Andrologie

, Volume 6, Issue 2, pp 141–149 | Cite as

Composition lipidique membranaire durant la préparation de spermatozoïdes à la fécondation

  • S Hamamah
  • G Grizard
  • M Lanson
  • B Sion
  • P Barrière
  • D Royère
Gametes Males: Production et Qualite

Resume

Il existe des différences dans la composition lipidique des membranes plasmique, acrosomique, nucléaire et mitochondriale des spermatozoïdes. Les principaux phospholipides membranaires sont la phosphatidylcholine, la phosphatidyl éthanolamine et la sphingomyéline. La membrane plasmique du spermatozoïde est également riche en acides gras polyinsaturés (AGPI) fixés aux phospholipides. On y observe des dérivés comme C18∶2 n−6, C20∶4 n−6 et des teneurs importantes en acide docosahéxaenoïque (C22∶6 n6).

La quantité de lipides membranaires du sperme humain varie considérablement d'un sujet à l'autre. Ces variations cependant, pourront influencer certaines propriétés fonctionnelles du spermatozoïde telle que la capacitation, la réaction acrosomique et l'expression fusiogène des membranes.

La composition lipidique membranaire peut être altérée au cours de la congélation-décongélation du sperme. Une diminution significative des phospholipides et des AGPI, en particulier l'acide docosahéxaenoïque et l'acide arachidonique, a été observée. Le changement le plus important constaté dans l'architecture lipidique membranaire du sperme congelé-décongelé est une translocation du diphosphatidylglycérol (cardiolipide) du feuillet interne vers le feuillet externe. Un tel changement pourrait avoir un effet délétère sur la réaction acrosomique du spermatozoïde.

Le sperme humain a un rapport molaire cholestérol/phospholipides ≤1.0 et celui-ci décroît par perte du cholestérol pendant la capacitation. Outre la diminution du cholestérol, la méthylation des phospholipides intervient dans les modifications de la fluidité et sur la maturation des récepteurs de la membrane plasmique du spermatozoïde.

Mots clés

spermatozoïde lipides membrane plasmique capacitation 

Abstract

The final modifications that the spermatozoa undergo correspond with the destabilization of their plasma membrane. This indispensable step facilitates the fusion of membranes and primes the signal transduction during fertilization. This destabilization is composed of a series of changes and modulation of the lipids in membranes such as cholestérol, phospholipids and glycolipids.

Several differences exist in the lipid composition of the plasma, acrosome, nuclear and mitochondrial membranes of spermatozoa. The principal membrane phospholipids are phosphatidyl choline, phosphatidyl ethanolamine and sphingomyelin. Plasma membrane of sperm is also rich in polyunsaturated fatty acids (PUFA) linked to phospholipids. Such as C18∶2n−6, C20∶4n−6 and large amounts of docosahexaenoic acid (C22∶6n−6).

The amount of membrane lipids in human sperm varies considerably between patients. This variation, could influence certain functional properties of the sperm cells such as their ability to undergo capacitation, the acrosome reaction and the fusion between sperm and oocyte membranes.

The lipid composition of the human sperm cell can be altered during the process of freezing-thawing. A significant decrease in phospholipids (phosphatidyl choline, phosphatidyl ethanolamine), and PUFA in particular docosahexaenoic acid and arachidonic acid was observed. Human spermatozoa have a molar cholestérol/phopholipid ratio ≤1.0, and reduces during capacitation due to loss of cholestérol. In addition, the decrease in the levels of cholestérol and the methylation of phospholipids is involved in the modification of membrane fluidity and in the maturation of the sperm plasma membrane receptors. Therefore it seems that the methylation is important for the fusion between sperm and oocyte membranes. Intrinsic sperm phospholipase A2 also plays a role in the destabilization of the plasma membrane by producing of lysophospholipid. Therefore this enzyme and free fatty acids are believed to play a role in the acrosome reaction, an indispensable event facilitating the fusion between sperm and oocyte membranes.

