N-acetylcysteine to reduce renal failure after cardiac surgery: a systematic review and meta-analysis

  • Finola Naughton
  • Duminda Wijeysundera
  • Keyvan Karkouti
  • Gordon Tait
  • W. Scott Beattie
Reports Of Original Investigations

Abstract

Purpose: To assess the effect of N-acetylcysteine (NAC) on acute renal failure and important clinical outcomes after cardiac surgery.

Methods: Two reviewers performed literature searches, using EMBASE and PubMed, of randomized controlled trials investigating the renoprotective effect of N-acetylcysteine in cardiac surgery. Treatment effects were calculated as relative risks (RR) with 95% confidence intervals (CI). Heterogeneity and publication bias were assessed using the I2 test and funnel plots, respectively. Meta regression was performed to assess the effect of baseline renal function and the use of aprotinin on renal function.

Results: Seven randomized controlled trials (RCTs) (n=1000) were identified. No study could demonstrate, either independently or meta-analytically, an improvement in the postoperative increase in creatinine, mortality (RR 0.93, 95% CI 0.4 to 2.07), renal failure requiring renal replacement therapy (RR 1.01, 95% CI 0.49 to 2.12), myocardial infarction (RR 0.88, 95% CI 0.36 to 1.88), atrial fibrillation (RR 0.88, 95% CI 0.70 to 1. 10), or stroke (RR 0.69, 95% CI 0.27 to 1.69). There was a small, though significant increase in postoperative blood loss among patients treated with NAC (weighted mean difference I 19 mL 95% CI 51, 187). After meta regression neither increase in postoperative creatinine (r2=0.33) nor renal replacement therapy (r2=0.04) was associated with the baseline creatinine or with NAC dose (r2=0.04).

Conclusion: This analysis did not find that treatment with NAC was associated with clinical renal protection during cardiac surgery, or improvement in other clinical outcomes.

Étude méthodique et meta-analyse : la n-acétylcystéine dans la réduction de l’insuffisance rénale à la suite d’une chirurgie cardiaque

Résumé

Objectif: Évaluer l’effet de la N-acétylcystéine (NAC) sur l’insuffisance rénale aiguë et les devenirs cliniques majeurs après une chirurgie cardiaque.

Méthode: Deux analystes ont réalisé des recherches de littérature dans les bases de données EMBASE et PubMed pour trouver des études randomisées contrôlées étudiant l’effet néphroprotecteur de la N-acétylcystéine en chirurgie cardiaque. Les effets thérapeutiques ont été calculés en tant que risques relatifs (RR) avec des intervalles de confiance (IC) de 95 %. L’hétérogénéité et le biais de publication ont été évalués à l’aide du test I2 et de graphiques en entonnoir (« funnel plots »), respectivement. Une méta-régression a été réalisée afin d’évaluer l’impact de la fonction rénale de base et de l’utilisation d’aprotinine sur la fonction rénale.

Résultats: Sept études randomisées contrôlées (ERC) (n=1000) ont été identifiées. Aucune étude n’a pu démontrer, de façon indépendante ou par méta-analyse, une amélioration dans l’élévation postopératoire de la creatinine, de la mortalité (RR 0,93, IC 95 % 0,4 à 2,07), de l’insuffisance rénale nécessitant une transplantation rénale (RR 1,01, IC 95 % 0,49 à 2,12), d’infarctus du myocarde (RR 0,88, IC 95 % 0,36 à 1,88), de fibrillation auriculaire (RR 0,88, IC 95 % 0,70 à 1,10), ou d’accident vasculaire cérébral (RR 0,69, IC 95 % 0,27 à 1,69). Il y a eu une petite augmentation, tout de même significative, des pertes sanguines postopératoires chez les patients traités avec la NAC (différence moyenne pondérée 119 mL IC 95 % 51, 187). Après la méta-régression, il n’y pas eu d’association entre l’augmentation de la creatinine postopératoire (r2=0,33) ou la transplantation rénale (r2=0,04) et la creatinine de base ou la dose de NAC (r2=0,04).

