Advertisement

Journal of Plant Biology

, Volume 51, Issue 6, pp 408–412 | Cite as

Physical mapping by FISH and GISH of rDNA loci and discrimination of genomes A and B inScilla scilloides complex distributed in Korea

  • Hae-Woon Choi
  • Jeong-Soon Kim
  • Sang-Hoon Lee
  • Jae-Wook Bang
Article

Abstract

The chromosomal locations of the 18S-26S (45S) and 5S rDNA loci in cytotypes AA, BB, and AABB ofScilla scilloides Complex from Korea were physically mapped using multicolor fluorescencein situ hybridization (McFISH). Genomicin situ hybridization (GISH) was also performed to distinguish between the AA and BB genomes in allotetraploid AABB plants. One 18S-26S rDNA locus was detected in both AA (a2) and BB (b1 ); one locus also was found in the allopolyploid AABB (b1 ). This demon-strated the loss of that locus in genome A. GISH with biotin-labeled DNA from the BB genome and digoxigenin-labeled 18S-26S rDNA probes revealed that the 18S-26S rDNA in AABB plants was localized in the nucleolus organizer region (NOR) of genome B. One and two 5S rDNA loci were found in diploids AA and BB, respectively. As expected, all three 5S rDNA loci were detected in the AABB plants. The sequence identities of the 5S rDNA genes among cytotypes AA and BB, AA and AABB, and BB and AABB were 99%, 95%, and 95%, respectively.