Key words

Lipids sperm membrane capacitation 

References

  1. 1.
    ALVAREZ JC, STOREY BD: Evidence for increased lipid peroxidative damage and loss of superoxide dismutase activity as a mode of sublethal cryodamage to human sperm during cryopreservation. J Androl 1992 13: 232–241.PubMedGoogle Scholar
  2. 2.
    BELL M, WANG R, HELLSTROM WJG, SIKKA S: Effect of cryoprotective additives and cryopreservation protocol on sperm membrane lipid peroxidation and recovery of motile human sperm. J Androl 1993 14: 472–478.PubMedGoogle Scholar
  3. 3.
    BREITBART H, LAX J, RUBINSTEIN S, MAGID N, GROSSMAN S: The role of 15-lipoxygenase in the mechanism of acrosomal reaction in mammalian spermatozoa. Biol Reprod 1988 38: 94.Google Scholar
  4. 4.
    DARIN-BENNETT A, WHITE IC: Influence of the cholestérol content of mammalian spermatozoa on susceptibility to cold-shock. Cryobiology 1977 14: 466–470.PubMedCrossRefGoogle Scholar
  5. 5.
    DAVIS BK: Inhibition of fertilizing capacity in mammalian spermatozoa by natural and synthetic vesicles. Symp Pharmacological Effect of Lipids. AOCS Monograph No 5 (Champaign, Il), 1978, pp. 145–157.Google Scholar
  6. 6.
    DAVIS BK: Timing of fertilization in mammals: sperm cholestérol/phospholipid ratio as a determinant of the capacitation interval. Proc Natl Acad Sci USA 1981 78: 7560–7564.PubMedCrossRefGoogle Scholar
  7. 7.
    DEAZ-FONTDEVILA M, BUSTOS-OBREGON E: Cholesterol and polyinsaturated acid enriched diet: effect on kinetics of the acrosome reaction in rabbit spermatozoa. Mol reprod develop 1993 35: 176–180.CrossRefGoogle Scholar
  8. 8.
    FLEMING AD, YANAGIMACHI R: Effects of various lipids on the acrosome reaction and fertilizing capacity of guinea pig spermatozoa with special reference to the possible involvement of lyso phospholipid in the acrosome reaction. Gametes Res 1981 4: 253–273.CrossRefGoogle Scholar
  9. 9.
    FLEMING AD, KOSOWER NS, YANAGIMACHI R: Promotion of capacitation of guinea pig spermatozoa by the membrane mobility agent, A2C, and inhibition by the disulfide-reducing agent, DTT. Gamete Res 1982 5: 19–33.CrossRefGoogle Scholar
  10. 10.
    FLEMING AD, YANAGIMACHI R: Evidence suggesting the importance of fatty acids and the fatty acid moieties of sperm membrane phospholipids in the acrosome reaction of guinea pig spermatozoa. J Exp Zool 1984 229: 485–489.PubMedCrossRefGoogle Scholar
  11. 11.
    GADELLA BM, GADELLA TWJ, JR, COLENBRANDER B, VAN GOLDE LMG, LOPES-CARDOZO M: Visualization and quantification of glycolipid polarity dynamics in the plasma membrane of the mammalian spermatozoon. J Cell Sci 1994 107: 2151–2163.PubMedGoogle Scholar
  12. 12.
    GADELLA BM, LOPES-CARDOZO M, VAN GOLDE LMG, COLENBRANDER B, GADELLA TWJ: Glycolipid migration from the apical to equatorial subdomains of the sperm head plasma membrane precedes the acrosome reaction. Evidence for a primary capacitation event in boar spermatozoa. J Cell Sci 1995 108: 935–946.PubMedGoogle Scholar
  13. 13.
    GO KJ, WOLF DP: The role of sterols in sperm capacitation. Adv Lipid Res 1983 20: 317–330.PubMedGoogle Scholar
  14. 14.
    GOMATHI C, BALASUBRAMANIAN K, VIJAYA BHANU N, SRIKANTH V, GOVINDARAJULU P: Effects of chronic alcoholism on semen Studies on lipids profiles. Int J Androl 1993 16: 175–18.PubMedCrossRefGoogle Scholar
  15. 15.
    GRIZARD G, SION B, JOUANEL P, BENOIT P, BOUCHER D: Cholesterol, phospholipids and markers of the function of the accessory sex glands in the semen of men with hypercholesterolemia. Int J Androl 1995 18: 151–156.PubMedCrossRefGoogle Scholar