Conclusion: Cette analyse n’a pas démontré que le traitement avec la NAC a été associé à une protection rénale clinique pendant la chirurgie cardiaque, ni d’amélioration dans les autres devenirs cliniques.

References

  1. 1.
    Chertow GM, Levy EM, Hammermeister KE, Grover F, Daley J. Independent association between acute renal failure and mortality following cardiac surgery. Am J Med 1998; 104: 343–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Conlon PJ, Stafford-Smith M, White WD, et al. Acute renal failure following cardiac surgery. Nephrol Dial Transplant 1999; 14: 1158–62.PubMedCrossRefGoogle Scholar
  3. 3.
    Rosner MH, Okusa MD. Acute kidney injury associated with cardiac surgery. Clin J Am Soc Nephrol 2006; 1: 19–32.PubMedCrossRefGoogle Scholar
  4. 4.
    Zanardo G, Michielon P, Paccagnella A, et al. Acute renal failure in the patient undergoing cardiac operation. Prevalence, mortality rate, and main risk factors. J Thorac Cardiovasc Surg 1994; 107: 1489–95.PubMedGoogle Scholar
  5. 5.
    Abel RM, Buckley MJ, Austen WG, Barnett GO, Beck CH Jr,Fischer JE. Etiology, incidence, and prognosis of renal failure following cardiac operations. Results of a prospective analysis of 500 consecutive patients. J Thorac Cardiovasc Surg 1976; 71: 323–33.PubMedGoogle Scholar
  6. 6.
    Andersson LG, Ekroth R, Bratteby LE, Hallhagen S, Wesslen O. Acute renal failure after coronary surgery—a study of incidence and risk factors in 2009 consecutive patients. Thorac Cardiovasc Surg 1993; 41: 237–41.PubMedCrossRefGoogle Scholar
  7. 7.
    Antunes PE, Prieto D, Ferrao de Oliveira J, Antunes MJ. Renal dysfunction after myocardial revascularization. Eur J Cardiothorac Surg 2004; 25: 597–604.PubMedCrossRefGoogle Scholar
  8. 8.
    Corwin HL, Sprague SM, DeLaria GA, Norusis MJ. Acute renal failure associated with cardiac operations. A case-control study. J Thorac Cardiovasc Surg 1989; 98: 1107–12.PubMedGoogle Scholar
  9. 9.
    Del Duca D, Iqbal S, Rahme E, Goldberg P, de Varennes B. Renal failure after cardiac surgery: timing of cardiac catheterization and other perioperative risk factors. Ann Thorac Surg 2007; 84: 1264–71.PubMedCrossRefGoogle Scholar
  10. 10.
    Mangano CM, Diamondstone LS, Ramsay JG, Aggarwal A, Herskowitz A, Mangano DT. Renal dysfunction after myocardial revascularization: risk factors, adverse outcomes, and hospital resource utilization. The Multicenter Study of Perioperative Ischemia Research Group. Ann Intern Med 1998; 128: 194–203.PubMedGoogle Scholar
  11. 11.
    Mangos GJ, Brown MA, Chan WY, Horton D, Trew P, Whitworth JA. Acute renal failure following cardiac surgery: incidence, outcomes and risk factors. Aust N Z J Med 1995; 25: 284–9.PubMedGoogle Scholar
  12. 12.
    Stallwood MI, Grayson AD, Mills K, Scawn ND. Acute renal failure in coronary artery bypass surgery: independent effect of cardiopulmonary bypass. Ann Thorac Surg 2004; 77: 968–72.PubMedCrossRefGoogle Scholar
  13. 13.
    Chukwuemeka A, Weisel A, Maganti M, et al. Renal dysfunction in high-risk patients after on-pump and off-pump coronary artery bypass surgery: a propensity score analysis. Ann Thorac Surg 2005; 80: 2148–53.PubMedCrossRefGoogle Scholar
  14. 14.
    Grayson AD, Khater M, Jackson M, Fox MA. Valvular heart operation is an independent risk factor for acute renal failure. Ann Thorac Surg 2003; 75: 1829–35.PubMedCrossRefGoogle Scholar
