Neurotoxicity Research

, Volume 9, Issue 2–3, pp 63–71

Trojan horse or proton force: Finding the right partner(s) for toxin translocation

  • Carolina Trujillo
  • Ryan Ratts
  • Alfred Tamayo
  • Robert Harrison
  • John R. Murphy
Article

Abstract

Much is known about the structure function relationships of a large number of bacterial protein toxins, the nature of their cell surface receptors, and their enzymatic activities which lead to the inactivation of their respective cytosolic targets. Despite this wealth of knowledge a detailed understanding of the mechanisms which underlie translocation of the catalytic domain across the eukaryotic cell membrane to the cytosol, the penultimate event in the intoxication process, have been slow in developing. In the case of diphtheria toxin, two prominent hypotheses have been advanced to explain how the catalytic domain is translocated from the lumen of endocytic vesicles to the target cell cytosol. We discuss each of these hypotheses and provide an overview of recent observations that tend to favor a mechanism employing a Cytosolic Translocation Factor complex in the entry process. This facilitated mechanism of translocation appears to rely upon protein-protein interactions between conserved domains within the transmembrane domain of diphtheria toxin and host cell factors to effect delivery of the enzymatic moiety. We have recently identified a 10 amino acid motif in the transmembrane domain of diphtheria toxin that is conserved in anthrax Lethal and Edema Factors, as well as in botulinum neurotoxins A, C and D. Stable eukaryotic cell transfectants that express a peptide containing this motif become resistant to the toxin, and sensitivity is completely restored by co-expression of siRNA which inhibits peptide expression. Data obtained from use of the protein fusion toxin DAB389IL-2 in cytotoxicity assays using susceptible Hut 102/6TG and resistant transfectant Hut102/6TG-T1 cells, as well as pull down assays have led to the formulation of a working model of facilitated delivery of the diphtheria toxin catalytic domain to the cytosol of target cells which is discussed in detail.