  16. 16.
    GUERIN P, GHARRIB A, MENEZO Y: Synthesis of S-Adenosyl-Methionine/S-Adenosyl-Homocysteine in human and bovine ejaculated spermatozoa. Mol Androl 1991 3: 9–17.Google Scholar
  17. 17.
    HAMAMAH S, LANSON M, BARTHELEMY C, GARRIGUE M-G, LANSAC J, MUH J-P, ROYERE D: Treatment of human spermatozoa with follicular fluid can influence lipid content and motility during in vitro capacitation. Reprod Nutr Dev 1993 33: 429–435.PubMedCrossRefGoogle Scholar
  18. 18.
    HAMAMAH S, LANSON M, BARTHELEMY C, GARRIGUE M-G, MUH J-P, ROYERE D, LANSAC J: Analysis of the lipid content and the motility of human sperm after follicular fluid treatment. Andrologia 1995 27: 91–97.PubMedGoogle Scholar
  19. 19.
    HINKOVSKA-GALCHEVA V, PETROVA D, KOUMANOV K: Changes in the phospholipid composition and phospholipid asymmetry of ram sperm plasma membranes after cryopreservation. Cryobiol 1989 26: 70–75.CrossRefGoogle Scholar
  20. 20.
    HOSHI K, AITA T, YANAGIDA K, YOSHIMATSU N, SATO A: Variation in the cholestérol/phospholipid ratio in human spermatozoa and its relationships with capacitation. Human Reprod 1990 5: 71–74.Google Scholar
  21. 21.
    HUACUJA L, DELGADO NM, CALZADA L, WENS A, REYES R, PEDRON N, ROSADO A: Exchanges of lipids between spermatozoa and seminal plasma in normal and pathological human semen. Arch Androl 1981 7: 343–349.PubMedCrossRefGoogle Scholar
  22. 22.
    HUACUJA L, DELGADO NM, HERNANDEZ O, ROSADO A: Differences in lipoprotein composition between heads and tails of human sperm: an infrared spectroscopy study. Arch Androl 1990 24: 17–27.PubMedCrossRefGoogle Scholar
  23. 23.
    LANGLAIS J, ROBERTS KD: A molecular membrane model of sperm sterol content during capacitation and the acrosome reaction of mammalian spermatozoa. Gametes Res 1985 12: 183–224.CrossRefGoogle Scholar
  24. 24.
    LANGLAIS J, KAN FWK, GRANGER L, RAYMOND L, BLEAU G, ROBERTS KD: Identification of sterol acceptors that stimulate cholestérol efflux from human spermatozoa during in vitro capacitation. Gamete Res 1988 20: 185–201.PubMedCrossRefGoogle Scholar
  25. 25.
    LEGAULT Y, BOUTHILLER M, BLEAU G, CHAPEDELAINE A, ROBERTS KD: The sterol and sterol sulfate content of the male hamster reproductive tract. Biol Reprod 1979 20: 1213–1219.PubMedCrossRefGoogle Scholar
  26. 26.
    LLANOS MN, MEIZEL S: Phospholipid methylation increases during capaciattion of golden hamster sperm in vitro. Biol Reprod 1983 28: 1043–1051.PubMedCrossRefGoogle Scholar
  27. 27.
    MACK SR, EVERINGHAM J, ZANEVELD LJD: Isolation and partial characterization of the plasma membrane from human spermatozoa. J Exp Zool 1986 240: 127–136.PubMedCrossRefGoogle Scholar
  28. 28.
    MANN T: The Biochemistry of semen and the male reproductive tarct. New York: Methuen, 1964.Google Scholar
  29. 29.
    MEIZEL S, TURNER KO: Stimulation of an exocytose event, the hamster sperm acrosome reaction, by cis-unsaturated fatty acid. FEBS Lett 1983 161: 315–318.PubMedCrossRefGoogle Scholar
  30. 30.
    MEIZEL S, TURNER KO: The effects of products and inhibitors of arachidonic metabolism on the hamster sperm acrosome reaction. I Exp Zool 1984 207: 107–111.Google Scholar
  31. 31.
    MOOS J, CARRERA A, TESARIK J, MOSS SB, GERTON GL, KOPF GS: Regulation, localization and identity of phosphotyrosine-containing proteins in human sperm. Biol Reprod 1995 52 (Suppl): 168.Google Scholar
  32. 32.
    MULLER CH, RAVNIK SE: Lipid transfer protein: a natural stimulator of the sperm capacitation process. In: Human sperm acrosome reaction. P. Fenichel, J. Parinaud (eds), Colloque INSERM/John Libbey Eurotest, 1995 236: 67–84.Google Scholar