  15. 15.
    Kulka PJ, Tryba M, Zenz M. Preoperative alpha2-adrenergic receptor agonists prevent the deterioration of renal function after cardiac surgery: results of a randomized, controlled trial. Crit Care Med 1996; 24: 947–52.PubMedCrossRefGoogle Scholar
  16. 16.
    Bellomo R, Chapman M, Finfer S, Hickling K, Myburgh J. Low-dose dopamine in patients with early renal dysfunction: a placebo-controlled randomised trial. Australian and New Zealand Intensive Care Society (ANZICS) Clinical Trials Group. Lancet 2000; 356: 2139–43.PubMedCrossRefGoogle Scholar
  17. 17.
    Friedrich JO, Adhikari N, Herridge MS, Beyene J. Meta-analysis: low-dose dopamine increases urine output but does not prevent renal dysfunction or death. Ann Intern Med 2005; 142: 510–24.PubMedGoogle Scholar
  18. 18.
    Stone GW, McCullough FA, Tumlin JA, et al. Fenoldopam mesylate for the prevention of contrast-induced nephropathy: a randomized controlled trial. JAMA 2003; 290: 2284–91.PubMedCrossRefGoogle Scholar
  19. 19.
    Bove T, Landoni G, Calabro MG, et al. Renoprotective action of fenoldopam in high-risk patients undergoing cardiac surgery: a prospective, double-blind, randomized clinical trial. Circulation 2005; 111: 3230–5.PubMedCrossRefGoogle Scholar
  20. 20.
    Landoni G, Biondi-Zoccai GG, Marino G, et al. Fenoldopam reduces the need for renal replacement therapy and in-hospital death in cardiovascular surgery: a meta-analysis. J Cardiothorac Vase Anesth 2008; 22: 27–33.CrossRefGoogle Scholar
  21. 21.
    Cogliati AA, Vellutini R, Nardini A, et al. Fenoldopam infusion for renal protection in high-risk cardiac surgery patients: a randomized clinical study. J Cardiothorac Vase Anesth 2007; 21: 847–50.CrossRefGoogle Scholar
  22. 22.
    Ranucci M, Soro G, Barzaghi N, et al. Fenoldopam prophylaxis of postoperative acute renal failure in high-risk cardiac surgery patients. Ann Thorac Surg 2004; 78: 1332–7; discussion 1337–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Lassnigg A, Donner E, Grubhofer G, Presterl E, Druml W, Hiesmayr M. Lack of renoprotective effects of dopamine and furosemide during cardiac surgery. J Am Soc Nephrol 2000; 11: 97–104.PubMedGoogle Scholar
  24. 24.
    Vargas Hein O, Staegemann M, Wagner D, et al. Torsemide versus furosemide after continuous renal replacement therapy due to acute renal failure in cardiac surgery patients. Ren Fail 2005; 27: 385–92.PubMedCrossRefGoogle Scholar
  25. 25.
    Lombardi R, Ferreiro A, Servetto C. Renal function after cardiac surgery: adverse effect of furosemide. Ren Fail 2003;25:775–86.PubMedCrossRefGoogle Scholar
  26. 26.
    Hummel M, Kuhn M, Bub A, et al. Urodilatin, a new therapy to prevent kidney failure after heart transplantation. J Heart Lung Transplant 1993; 12: 209–17; discussion 217–8.PubMedGoogle Scholar
  27. 27.
    Brenner P, Meyer M, Reichenspurner H, et al. Significance of prophylactic urodilatin (INN: ularitide) infusion for the prevention of acute renal failure in patients after heart transplantation. Eur J Med Res 1995; 1: 137–43.PubMedGoogle Scholar
  28. 28.
    Amano J, Suzuki A, Sunamori M, Tofukuji M. Effect of calcium antagonist diltiazem on renal function in open heart surgery. Chest 1995; 107: 1260–5.PubMedCrossRefGoogle Scholar
  29. 29.