Keywords

Bacterial protein toxins Botulinum neurotoxin Diphtheria toxin Anthrax DAB389IL-2 Vesicles Cytosolic translocation factor complex 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altschul SF, W Gish, W Miller, EW Myers and DJ Lipman (1990) Basic local alignment search tool.J. Mol. Biol. 215, 403–410.PubMedCrossRefGoogle Scholar
  2. Bade S, J Rummel, H Alves, H Bigalke and T Binz (2002) New insights into the translocation process of botulinum neurotoxins.Naunyn Schmiedebergs Arch. Pharmacol. 365, R13.Google Scholar
  3. Bailey TL and C Elkan (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers, In:Proceedings of the Second International Conference on Intelligent Systems for Molecular Biology (AAAI Press: Menlo Park, CA), pp 28–36.Google Scholar
  4. Brandl CJ and CM Deber (1986) Hypothesis about the function of membrane-buried proline residues in transport proteins.Proc. Natl. Acad. Sci. USA 83, 917–921.PubMedCentralPubMedCrossRefGoogle Scholar
  5. Cabiaux V, P Quertenmont, K Conrath, R Brasseur, C Capiau and JM Ruysschaert (1994) Topology of diphtheria toxin B fragment inserted in lipid vesicles.Mol. Microbiol. 1, 43–50.CrossRefGoogle Scholar
  6. Choe S, MJ Bennett, G Fugi, PM Curmi, KA Kantardjieff, RJ Collier and D Eisenberg (1992) The crystal structure of diphtheria toxin.Nature 357, 216–222.PubMedCrossRefGoogle Scholar
  7. Deber CM, M Glibowicka and GA Woolley (1990) Conformations of proline residues in membrane environments.Biopolymers 29, 149–157.PubMedCrossRefGoogle Scholar
  8. Donovan JJ, MI Simon, RK Draper and M Montal (1981) Diphtheria toxin forms transmembrane channels in planar lipid bilayers.Proc. Natl. Acad. Sci. USA 78, 172–176.PubMedCentralPubMedCrossRefGoogle Scholar
  9. Hu HY, PD Huynh, JR Murphy and JC vanderSpek (1998) The effects of helix breaking mutations in the diphtheria toxin transmembrane domain helix layers of the fusion toxin DAB389IL-2.Protein Engn. 9, 811–817.CrossRefGoogle Scholar
  10. Jackson ME, JC Simpson, A Girod, R Pepperkok, LM Roberts and JM Lord (1999) The KDEL retrieval system is exploited byPseudomonas exotoxin A, but not by Shiga-like toxin, during retrograde transport from the Golgi complex to the endoplasmic reticulum.J. Cell. Sci. 112, 467–475.PubMedGoogle Scholar
  11. Johnson VG, PJ Nicholls, WH Habig and RJ Youle (1993) The role of proline 345 in diphtheria toxin translocation.J. Biol. Chem. 268, 3514–3519.PubMedGoogle Scholar
  12. Kagan BL, A Finkelstein and M Colombini (1981) Diphtheria toxin fragment forms large pores in phospholipid bilayer membranes.Proc. Natl. Acad. Sci. USA 78, 4950–4954.PubMedCentralPubMedCrossRefGoogle Scholar
  13. Kochi SK and RJ Collier (1993) DNA fragmentation and cytolysis in U937 cells treated with diphtheria toxin or other inhibitors of protein synthesis.Exp. Cell. Res. 208, 296–302.PubMedCrossRefGoogle Scholar
  14. Koriazova LK and M Montal (2003) Translocation of botulinum neurotoxin light chain protease through the heavy chain channel.Nat. Struct. Biol. 10, 13–18.PubMedCrossRefGoogle Scholar
  15. Kozak M (1991) Structural features in eukaryotic mRNAs that modulate the initiation of translation.J. Biol. Chem. 266, 19867–19870.PubMedGoogle Scholar
  16. Lemichez E, M Bomsel, G Devilliers, J vanderSpek, JR Murphy, EV Lukianov, S Olsnes and P Boquet (1997) Membrane translocation of diphtheria toxin fragment A exploits early to late endosome trafficking machinery.Mol. Microbiol. 23, 445–457.PubMedCrossRefGoogle Scholar
  17. Madshus IH (1994) The N-terminal alpha-helix of fragment B of diphtheria toxin promotes translocation of fragment A into the cytoplasm of eukaryotic cells.J. Biol. Chem. 269, 17723–17729.PubMedGoogle Scholar
  18. McMahon HT and IG Mills (2004) COP and clathrin-coatedvesicle budding: different pathways, common approaches.Curr. Opin. Cell. Biol. 16, 379–391.PubMedCrossRefGoogle Scholar
  19. Mindell JA, JA Silverman, RJ Collier and A Finkelstein (1992) Locating a residue in the diphtheria toxin channel.Biophys. J. 62, 41–44.PubMedCentralPubMedCrossRefGoogle Scholar
  20. Mindell JA, JA Silverman, RJ Collier and A Finkelstein (1994a) Structure-function relationships in diphtheria toxin channels: III. Residues which affect thecis pH dependence of channel conductance.J. Membr. Biol. 137, 45–57.PubMedGoogle Scholar
  21. Mindell JA, H Zhan, PD Huynh, RJ Collier and A Finkelstein (1994b) Reaction of diphtheria toxin channels with sulfjydryl-specific reagents: observation of chemical reactions at the single molecule level.Proc. Natl. Acad. Sci. USA 91, 5272–5276.PubMedCentralPubMedCrossRefGoogle Scholar
  22. Mitamura T, R Iwamoto, T Umata, T Yomo, I Urabe, M Tsuneoka and E Mekada (1992) The 27-kD diphtheria toxin receptor-associated protein (DRAP27) from vero cells is the monkey homologue of human CD9 antigen: expression of DRAP27 elevates the number of diphtheria toxin receptors on toxin-sensitive cells.J. Cell Biol. 118, 1389–1399.PubMedCrossRefGoogle Scholar
