Research on Chemical Intermediates

, Volume 34, Issue 8–9, pp 881–889 | Cite as

Kinetic parameter estimation for 1,1,3,3-tetramethylguanidinum trifluoroacetate ionic liquid in the reaction of glycidyl methacrylate with carbon dioxide

  • Sang-Wook Park
  • Byoung-Sik Choi
  • Dae-Won Park
  • Jae-Wook Lee


The ionic liquid (IL) of 1,1,3,3-tetramethyl guanidinum trifluoroacetate, which was synthesized by reacting 1,1,3,3-tetramethylguanidine (TMG) and trifluoroacetic acid, was used as a catalyst of the reaction between carbon dioxide and glycidyl methacrylate (GMA)., The initial absorption rate of carbon dioxide into GMA solutions containing IL was measured in a semi-batch stirred tank with a plane gas-liquid interface at 101.3 kPa to obtain the reaction kinetics. The reaction rate constants of the reaction between carbon dioxide and GMA were evaluated from analysis of the mass transfer mechanism accompanied by the elementary reactions based on the film theory. Solvents such as toluene,N-methyl-2-pirrolidinone and dimethyl sulfoxide affected the reaction rate constants.


Ionic liquid gas absorption carbon dioxide gly cidyl methacrylate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Aresta, in:Carbon Dioxide Recovery and Utilization, p. 211. Kluwer, Boston, MA (2003).Google Scholar
  2. 2.
    L. K. Daraiswany and M. M. Sharma, in:Heterógeneous Reaction: Analysis, Example and Reactor Design, p. 17. Wiley, New York, NY (1980).Google Scholar
  3. 3.
    S. W. Park, D. W. Park, T. Y. Kim, M. Y. Park and K. J. Oh,Catal. Today 98, 493 (2004).CrossRefGoogle Scholar
  4. 4.
    S. W. Park, B. S. Choi, D. W. Park and J. W. Lee,J. Ind. Eng. Chem.,11, 527 (2005).Google Scholar
  5. 5.
    S. W. Park and J. Lee,Stud. Surface Sci. Catal.,159, 345 (2006).CrossRefGoogle Scholar
  6. 6.
    S. W. Park, B. S. Choi, B. D. Lee, D. W. Park and S. S. Kim,Sep. Sci. Technol.,41, 829 (2006).CrossRefGoogle Scholar
  7. 7.
    N. Kihara and T. Endo,Macromolecules,25, 4824 (1992).CrossRefGoogle Scholar
  8. 8.
    D. Gomez-Diaz, J. C. Mejuto and J. M. Navaza,Chem. Eng. Sci.,61, 2330 (2006).CrossRefGoogle Scholar
  9. 9.
    H. Gao, B. Han, J. Li, T. Jiang, Z. Liu, W. Wu, Y. Chang and J. Zhang,Synth. Commun.,34, 3083 (2004).CrossRefGoogle Scholar
  10. 10.
    M. L. Kennard and A. Meisen,J. Chem. Eng. Data,29, 309 (1984).CrossRefGoogle Scholar
  11. 11.
    P. V. Danckwerts,Gas-Liquid Reaction. McGraw-Hill, New York, NY (1970).Google Scholar
  12. 12.
    S. W. Park, K. W. Kim and I. J. Sohn,Sep. Purif. Technol.,19, 43 (2000).CrossRefGoogle Scholar
  13. 13.
    H. F. Herbrandson and F. B. Neufeld,J. Org. Chem.,31, 1140 (1966).CrossRefGoogle Scholar
  14. 14.
    J. Brandrup and E. H. Immergut, in:Polymer Handbook, 2nd edn, p. IV341. Wiley, New York, NY (1975).Google Scholar
  15. 15.
    R. T. Morrison and R. N. Boyd, in:Organic Chemistry, 4th edn, p. 235. Allyn and Bacon, Toronto, ON (1983).Google Scholar
  16. 16.
    T. Nishikubo, A. Kameyama, J. Yamashida, T. Hukumitsu, C. Maejima and M. Tomoi,J. Polym. Sci. Part A: Polym. Chem. 33, 1011 (1995).CrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Sang-Wook Park
    • 1
  • Byoung-Sik Choi
    • 1
  • Dae-Won Park
    • 1
  • Jae-Wook Lee
    • 2
  1. 1.Division of Chemical EngineeringPusan National UniversityBusanSouth Korea
  2. 2.Division of Chemical EngineeringSogang UniversitySeoulSouth Korea

Personalised recommendations