    Bergman AS, Odar-Cederlof I, Westman L, Bjellerup P, Hoglund P, Ohqvist G. Diltiazem infusion for renal protection in cardiac surgical patients with preexisting renal dysfunction. J Cardiothorac Vase Anesth 2002; 16: 294–9.CrossRefGoogle Scholar
  30. 30.
    Kawamura T, Nara N, Kadosaki M, Inada K, Endo S. Prostaglandin El reduces myocardial reperfusion injury by inhibiting proinflammatory cytokines production during cardiac surgery. Crit Care Med 2000; 28: 2201–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Morgera S, Woydt R, Kern H, et al. Low-dose prostacyclin preserves renal function in high-risk patients after coronary bypass surgery. Crit Care Med 2002; 30: 107–12.PubMedCrossRefGoogle Scholar
  32. 32.
    Gouyon JB, Guignard JP. Theophylline prevents the hypoxemia-induced renal hemodynamic changes in rabbits. Kidney Int 1988; 33: 1078–83.PubMedCrossRefGoogle Scholar
  33. 33.
    Katholi RE, Taylor GJ, McCann WP, et al. Nephrotoxicity from contrast media: attenuation with theophylline. Radiology 1995; 195: 17–22.PubMedGoogle Scholar
  34. 34.
    Kramer BK, Preuner J, Ebenburger A, et al. Lack of renoprotective effect of theophylline during aortocoronary bypass surgery. Nephrol Dial Transplant 2002; 17: 910–5.PubMedCrossRefGoogle Scholar
  35. 35.
    Bronicki RA, Backer CL, Baden HP, Mavroudis C, Crawford SE, Green TP. Dexamethasone reduces the inflammatory response to cardiopulmonary bypass in children. Ann Thorac Surg 2000; 69: 1490–5.PubMedCrossRefGoogle Scholar
  36. 36.
    Loef BG, Henning RH, Epema AH, et al. Effect of dexamethasone on perioperative renal function impairment during cardiac surgery with cardiopulmonary bypass. Br J Anaesth 2004; 93: 793–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Morariu AM, Loef BG, Aarts LP, et al. Dexamethasone: benefit and prejudice for patients undergoing on-pump coronary artery bypass grafting: a study on myocardial, pulmonary, renal, intestinal, and hepatic injury. Chest 2005; 128: 2677–87.PubMedCrossRefGoogle Scholar
  38. 38.
    Mandke A, Mevada H, Borkar S, Mandke N. Clinical efficacy of clonidine as an adjunct to anaesthesia for coronary artery bypass graft surgery. Ann Card Anaesth 1999; 2: 22–7.PubMedGoogle Scholar
  39. 39.
    Kaya K, Oguz M, Akar AR, et al. The effect of sodium nitroprusside infusion on renal function during reperfusion period in patients undergoing coronary artery bypass grafting: a prospective randomized clinical trial. Eur J Cardiothorac Surg 2007; 31: 290–7.PubMedCrossRefGoogle Scholar
  40. 40.
    Burns KE, Chu MW, Novick RJ, et al. Perioperative N-acetylcysteine to prevent renal dysfunction in high-risk patients undergoing CABG surgery: a randomized controlled trial. JAMA 2005; 294: 342–50.PubMedCrossRefGoogle Scholar
  41. 41.
    Ristikankare A, Kuitunen T, Kuitunen A, et al. Lack of renoprotective effect of i.v. N-acetylcysteine in patients with chronic renal failure undergoing cardiac surgery. Br J Anaesth 2006; 97: 611–6.PubMedCrossRefGoogle Scholar
  42. 42.
    El-Hamamsy I, Stevens LM, Carrier M, et al. Effect of intravenous N-acetylcysteine on outcomes after coronary artery bypass surgery: a randomized, double-blind, placebo-controlled clinical trial. J Thorac Cardiovasc Surg 2007; 133: 7–12.PubMedCrossRefGoogle Scholar
  43. 43.
    Haase M, Haase-Fielitz A, Bagshaw SM, et al. Phase II, randomized, controlled trial of high-dose N-acetylcysteine in high-risk cardiac surgery patients. Crit Care Med 2007; 35: 1324–31.PubMedCrossRefGoogle Scholar