  23. Moya M, A Dautry-Versat, B Goud, D Louvard and P Boquet (1985) Inhibition of coated pit formation in Hep 2 cells blocks the cytotoxicity of diphtheria toxin by not that of ricin toxin.J. Cell Biol. 101, 548–559.PubMedCrossRefGoogle Scholar
  24. Naglich JG, JE Matherall, DW Russell and L Eidels (1992) Expression cloning of a diphtheria toxin receptor: identity with a heparin-binding EGF-like growth factor precursor.Cell 69, 1051.PubMedCrossRefGoogle Scholar
  25. Neupert and Brunner (2002) The protein import motor.Nat. Rev. Mol. Cell Biol. 3, 555–565.PubMedCrossRefGoogle Scholar
  26. O’Keefe DO, V Cabiaux, S Choe, D Eisenberg and RJ Collier (1992) pH-dependent insertion of proteins into membranes: B-chain mutation of diphtheria toxin that inhibits membrane translocation, Glu-349---Lys.Proc. Natl. Acad. Sci. USA 89, 6202–6206.PubMedCentralPubMedCrossRefGoogle Scholar
  27. Oh KJ, L Senzel, RJ Collier and A Finkelstein (1999) Translocation of the catalytic domain of diphtheria toxin across planar phospholipid bilayers by its own T domain.Proc. Natl. Acad. Sci. USA 96, 8467–8470.PubMedCentralPubMedCrossRefGoogle Scholar
  28. Pappenheimer AM Jr (1977) Diphtheria toxin.Annu. Rev. Biochem. 46, 69–94.PubMedCrossRefGoogle Scholar
  29. Ratts R, H Zeng, EA Berg, C Blue, ME McComb, CE Costello, JC vanderSpek and JR Murphy (2003) The cytosolic entry of diphtheria toxin catalytic domain requires a host cell cytosolic translocation factor complex.J. Cell Biol. 160, 1139–1150.PubMedCentralPubMedCrossRefGoogle Scholar
  30. Ratts R, C Trujillo, A Bharti, J vanderSpek, R Harrison and JR Murphy (2005) A conserved motif in transmembrane helix 1 of diphtheria toxin mediates catalytic domain delivery to the cytosol.Proc. Natl. Acad. Sci. USA 102(43), 15635–15640. Epub 2005 Oct 17.PubMedCentralPubMedCrossRefGoogle Scholar
  31. Ren J, K Kachel, H Kim, SE Malenbaum, RJ Collier and A Finkelstein (1999) Interaction of diphtheria toxin T domain with molten globule-like proteins and its implications for translocation.Science 284, 955–957.PubMedCrossRefGoogle Scholar
  32. Sandvig K, B Spilsburg, SU Lauvrak, ML Torgersen, TG Iversen and B Van Deurs (2004) Pathways followed by proteins into cells.Int. J. Med. Microbiol. 293, 483–490.PubMedCrossRefGoogle Scholar
  33. Senzel L, PD Huynh, KS Jakes, RJ Collier and A Finkelstein (1998) The diphtheria toxin channel-forming T domain translocates its own NH2-terminal region across planar bilayers.J. Gen. Physiol. 112, 317–324.PubMedCentralPubMedCrossRefGoogle Scholar
  34. Silverman JA, JA Mindell, A Finkelstein, WH Shen and RJ Collier (1994) Mutational analysis of the helical hairpin region of diphtheria toxin transmembrane domain.J. Biol. Chem. 269, 22524–22532.PubMedGoogle Scholar
  35. Thompson JD, DG Higgins and TJ Gibson (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice.Nucleic Acids Res. 22, 4673–4680.PubMedCentralPubMedCrossRefGoogle Scholar
  36. Umata Tand E Mekada (1998) Diphtheria toxin translocation across endosome membranes. A novel cell permeabilization assay reveals new diphtheria toxin fragments in endocytic vesicles.J. Biol. Chem. 273, 8351–8359.PubMedCrossRefGoogle Scholar
  37. vanderSpek JC, JA Mindell, A Finkelstein and JR Murphy (1993) Structure/function analysis of the transmembrane domain of DAB389-interleukin-2, an inleukin-2 receptor targeted fusion toxin. The amphipathic helical region of the transmembrane domain is essential for the efficient delivery of the catalytic domain to the cytosol of target cells.J. Biol. Chem. 268, 12077–12982.PubMedGoogle Scholar
  38. vanderSpek JC, D Cassidy, F Genbauffe, PD Huynh and JR Murphy (1994a) An intact transmembrane helix 9 is essential for the efficient delivery of the diphtheria toxin catalytic domain to the cytosol of target cells.J. Biol. Chem. 269, 21455–21459.PubMedGoogle Scholar
  39. vanderSpek JC, K Howland T Friedman and JR Murphy (1994b) Maintenance of the hydrophobic face of the diphtheria toxin amphipathic transmembrane helix 1 is essential for the efficient delivery of the catalytic domain to the cytosol of target cells.Protein Engn. 7, 985–989.CrossRefGoogle Scholar
  40. Wesche J, JL Elliott, PO Falnes, S Olsnes and RJ Collier (1998) Characterization of membrane translocation by anthrax protective antigen.Biochemistry 37, 15737–15746.PubMedCrossRefGoogle Scholar
  41. Woolfson DN, RJ Mortishire-Smith and DH Williams (1991) Conserved position of proline residues in membrane-spanning helices of ion-channel proteins.Biochem. Biophys. Res. Commun. 175, 733–737.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Carolina Trujillo
    • 1
  • Ryan Ratts
    • 1
  • Alfred Tamayo
    • 1
  • Robert Harrison
    • 1
  • John R. Murphy
    • 1
  1. 1.Section of Molecular Medicine, Department of MedicineBoston University School of MedicineBostonUSA

Personalised recommendations