Journal of Electronics

, Volume 22, Issue 5, pp 490–497

A new public-key encryption scheme based on LUCas sequence

  • Jiang Zhengtao 
  • Hao Yanhua 
  • Wang Yumin 
Papers

Abstract

Investigated the properties of LUCas sequence(LUC), the paper proposed a new variant of (probabilistic) public-key encryption scheme. Security analysis of the proposed encryption schemes shows that its one-wayness is equivalent to partial LUC discrete logarithm problem in ZN, and for the proposed probabilistic encryption scheme, its semantic security is equivalent to decisional LUC Diffie-Hellman problem in ZN. At last, the efficiency of the proposed schemes is briefly analyzed.

Key words

Probabilistic public-key encryption scheme LUCas sequence(LUC) Discrete logarithm Integer factorization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    W. Diffie, M. E. Hellman, New directions in cryptography, IEEE Trans. on Information Theory, IT-22(1976)6, 644–654.CrossRefMathSciNetGoogle Scholar
  2. [2]
    R. Rivest, A. Shamir, et al., A method for obtaining digital signatures and public-key cryptosystems, Communications of the ACM, 21(1978)2, 120–126.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    P. Smith, M. Lennon, LUC: A new public-key system, Proceedings of the IFIP TC11, Ninth International Conference on Information Security: Computer Security, Toronto, May 12–14, 1993, 103–117.Google Scholar
  4. [4]
    D. Bleichenbacher, W. Bosma, et al., Some remarks on Lucas-based cryptosystems, Advances in Cryptology-CRYPTO’95, LNCS 963, Berlin, Springer-Verlag, 1995, 386–396.Google Scholar
  5. [5]
    M. Adleman, J. DeMarrais, A subexponential algorithm over all finite fields, Advances in Cryptology-CRYPTO’93, LNCS 773, Berlin, Springer-Verlag, 1993, 147–158.Google Scholar
  6. [6]
    A. E. Brouwer, R. Pellikaan, et al., Doing more with fewer bits, Advances in Cryptology-ASIACRYPT’99, LNCS 1716, Berlin, Springer-Verlag, 1999, 321–332.Google Scholar
  7. [7]
    P. Paillier, Efficient public-key cryptosystem provably secure against active adversaries, Advances in Cryptology-ASIACRYPT’99, LNCS 1716, Springer-Verlag, 1999, 159–179.Google Scholar
  8. [8]
    I. B. Damgard, M. J. Jurik, Efficient protocols based on probabilistic encryption using composite degree residue classes, http://www.brics.dk/RS/00/5/BRICS-RS-00-5.pdf.Google Scholar
  9. [9]
    S. J. Li, X. Q. Mou, et al., Problems with a probabilistic encryption scheme based on chaotic systems, International Journal of Bifurcation and Chaos, 13(2003)10, 3063–3077.MATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    D. Boneh, The decision Diffie-Hellman problem, Third Algorithmic Number Theory Symposium, LNCS 1423, Berlin, Springer-Verlag, 1998, 48–63.CrossRefGoogle Scholar
  11. [11]
    S. M. Yen, C. S. Laih, Common-multiplicand multiplication and its applications to public key cryptography, Electronics Letters, 29(1993)17, 1583–1584.CrossRefGoogle Scholar
  12. [12]
    S. M. Yen, C. S. Laih, Fast algorithms for LUC digital signature computation, IEE Proceeding of Computers and Digital Techniques, 142(1995)2, 165–169.CrossRefGoogle Scholar

Copyright information

© Science Press 2005

Authors and Affiliations

  • Jiang Zhengtao 
    • 1
  • Hao Yanhua 
    • 1
  • Wang Yumin 
    • 1
  1. 1.National Key Lab of Integrated Service NetworksXidian Univ.Xi’anChina

Personalised recommendations