  44. 44.
    Wijeysundera DN, Beattie WS, Rao V, Gmnton JT, Chan CT. N-acetylcysteine for preventing acute kidney injury in cardiac surgery patients with pre-existing moderate renal insufficiency. Can J Anesth 2007; 54: 872–81.PubMedCrossRefGoogle Scholar
  45. 45.
    Sisillo E, Ceriani R, Bortone F, et al. N-acetylcysteine for prevention of acute renal failure in patients with chronic renal insufficiency undergoing cardiac surgery: a prospective, randomized, clinical trial. Crit Care Med 2008; 36: 81–6.PubMedCrossRefGoogle Scholar
  46. 46.
    Moss M, Wellman DA, Cotsonis GA. An appraisal of multivariable logistic models in the pulmonary and critical care literature. Chest 2003; 123: 923–8.PubMedCrossRefGoogle Scholar
  47. 47.
    Barr LF, Kolodner K. N-acetylcysteine and fenoldopam protect the renal function of patients with chronic renal insufficiency undergoing cardiac surgery. Crit Care Med 2008; 36: 1427–35.PubMedCrossRefGoogle Scholar
  48. 48.
    Wijeysundera DN, Rao V, Beattie WS, Ivanov J, Karkouti K. Evaluating surrogate measures of renal dysfunction after cardiac surgery. Anesth Analg 2003; 96: 1265–73.PubMedCrossRefGoogle Scholar
  49. 49.
    Charlson ME, MacKenzie CR, Gold JP, Shires GT. Postoperative changes in serum creatinine. When do they occur and how much is important? Ann Surg 1989; 209: 328–33.PubMedCrossRefGoogle Scholar
  50. 50.
    Wijeysundera DN, Karkouti K, Dupuis JT, et al. Derivation and validation of a simplified predictive index for renal replacement therapy after cardiac surgery. JAMA 2007; 297: 1801–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Anfossi G, Russo I, Massucco P, Mattiello L, Cavalot F, Trovati M. N-acetyl-L-cysteine exerts direct anti-aggregating effect on human platelets. Eur J Clin Invest 2001; 31: 452–61.PubMedCrossRefGoogle Scholar
  52. 52.
    Loscalzo J. N-Acetylcysteine potentiates inhibition of platelet aggregation by nitroglycerin. J Clin Invest 1985; 76: 703–8.PubMedCrossRefGoogle Scholar
  53. 53.
    Mangano DT, Tudor IC, Dietzel C. The risk associated with aprotinin in cardiac surgery. N Engl J Med 2006; 354: 353–65.PubMedCrossRefGoogle Scholar
  54. 54.
    Mangano DT, Miao T, Vuylsteke A, et al. Mortality associated with aprotinin during 5 years following coronary artery bypass graft surgery. JAMA 2007; 297: 471–9.PubMedCrossRefGoogle Scholar
  55. 55.
    Karkouti K, Beattie WS, Dattilo KM, et al. A propensity score case-control comparison of aprotinin and tranexamic acid in high-transfusion-risk cardiac surgery. Transfusion 2006; 46: 327–38.PubMedCrossRefGoogle Scholar
  56. 56.
    Brown JR, Birkmeyer NJ, O’Connor GT. Meta-analysis comparing the effectiveness and adverse outcomes of antifibrinolytic agents in cardiac surgery. Circulation 2007;115:2801–13.PubMedCrossRefGoogle Scholar

Copyright information

© Canadian Anesthesiologists 2008

Authors and Affiliations

  • Finola Naughton
    • 1
    • 2
  • Duminda Wijeysundera
    • 1
    • 2
  • Keyvan Karkouti
    • 1
    • 2
  • Gordon Tait
    • 1
    • 2
  • W. Scott Beattie
    • 1
    • 2
  1. 1.Department of Anesthesia and Pain ManagementUniversity Health Network, Toronto General HospitalTorontoCanada
  2. 2.the University of TorontoTorontoCanada

Personalised recommendations