die Knochendichte und Umbaumarker zeigten Patientinnen mit prävalenten Wirbelkörperfrakturen deutlich niedrigere Werte im Vergleich zu den Patientinnen ohne Frakturen (57±8 vs. 97±10 pg/ml; p<0,01).

Der altersabhängige Anstieg von OPG als antiresorptiver Faktor könnte einen insuffizienten parakrinen Kompensationsversuch der Osteoblasten auf den Knochenverlust im Alter darstellen. Der klare Zusammenhang von OPG mit den Knochenumbaumarkern bei Patientinnen mit Osteoporose ist wahrscheinlich als Ausdruck einer erhöhten RANKL/OPG Expression zu werten.

Niedrige OPG-Spiegel scheinen mit einem erhöhten Frakturrisiko assoziiert zu sein. Der individuelle Serum OPG Wert könnte unter Berücksichtigung des Knochenstoffwechsels ein prädiktiver Faktor für das Frakturrisiko bei Frauen mit primärer postmenopausaler Osteoporose sein.

Schlüsselwörter

Osteoprotegerin RANKL Frakturrisiko Knochenstoffwechsel Knochendichte 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Luthy R, et al (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89: 309–319PubMedCrossRefGoogle Scholar
  2. 2.
    Tsuda E, Goto M, Mochizuki S, Yano K, Kobayashi F, Morinaga T, et al (1997) Isolation of a novel cytokine from human fibroblasts that specifically inhibits osteoclastogenesis. Biochem Biophys Res Commun 234: 137–142PubMedCrossRefGoogle Scholar
  3. 3.
    The American Society for Bone and Mineral Research president’s comittee on nomenclature (2000) Proposed standard nomenclature for new tumor necrosis factor family members involved in the regulation of bone resorption. J Bone Miner Res 15: 2293–2296CrossRefGoogle Scholar
  4. 4.
    Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, et al (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation, Cell 93: 165–176PubMedCrossRefGoogle Scholar
  5. 5.
    Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, et al (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis — inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA 95: 3597–3602PubMedCrossRefGoogle Scholar
  6. 6.
    Hofbauer LC, Khosla S, Dunstan CR, Lacey DL, Boyle WJ, Riggs BL (2000) The roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption. J Bone Miner Res 15: 2–12PubMedCrossRefGoogle Scholar
  7. 7.
    Hofbauer LC, Heufelder AE (2000) The role of receptor activator of nuclear factor-κB ligand and osteoprotegerin in the pathogenesis and treatment of metabolic bone disease. J Clin Endocrinol Metab 85: 2355–2363PubMedCrossRefGoogle Scholar
  8. 8.
    Kong YY, Penninger JM (2000) Molecular control of bone remodeling and osteoporosis. Exp Gerontol 35: 947–956PubMedCrossRefGoogle Scholar
  9. 9.
    Hakeda Y, Kobayashi Y, Yamaguchi K, Yasuda H, Tsuda E, Higashio K, et al (1998) Osteoclastogenesis inhibitory factor (OCIF) directly inhibits bone-resorbing activity of isolated mature osteoclasts. Biochem Biophys Res Com 251: 796–801PubMedCrossRefGoogle Scholar
  10. 10.
    Mizuno A, Amizuka N, Irie K, Murakami A, Fujise N, Kanno T, et al (1998) Severe osteoporosis in mice lacking osteoclastogenesis inhibitory factor/osteoprotegerin. Biochem Biophys Res Commun 247: 610–615PubMedCrossRefGoogle Scholar
  11. 11.
    Min H, Morony S, Sarosi I, Dunstan CR, Capparelli C, Scully S, et al (2000) Osteoprotegerin reverses osteoporosis by inhibiting endosteal osteoclasts and prevents vascular calcification by blocking a process resembling osteoclastogenesis. J Exp Med 192: 463–474PubMedCrossRefGoogle Scholar
  12. 12.
    Bucay N, Sarosi I, Dunstan CR, Morony S, Tarpley J, Capparelli C, et al (1998) Osteoprotegerin deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev 12: 1260–1268PubMedCrossRefGoogle Scholar
  13. 13.
    Yano K, Tsuda E, Washida N, Kobayashi F, Goto M, Harada A, et al (1999) Immunological characterization of circulating osteoprotegerin/osteoclastogenesis inhibitory factor: Increased serum concentrations in postmenopausal women with osteoporosis. J Bone Miner Res 14: 518–527PubMedCrossRefGoogle Scholar
  14. 14.
    Khosla S, Arrighi HM, Melton LJ, Atkinson EJ, O’Fallon WM, Dunstan C, et al (2001) Correlates of osteoprotegerin levels in women and men. Osteoporos Int 13: 394–399CrossRefGoogle Scholar
  15. 15.
    Browner WS, Lui LY, Cummings S (2001) Associations of serum osteoprotegerin levels with diabetes, stroke, bone density, fractures and mortality in elderly women. J Clin Endocrinol Metab 86: 631–637PubMedCrossRefGoogle Scholar