  33. 33.
    OHZU E, YANAGIMACHI R: Acceleration of acrosome reaction in hamster spermatozoa by lysolecithin. J Exp Zool 1982 224: 259–263.PubMedCrossRefGoogle Scholar
  34. 34.
    PADRON RS, MAS J, ZAMORA R, RIVEROL F, LICEA M, MALLEA L, RODRIGUEZ J: Lipids and testicular function. Int Urol Nephrol 1989 21: 515–519.PubMedCrossRefGoogle Scholar
  35. 35.
    POULOS A, WHITE IG: The phospholipid composition of human spermatozoa and seminal plasma. J Reprod Fertil 1973 35: 265–272.PubMedGoogle Scholar
  36. 36.
    RANA APS, MISRA S, MAJUNDER GC, GHOSH A: Phospholipid asymmetry of goat sperm plasma membrane during epididymal maturation. Biochimica Biophysica Acta 1993 1210: 1–7.Google Scholar
  37. 37.
    ROBINSON BS, JOHNSON DW, POULOS A: Novel molecular species of sphingomyelin containing 2-hydroxylated polyenoic very long-chain fatty acids in mammalian testes and spermatozoa. J Bioll Chem 1992 267: 1746–1751.Google Scholar
  38. 38.
    ROLDAN ERS, FLEMING AD: Is a Ca2+-ATPase involved in Ca2+ regulation during capacitation and the acrosme reaction of guinea pig spermatozoa? J Reprod Fertil 1989 85: 297–308.PubMedGoogle Scholar
  39. 39.
    ROLDAN ERS: Role of phosphoinositides in the mammalian sperm acrosome reaction. In: Human sperm acrosome reaction. P Fenichel, J Parinaud (Eds). Colloque INSERM/John Libbey Eurotest, 1995 236: 225–243.Google Scholar
  40. 40.
    RONQUIST G, BRODY I: The prostasome: its secretion and function in man. Biochemistry — Biophysical Acta 822: 203–218.Google Scholar
  41. 41.
    SEBASTIAN SM, SELVARAJ S, ARULDHAS MM, GOVINDARAJULU P: Pattern of neutral and phospholipids in the semen of normospermic, oligospermic and azoospermic men. J Reprod Fertil 1987 79: 373–378.PubMedCrossRefGoogle Scholar
  42. 42.
    SIEGEL I, DUDKIEWICZ AB, FRIBERG J, SUAREZ M, GLEICHER N: Inhibition of sperm motility and agglutination of sperm cells by free fatty acids in whole sperm. Fertil Steril 1986 45: 273–279.PubMedGoogle Scholar
  43. 43.
    SION B, GRIZARD G, NOUAILLES C, BOUCHER D: Analyse des différentes formes de transport des lipides dans le liquide séminal humain. Contracept Fertil Sex 1994 22: 344.Google Scholar
  44. 44.
    SUGKRAROEK P, KATES M, LEADER A, TANPHAICHITR N: Levels of cholestérol and phospholipids in freshly ejaculated sperm and Percollgradient-pelletted sperm from fertile and unexplained infertile men. Fertil Steril 1991 55: 820–827.PubMedGoogle Scholar
  45. 45.
    TESARIK J, FLECHON JE: Distribution of sterols and anionic lipids in human sperm plasma membrane: effect of in vitro capacitation. J Ultrastruct Mol Struct Res 1986 97: 227–237.PubMedCrossRefGoogle Scholar
  46. 46.
    TESARIK J, MENDOZA C, RAMIREZ JP, MOOS J: Solubilized human zona pellucida competes with a fucosylated neoglycoprotein for binding sites on the human sperm surface. Fertil Steril 1993 60: 344–350.PubMedGoogle Scholar

Copyright information

© Société d’Andrologie de Langue Française 1996

Authors and Affiliations

  • S Hamamah
    • 1
  • G Grizard
    • 3
  • M Lanson
    • 2
  • B Sion
    • 3
  • P Barrière
    • 4
  • D Royère
    • 1
  1. 1.Unité de Biologie de la Reproduction, Dépt de Gynécologie-ObstétriqueCHU BretonneauToursFrance
  2. 2.Laboratoire de Biochimie-CHU BretonneauToursFrance
  3. 3.Service de Biologie de la ReproductionHôtel DieuClermont FerrantFrance
  4. 4.Laboratoire de Biologie de la Reproduction, Département de Gynéco-ObsHôpital mère-EnfantNantes

Personalised recommendations