New Generation Computing

, Volume 13, Issue 3–4, pp 245–286 | Cite as

Inverse entailment and progol

  • Stephen Muggleton
Special Issue

Abstract

This paper firstly provides a re-appraisal of the development of techniques for inverting deduction, secondly introduces Mode-Directed Inverse Entailment (MDIE) as a generalisation and enhancement of previous approaches and thirdly describes an implementation of MDIE in the Progol system. Progol is implemented in C and available by anonymous ftp. The re-assessment of previous techniques in terms of inverse implication leads to new results for learning from positive data and inverting implication between pairs of clauses.

Keywords

Learning Logic Programming Induction Predicate Invention Inverse Resolution Inverse Entailment Information Compression 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    Bain, M. and Muggleton, S., “Non-Monotonic Learning,” inMachine Intelligence 12 (D. Michie, ed.), Oxford University Press, 1991.Google Scholar
  2. 2).
    Bratko, I., Muggleton, S., and Varsek, A., “Learning Qualitative Models of Dynamic Systems,” inProceedings of the Eighth International Machine Learning Workshop, San Mateo, Ca, Morgan-Kaufmann, 1991.Google Scholar
  3. 3).
    Clocksin, W.F. and Mellish, C.S.,Programming in Prolog, Springer-Verlag, Berlin, 1981.MATHGoogle Scholar
  4. 4).
    Cohen, W., “Learnability of Restricted Logic Programs,” inProceedings of the 3rd International Workshop on Inductive Logic Programming (S. Muggleton, ed.) (Technical Report IJS-DP-6707 of the Josef Stefan Institute, Ljubljana, Slovenia), pp. 41–72, 1993.Google Scholar
  5. 5).
    Conklin, D. and Witten, I., “Complexity-Based Induction,”Technical Report, Department of Computing and Information Science, Queen’s University, Kingston, Ontario, Canada, 1992.Google Scholar
  6. 6).
    Dolsak, B. and Muggleton, S., “The Application of Inductive Logic Programming to Finite Element Mesh Design,” inInductive Logic Programming (S. Muggleton, ed.), Academic Press, London, 1992.Google Scholar
  7. 7).
    Dormer, R., “An Inductive Logic Programming Implementation,” MScthesis, Oxford University Computing Laboratory, Oxford, 1993.Google Scholar
  8. 8).
    Feng, C., “Inducing Temporal Fault Diagnostic Rules from a Qualitative Model,” inInductive Logic Programming (S. Muggleton, ed.), Academic Press, London, 1992.Google Scholar
  9. 9).
    Gillies, D.A., “Confirmation Theory and Machine Learning,” inProceedings of the Second Inductive Logic Programming Workshop, Tokyo,ICOT Technical Report, TM-1182, 1992.Google Scholar
  10. 10).
    Gold, E.M., “Language Identification in the Lmit,”Information and Control, 10, pp. 447–474, 1967.MATHCrossRefGoogle Scholar
  11. 11).
    Gottlob, G., “Subsumption and Implication,”Information Processing Letters, 24, 2, pp. 109–111, 1987.MATHCrossRefMathSciNetGoogle Scholar
  12. 12).
    Grobelnik, M., “Markus—An Optimized Model Inference System,” inProceedings of the ECAI Workshop on Logical Approaches to Machine Learning, 1992.Google Scholar
  13. 13).
    Idestam-Almquist, P., “Learning Missing Clauses by Inverse Resolution,” inProceedings of the International Conference on Fifth Generation Computer Systems, Tokyo, ICOT, pp. 610–617, 1992.Google Scholar
  14. 14).
    Idestam-Almquist, P., “Generalization of Clauses”PhD Thesis, Sect. 1, Stockholm univ. 1993.Google Scholar
  15. 15).
    Jevons, W.S., “On the Mechanisation of Deductive Inference,”Philosophical Transactions of the Royal Society of London, 160, pp. 497–518, 1870.CrossRefGoogle Scholar
  16. 16).
    Jevons, W.S.,The Principles of Science: A Treatise on Logic and Scientific Method, Macmillan, London, 1874.Google Scholar
  17. 17).
    Kakas, A.C., Kowalski, R.A., and Toni, F., “Abductive Logic Programming,”Journal of Logic and Computation, 2, 1992.Google Scholar
  18. 18).
    King, R., Muggleton, S., Lewis, R., and Sternberg, M., “Drug Design by Machine Learning: The Use of Inductive Logic Programming to Model the Structure-Activity Relationships of Trimethoprim Analogues Binding to Dihydrofolate Reductase,”Proceedings of the National Academy of Sciences, 89, 23, 1992.CrossRefGoogle Scholar
  19. 19).
    Krishnamurthy, V.,Combinatorics: Theory and Applications, Ellis Horwood, Chichester, England, 1986.MATHGoogle Scholar