Keywords

FISH genome GISH rDNA loci Scilla scilloides 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Anamthawat-Jonsson K, Schwarzacher T, Leitch AR, Bennett MD, Heslop-Harrison JS (1990) Discrimination between closely relatedTriticeae species using genomic DNA as a probe. Theor Appl Genet 79: 721–728CrossRefGoogle Scholar
  2. Araki H (1971) Cytogenetics ofScilla scilloides Complex. Homoeology between genomes A (x=8) and B (x=9). Jpn J Genet 46: 265–275CrossRefGoogle Scholar
  3. Araki H (1972) Cytogenetics ofScilla scilloides Complex. Euploid and aneuploid offspring from allo-triploids in a natural population. Jpn J Genet 47: 73–83CrossRefGoogle Scholar
  4. Araki H (1985) The distribution of diploids and polyploids ofScilla scilloides complex in Korea. Genetica 66: 3–10CrossRefGoogle Scholar
  5. Araki H, Hidaka S, Takahashi S (1976) Cytogenetics ofScilla scilloides Complex. VI. The structures of natural populations. Bot Mag Tokyo 89: 83–91CrossRefGoogle Scholar
  6. Bennett ST, Kenton AY, Bennett MD (1992) Genomicin situ hybridization reveals the allopolyploid nature ofMilium montanum (Gramineae). Chromosoma 101: 420–424CrossRefGoogle Scholar
  7. Bennett ST, Thomas SM (1991) Karyological analysis and genome size inMilium (Gramineae) with special reference to polyploidy and chromosomal evolution. Genome 34: 868–878Google Scholar
  8. Choi HW (1996) Cytogenetic Diversity inScilla scilloides Complex from Korean Natural Populations and Chromosome Stability in Somaclones. Ph D. Thesis, Chungnam National University, Daejeon, KoreaGoogle Scholar
  9. Choi HW, Bang JW, Kim YJ (1997) Giemsa C-banded karyotype ofScilla scilloides Complex. Kor J Genet 19: 251 -256Google Scholar
  10. Choi HW, Lee WK, Choi EY, Park JH, Bang JW (2004) Geographical distribution of cytotypes and genomic structures in natural populations of theScilla scilloides Complex in Korea. J Plant Biol 47: 322–329CrossRefGoogle Scholar
  11. Choi HW, Song H, Koo DH, Bang JW, Hur Y (2007) Molecular and cytological characterization of species-specific repetitive sequences forAngelica acutiloba. Kor J Genet 29: 503–511Google Scholar
  12. Ding K, Ge S, Hong D, Yu Z (1998) Cytotype variation and cytogeography ofScilla sinensis (LOURIRO) MERRILL (Hyacinthaceae) in China. Hereditas 129: 151–160CrossRefGoogle Scholar
  13. Dover G (1982) Molecular drive: Cohesive mode of species evolution. Nature 9: 111–116CrossRefGoogle Scholar
  14. Flavell RB (1989) Variation in structure and expression of ribosomal DNA loci in wheat. Genome 32: 925–929Google Scholar
  15. Fukui K, Iijima K (1991) Somatic chromosome map of rice by imaging methods. Theor Appl Genet 81: 589–596CrossRefGoogle Scholar
  16. Ge XH, Li ZY (2007) Intra- and intergenomic homology of B-genome chromosomes in trigenomic combinations of the cultivatedBrassica species revealed by GISH analysis. Chromosome Res 15: 849–861PubMedCrossRefGoogle Scholar
  17. Graham GC, Mayers P, Henly PJ (1994) Simple and rapid method for the preparation of fungal genomic DNA for PCR and RAPD analysis. BioTechniques 16: 2–3Google Scholar
  18. Haga T, Noda S (1976) Cytogenetics of theScilla scilloides Complex. I. Karyotype, genome, and population. Genetica 46: 161–176CrossRefGoogle Scholar
  19. Hizume M, Araki H (1994) Chromosomal localization of rRNA genes in six cytotypes ofScilla scilloides Druce. Cytologia 59: 35–42Google Scholar
  20. Hizume M, Araki H (1996) Discrimination of chromosomes belonging to the genomes A and B in polyploids ofScilla scilloides, Liliaceae by genomicin situ hybridization. La Kromosomo II1 83-84: 2885–2892Google Scholar
  21. Hizume M, Araki H (1997) Chromosomal localization of 5S rDNA in the genomes A and B of theScilla scilloides Complex, Liliaceae. Chromosome Sci 1: 65–67Google Scholar
  22. Jiang J, Gill BS (2006) Current status and the future of fluorescencein situ hybridization (FISH) in plant genome research. Genome 49: 1057–1068PubMedCrossRefGoogle Scholar
  23. Kim SY, Choi HW, Koo DH, Lee WK, Lee J, Bang JW (2006) Characterization of eightRumex species by FISH (fluorescencein situ hybridization) and 5S rDNA spacer sequences. Kor J Genet 28: 243–251Google Scholar
  24. Leitch AR, Mosgöller W, Schwarzacher T, Bennett MD, Heslop-Harrison JS (1990) Genomicin-situ hybridization to sectioned nuclei shows chromosome domains in grass hybrids. J Cell Sci 95: 335–341PubMedGoogle Scholar
  25. Lim KY, Matyasek R, Kovarik A, Fulnecek J, Leitch AR (2005) Molecular cytogenetics and tandem repeat sequence evolution in the allopolyploidNicotiana rustica compared with diploid progenitorsN. paniculata andN. undulata. Cytogenet Genome Res 109: 298–309PubMedCrossRefGoogle Scholar
  26. Maekawa F (1944) Prehistoric-naturalized plants to Japan proper. Acta Phytotax Geobot 13: 274–279Google Scholar
  27. McIntyre CL, Winberg B, Houchins K, Appels R, Baum BR (1992) Relationships betweenOryza species (Poaceae) based on 5S DNA sequences. Plant Syst Evol 183: 249–264CrossRefGoogle Scholar
  28. Mochizuku K, Umeda M, Ohtsubo H, Ohtsubo E (1992) Characterization of a plant SINE, p-SINE1, in rice genomes. Jpn J Genet 67: 155–166CrossRefGoogle Scholar
  29. Morinaga T (1932) A preliminary note on the karyological types ofScilla japonica Bak. Jpn J Genet 7: 202–205CrossRefGoogle Scholar
  30. Mukai Y, Nakahara Y, Yamamoto M (1993) Simultaneous discrimination of the three genomes in hexaploid wheat by multicolorin situ hybridization using total genomic and highly repeated DNA probes. Genome 36: 489–494PubMedCrossRefGoogle Scholar
  31. Navashin MS (1928) Amphiplastie-eine neue karyologische Erscheinung. Proc Intl Conf Genet 5: 1148–1152Google Scholar
  32. Noda S (1974) Cytogenetics ofScilla scilloides Complex. II. Evidence for homoeologous relationship between the genomes. Cytologia 39: 777–782Google Scholar
  33. Okabe S (1938) Uber den karyotypus einer n = 9 chromosomigen rasse vonScilla thunbergii Miyabe et Kudo. Bot Zool 6: 481–483Google Scholar
  34. Ritossa F (1973) Crossing-over between X and Y chromosomes during rDNA magnification inDrosophila melanogaster. Proc Natl Acad Sci 70: 1950–1955PubMedCrossRefGoogle Scholar
  35. Schwarzacher T, Leitch AR, Bennett MD, Heslop-Harrison JS (1989)In situ localization of parental genomes in a wide hybrid. Ann Bot 64: 315–324Google Scholar
  36. Seo JH, Lee BH, Seo BB, Yoon HS (2007a) Identification of a molecular marker and chromosome mapping of the 5S rRNA gene inAllium sacculiferum. J Plant Biol 50: 687–691CrossRefGoogle Scholar
  37. Seo JH, Pak JH, Seo BB (2007b) Sequence variation among tandem repeat unit of 5S rDNA gene and phylogenetic relationship in four taxa ofDendranthema. Kor J Genet 29:211–218Google Scholar
  38. Taketa S, Harrison GE, Heslop-Harrison JS (1999) Comparative physical mapping of the 5S and 18S-25S rDNA in nine wildHordeum species and cytotypes. Theor Appl Genet 98: 1–9CrossRefGoogle Scholar
  39. Vaughan HE, Jamilena M, Ruiz Rejón C, Parker JS, Garridoramos MA (1993) Loss of nucleolar-organizer regions during polyploid evolution inScilla autumnalis. Heredity 71: 574–580CrossRefGoogle Scholar
  40. Volkov RA, Zanke C, Panchuk II, Hemleben V (2001) Molecular evolution of 5S rDNA ofSolanum species (sect. Petota): Application for molecular phylogeny and breeding. Theor Appl Genet 103: 1273–1282CrossRefGoogle Scholar
  41. Yu Z, Araki H (1991) The distribution of diploids and polyploids of theScilla scilloides Complex in the northeastern district of China. Bot Mag Tokyo 104: 183–190CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • Hae-Woon Choi
    • 1
  • Jeong-Soon Kim
    • 1
  • Sang-Hoon Lee
    • 1
  • Jae-Wook Bang
    • 1
  1. 1.School of Bioscience and BiotechnologyChungnam National UniversityDaejeonKorea

Personalised recommendations