  16. 16.
    Szule P, Hofbauer LC, Heufelder AE, Roth S, Delmas PD (2001) Osteoprotegerin serum levels in men: correlation with age, estrogen and testosterone status. J Clin Endocrinol Metab 86: 3162–3165CrossRefGoogle Scholar
  17. 17.
    Haas M Leko-Mohr Z, Roschger P, Kletzmayr J, Schwarz C, Domenig C, et al (2002) Osteoprotegerin and parathyroid hormone as markers of high-turnover osteodystrophy and decreased bone mineralization in hemodialysis patients. Am J Kidney Dis 39: 580–586PubMedCrossRefGoogle Scholar
  18. 18.
    Bekker PJ, Holloway D, Nakanishi A, Arrighi M, Leese PT, Dunstan CR (2001) The effect of a single dose of osteoprotegerin in postmenopausal women. J Bone Miner Res 16: 348–360PubMedCrossRefGoogle Scholar
  19. 19.
    Kanis JA (1997) The diagnosis of osteoporosis. Osteoporos Int 7 [Suppl 3]: S1–5Google Scholar
  20. 20.
    Husdan H, Rapoport A, Locke S, Oreopoulos D (1976) More on adjusting serum Ca for protein. Clin Chem 22: 933–934PubMedGoogle Scholar
  21. 21.
    Genant HK, Wu CY, van Kuijk C, Nevitt MC (1993) Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 16: 348–360Google Scholar
  22. 22.
    Makhulf HA, Mueller SM, Mizuno S, Glowacki J (2000) Age-related decline in osteoprotegerin expression by human bone marrow cells cultured in three-dimensional collagen sponges. Biochem Biophys Res Commun 268: 669–672CrossRefGoogle Scholar
  23. 23.
    Fahrleitner A, Prenner G, Kniepeiss D, Iberer F, Tscheliessnigg KH, Piswanger-Sölkner C, et al (2002) Serum osteoprotegerin levels in patients after liver transplantation and correlation to bone turnover, bone mineral density and fracture status. Wien Klin Wochenschr 114: 717–724PubMedGoogle Scholar
  24. 24.
    Fahrleitner A, Prenner G, Leb G, Tscheliessnigg KH, Piswanger-Sölkner C, Obermayer-Pietsch B, et al (2003) Serum osteoprotegerin is a major determinant of bone density and vertebral fracture status in patients after cardiac transplantation. Bone 32: 96–106PubMedCrossRefGoogle Scholar
  25. 25.
    Yasuda H, Shima N, Nakagawa N, Mochizuki SI, Yano K, Fujise N, et al (1998) Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): a mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro. Endocrinology 139: 1329–1337PubMedCrossRefGoogle Scholar
  26. 26.
    Wong BR, Josien R, Choi Y (1999) TRANCE is a TNF family member that regulates dendritic cell and osteoclast function. J Leucocyte Biol 65: 715–724Google Scholar
  27. 27.
    Kong YY, Yoshida H, Sarosi I, Tan HL, Timms E, Capparelli C, et al (1999) OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymp-node organogenesis. Nature 397: 315–323PubMedCrossRefGoogle Scholar
  28. 28.
    Bu R, McKeon RM, Cao L, Blair HC (2001) Osteoprotegerin (OPG) binds TNF family proteins including TNFα and protects osteoblasts from TNFα-induced apoptosis: a complementary function in addition to effects of OPG on osteoclast differentiation via RANKL. J Bone Miner Res 16 [Suppl 1]: S169 (Abstract)Google Scholar
  29. 29.
    Holt MI, Baattrup A, Eriksen EF (2001) Expression of osteoclast differentiating factor (ODF, RANKL) and osteoprotegerin (OPG) in human bone: role of the bone remodeling compartment in the coupling between resorption and formation. J Bone Miner Res 16 [Suppl 1]: S364 (Abstract)Google Scholar
  30. 30.
    Hofbauer LC, Khosla S, Dunstan CR, Lacey DL, Spelsberg TC, Riggs BL (1999) Estrogen stimulates gene expression and protein production of osteoprotegerin in human osteoblastic cells. Endocrinology 140: 4367–4370PubMedCrossRefGoogle Scholar
  31. 31.
    Hofbauer LC, Gori F, Riggs BL, Lacey DL, Dunstan CR, Spelsberg TC, et al (1999) Stimulation of osteoprotegerin ligand and inhibition of osteoprotegerin production by glucocorticoids in human osteoblastic lineage cells: potential paracrine mechanisms of glucocorticoid-induced osteoporosis. Endocrinology 140: 4382–4389PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2003

Authors and Affiliations

  • Astrid Fahrleitner-Pammer
    • 1
  • Harald Dobnig
    • 1
  • Claudia Piswanger-Soelkner
    • 1
  • Christine Bonelli
    • 1
  • Hans-Peter Dimai
    • 1
  • Georg Leb
    • 1
  • Barbara Obermayer-Pietsch
    • 1
  1. 1.Department of Internal Medicine, Division of EndocrinologyKarl-Franzens UniversityGrazAustria

Personalised recommendations