  20. 20).
    van der Laag, P.R. and Nienhuys-Cheng., “Subsumption and Refinement in Model Inference,” inProceedings of the 6th European Conference on Machine Learning, volume 667 of Lecture Notes in Artificial Intelligence (P. Brazdil, ed.) Springer-Verlag, pp. 95–114, 1993.Google Scholar
  21. 21).
    van der Laag, P.R. and Nienhuys-Cheng., “Existence and Nonexistence of Complete Refinement Operators,” inProceedings of the 7th European Conference on Machine Learning (F. Bergadano and L. De Raedt, eds.),volume 784 of Lecture Notes in Artificial Intelligence, Springer-Verlag, pp. 307–322, 1994.Google Scholar
  22. 22).
    Lapointe, S. and Matwin, S., “Sub-Unification: A Tool for Efficient Induction of Recursive Programs,” inProceedings of the Ninth International Machine Learning Conference, Los Altos, Morgan Kaufmann, 1992.Google Scholar
  23. 23).
    Lee, C., “A Completeness Theorem and a Computer Program for Finding Theorems Derivable from Given Axioms,”Ph.D. thesis, University of California, Berkeley, 1967.Google Scholar
  24. 24).
    Li, M. and Vitanyi, P.,An Introduction to Kolmogorov Complexity and Its Applications, Springer-Verlag, Berlin, 1993.MATHGoogle Scholar
  25. 25).
    Ling, C.X., “Learning the Past Tense of English Verbs: The Symbolic Pattern Associators vs. Connectionist Models,”Journal of Artificial Intelligence Research, 1, pp. 209–229, 1994.Google Scholar
  26. 26).
    Lloyd, J.W.,Foundations of Logic Programming, Springer-Verlag, Berlin, 1984.MATHGoogle Scholar
  27. 27).
    Meltzer, B., “Power Amplification for Automatic Theorem Proving,” inMachine Intelligence 5 (B. Meltzer and D. Michie, eds.), Edinburgh University Press, Edinburgh, pp. 165–179, 1969.Google Scholar
  28. 28).
    Michalski, R. and Larson, J., “Incremental Generation of vl1 Hypotheses: The Underlying Methodology and the Description of Program AQ11,”ISG 83–5, Computer Science Department, University of Illinois at Urbana-Champaign, 1980.Google Scholar
  29. 29).
    Muggleton, S., “Duce, an Oracle Based Approach to Constructive Induction,” inIJCAI-87, Kaufmann, pp. 287–292, 1987.Google Scholar
  30. 30).
    Muggleton, S., “A Strategy for Constructing New Predicates in First Order Logic,” inProceedings of the Third European Working Session on Learning, Pitman, pp. 123–130, 1988.Google Scholar
  31. 31).
    Muggleton, S., “Inductive Logic Programming,”New Generation Computing, 8, 4, pp. 295–318, 1991.MATHCrossRefGoogle Scholar
  32. 32).
    Muggleton, S., “Inverting the Resolution Principle,” inMachine Intelligence 12, Oxford University Press, 1991.Google Scholar
  33. 33).
    Muggleton, S., “Inverting Implication,” inProceedings of the Second Inductive Logic Programming Workshop, Tokyo,ICOT Technical Report, TM-1182, 1992.Google Scholar
  34. 34).
    Muggleton, S., “Bayesian Inductive Logic Programming,” inProceedings of the Eleventh International Machine Learning Conference (W. Cohen and H. Hirsh, eds.), San Mateo, CA, Morgan-Kaufmann, pp. 371–379, 1994.Google Scholar
  35. 35).
    Muggleton, S., “Inductive Logic Programming: Derivations, Successes and Shortcomings,”SIGART Bulletin, 5, 1 pp. 5–11, 1994.CrossRefGoogle Scholar
  36. 36).
    Muggleton, S., “Predicate Invention and Utilization,”Journal of Experimental and Theoretical Artificial Intelligence, 6, 1, pp. 127–130, 1994.CrossRefGoogle Scholar
  37. 37).
    Muggleton, S. and Buntine, W., “Machine Invention of First-Order Predicates by Inverting Resolution,” inProceedings of the Fifth International Conference on Machine Learning, Kaufmann, pp. 339–352, 1988.Google Scholar
  38. 38).
    Muggleton, S. and Feng, C., “Efficient Induction of Logic Programs,” inProceedings of the First Conference on Algorithmic Learning Theory, Tokyo, Ohmsha, 1990.Google Scholar
  39. 39).
    Muggleton, S., King, R., and Sternberg, M., “Protein Secondary Structure Prediction Using Logic-Based Machine Learning,”Protein Engineering, 5, 7, pp. 647–657, 1992.CrossRefGoogle Scholar
  40. 40).
    Muggleton, S. and Page, C.D., “Self-Saturation of Definite Clauses,” inProceedings of the Fourth International Inductive Logic Programming Workshop, (S. Wrobel, ed.) Gesellschaft für Mathematik und Datenverarbeitung MBH, pp. 161–174, 1994.GMD-Studien Nr 237.Google Scholar
  41. 41).
    Muggleton, S. and Page, D., “Beyond First- Order Learning: Inductive Learning with Higher-Order Logic,”Technical Report, PRG-TR-13-94, Oxford University Computing Laboratory, Oxford, 1994.Google Scholar
  42. 42).
    Muggleton, S. and Page, D., “A Learnability Model for Universal Representations,”Technical Report, PRG-TR-3-94, Oxford University Computing Laboratory, Oxford, 1994.Google Scholar
  43. 43).
    Muggleton, S. and De Raedt, L., “Inductive Logic Programming: Theory and Methods,”Journal of Logic Programming, 19, 20, pp. 629–679, 1994.CrossRefMathSciNetGoogle Scholar
  44. 44).
    Muggleton, S., Srinivasan, A., and Bain, M., “Compression, Significance and Accuracy,” inProceedings of the Ninth International Machine Learning Conference (D. Sleeman and P. Edwards, eds.), San Mateo, CA, Morgan-Kaufmann, pp. 338–347, 1992.Google Scholar
  45. 45).
    Nilsson, N.J.,Principles of Artificial Intelligence, Tioga, Palo Alto, CA, 1980.MATHGoogle Scholar
  46. 46).
    Plotkin, G.D., “A Note on Inductive Generalisation,” inMachine Intelligence 5 (B. Meltzer and D. Michie, eds.), Edinburgh University Press, Edinburgh, pp. 153–163, 1969.Google Scholar
  47. 47).
    Plotkin, G.D., “Automatic Methods of Inductive Inference,”Ph.D thesis, Edinburgh University, August 1971.Google Scholar
  48. 48).
    Popplestone, R.J., “An Experiment in Automatic Induction,” inMachine Intelligence 5 (B. Meltzer and D. Michie, eds.), Edinburgh University Press, Edinburgh, pp. 203–215, 1969.Google Scholar
  49. 49).
    Quinlan, J.R., “Learning Logical Definitions from Relations,”Machine Learning, 5, pp. 239–266, 1990.Google Scholar
  50. 50).
    Quinlan, J.R., “Past Tenses of Verbs and First-Order Learning,” inProceedings of the 7th Australian Joint Conference on Artificial Intelligence (C. Zhang, J. Debenham, and D. Lukose, eds.), Singapore, World Scientific, pp. 13–20, 1993.Google Scholar
  51. 51).
    Reynolds, J.C., “Transformational Systems and the Algebraic Structure of Atomic Formulas,” inMachine Intelligence 5 (B. Meltzer and D. Michie, eds.), Edinburgh University Press, Edinburgh, pp. 135–151, 1969.Google Scholar
  52. 52).
    Rissanen, J., “Modeling by Shortest Data Description,”Automatica, 14, pp. 465–471, 1978.MATHCrossRefGoogle Scholar
  53. 53).
    Robinson, J.A., “A Machine-Oriented Logic Based on the Resolution Principle,”JACM, 12, 1, pp. 23–41, January 1965.MATHCrossRefGoogle Scholar
  54. 54).
    Rouveirol, C., “Extensions of Inversion of Resolution Applied to Theory Completion,” inInductive Logic Programming (S. Muggleton, ed.), Academic Press, London, 1992.Google Scholar
  55. 55).
    Rouveirol C. and Puget, J-F., “A Simple and General Solution for Inverting Resolution,” inEWSL-89, London, Pitman, pp. 201–210, 1989.Google Scholar
  56. 56).
    Shannon, C.E. and Weaver, W.,The Mathematical Theory of Communication, University of Illinois Press, Urbana, 1963.MATHGoogle Scholar
  57. 57).
    Shapiro, E.Y.,Algorithmic Program Debugging, MIT Press, 1983.Google Scholar
  58. 58).
    Srinivasan, A., Muggleton, S.H., King, R.D., and Sternberg, M.J.E., “Mutagenesis; ILP Experiments in a Non-Determinate Biological Domain,” inProceedings of the Fourth International Inductive Logic Programming Workshop (S. Wrobel, ed.), Gesellschaft für Mathematik und Datenverarbeitung MBH, 1994.GMD-Studien Nr 237.Google Scholar
  59. 59).
    Srinivasan, A., Muggleton, S.H., King, R.D., and Sternberg, M.J.E., “The Effect of Background Knowledge in Inductive Logic Programming: A Case Study,”Technical Report, PRG-TR-9-95, Oxford University Computing Laboratory, Oxford, 1995.Google Scholar
  60. 60).
    Srinivasan, A., Muggleton, S.H., King, R.D., and Sternberg, M.J.E., “Theories for Mutagenicity: A Study of First-Order and Feature Based Induction,”Technical Report, PRG-TR-8-95, Oxford University Computing Laboratory, Oxford, 1995.Google Scholar
  61. 61).
    Wirth, R., “Completing Logic Programs by Inverse Resolution,” inEWSL-89, London, Pitman, pp. 239–250, 1989.Google Scholar

Copyright information

© Ohmsha, Ltd. and Springer 1995

Authors and Affiliations

  • Stephen Muggleton
    • 1
  1. 1.Oxford University Computing LaboratoryOxfordUK

Personalised recommendations