Neurotoxicity Research

, Volume 12, Issue 4, pp 215–232 | Cite as

Glial cell dysregulation: a new perspective on Alzheimer disease



Alzheimer disease (AD) is a major cause of dementia. Several mechanisms have been postulated to explain its pathogenesis, beta-amyloid (Aß toxicity, cholinergic, dysfunction, Tau hyperphosphorylation, oxidative damage, synaptic dysfunction and inflammation secondary to senile plaques, among others. Glial cells are the major producers of inflammatory mediators, and cytotoxic activation of glial cells is linked to several neurodegenerative diseases; however, whether inflammation is a consequence or the cause of neurodegeneration is still unclear. I propose that inflammation and cellular stress associated with aging are key events in the development of AD through the induction of glial dysfunction. Dysregulated inflammatory response can elicit glial cell activation by compounds which are normally poorly reactive. Inflammation can also be the major cause of defective handling of Aß and the amyloid precursor protein (APP). Here I review evidence that support the proposal that dysfunctional glia and the resulting neuroinflammation can explain many features of AD. Evidence supports the notion that damage caused by inflammation is not only a primary cause of neurodegeneration but also an inducer for the accumulation of Aß in AD. Dysfunctional glia can result in im paired neuronal function in AD, as well as in many progressive neurodegenerative disorders. We show that microglial cell activation is enhanced under pro-inflammatory conditions, indicating that glial cell responses to Aß related proteins can be critically dependent on the priming of glial cells by pro-inflammatory factors.


Microglia Alzheimer disease ß-Amyloid Inflammation Neurodegeneration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramov AY, L Canevari and MR Duchen (2003) Changes in intracellular calcium and glutathione in astrocytes as the primary mechanism of amyloid neurotoxicity.J. Neurosci. 23, 5088–5095.PubMedGoogle Scholar
  2. Akama KT, C Albanese, RG Pestell and CJ Van Eldik, (1998) Amyloid ß-peptide stimulates nitric oxide production in astrocytes through an NFkB-dependent mechanism.Proc. Natl. Acad. Sci USA 95, 5795–5800.PubMedCrossRefGoogle Scholar
  3. Akiyama H, S Barger, S Barnmm, B Bradt, J Bauer, GM Cle, NR Cooper, P Eikelenboom, M Emmerling, BL Fiebich, CE Finch, S Frautschy, WST Griffin, H Hampel, M Hull, G Landreth, L Lue, R Mrak, IR Mackenzie P McGeer, MK O’Banion, J Pachter, G Pasinetti, C Plata-Salaman, J Rogers, R Rydel, Y Shen, W Streit, R Strohmeyer, I Tooyoma, F Van Muiswinkel, R Veerhuis, S Walker, B Wegrzyniak G Wenk and T Wyss-Coray (2000) Inflammation and Alzheimer’s disease.Neurobiol. Aging 21, 383–421.PubMedCrossRefGoogle Scholar
  4. Alarcón R, C Fuenzalida, M Santibañez and R von Bernhardi (2005) Expression of Scavenger Receptors in glial cells: comparing the adhesion of astrocytes and microglia from neonatal rats to surface-bound ß-amyloid.J. Biol. Chem. 280, 30406–30415.PubMedCrossRefGoogle Scholar
  5. Apelt J and R Schliebs (2001) Beta-amyloid-induced glial expression of both pro-and anti-inflammatory cytokines in cerebral cortex of aged transgenic Tg2576 mice with Alzheimer plaque pathology.Brain Res. 894, 21–30.PubMedCrossRefGoogle Scholar
  6. Arnett HA, J Masson, M Marino, K Suzuki, GK Matsushima and JPY Ting (2001) TNFα, promotes proliferation of oligoden drocyte progenitors and remyelinization.Nat. Neurosci. 4, 1116–1121.PubMedCrossRefGoogle Scholar
  7. Arnett HA, Y Wang, GK Matsushima, K Suzuki and JPY Ting (2003) Functional genomic analysis of remyelination reveals importance of inflammation in oligodendrocytes regeneration.J. Neurosci. 23, 9824–9832.PubMedGoogle Scholar
  8. Avital A, I Goshen, A Kamsler, M Segal, K Iverfeldt, G Richter-Levin and R Yirmiya (2003) Impaired interleukin-1 signaling is associated with deficits in hippocampal memory processes and neural plasticity.Hippocampus 13, 826–834.PubMedCrossRefGoogle Scholar
  9. Bal-Price A and C Brown (2001) Inflammatory neuro degeneration mediated by nitric oxide from activated glia-inhibiting neuronal respiration, causing glutamate release and excitotoxicity.J. Neurosci. 17, 6480–6491.Google Scholar
  10. Barger SW, D Hörster, K Furukawa, Y Goodman, J Krieglstein and MP Mattson (1995) Tumor necrosis factors α and β protect neurons against amyloid ß-peptide toxicity: evidence for involvement of a κB-binding factor and attenuation of peroxide and Ca2+ accumulation.Proc. Natl Acad. Sci. USA 92, 9328–9332.PubMedCrossRefGoogle Scholar
  11. Basu A, J Krady and S Levinson (2004) Interleukin-1: a master regulator of neuroinflammation.J. Neurosci. Res. 78, 151–156.PubMedCrossRefGoogle Scholar
  12. Bell MD, R Lopez-Gonzalez, L Lawson, D Hughes, I Fraser, S Gordon, and VH Perry (1994) Upregulation of the macrophage scavenger receptor in response to different forms of injury in the CNS.J. Neurocytol. 23, 605–613.PubMedCrossRefGoogle Scholar
  13. Benzing WC, JR Wujek, EK Ward, D Ward, D Shaffer, KH Ashe, SG Youkin and KR Brunden (1999) Evidence for glial-mediated inflammation in aged APP (SW) transgenic mice.Neurobiol. Aging 20, 581–589.PubMedCrossRefGoogle Scholar
  14. Blasko I, F Marx, E Steiner, T Hartmann and B Grubeck-Loebenstein (1999) TNFα plus IFNψ induce the production of Alzheimer ß-amyloid peptides and decrease the secretion of APPs.FASEB J. 13, 63–68.PubMedGoogle Scholar
  15. Blondel O, C Collin, WJ McCarran, S Zhu, R Zamostiano, I Gozes, DE Brenneman and RD McKay (2000) A glia-derived signal regulating neuronal differentiation.,J. Neurosci. 20, 8012–8020.PubMedGoogle Scholar
  16. Broe GA, DA Grayson, HM Creasey, LM Waite, BJ Casey, HP Bennett, WS Brooks and GM Halliday (2000) Antiinflammatory drugs protect against. Alzheimer’s disease at low doses.Arch. Neurol. 57, 1586–1591.PubMedCrossRefGoogle Scholar
  17. Brown DR (1999) Dependence of neurones on astrocytes in a co-culture system renders neurones sensitive to transforming growth factor ß1-induced glutamate toxicity.J. Neurochem. 72, 943–953.PubMedCrossRefGoogle Scholar
  18. Butterfield DA, A Castegna, CM Lauderback and J Drake (2002) Evidence that amyloid ß-peptide-induced lipid peroxidation and its sequelae in Alzheimer’s disease brain contribute to neuronal death.Neurobiol. Aging 23, 655–664.PubMedCrossRefGoogle Scholar
  19. Cagnin A, DJ Brooks, AM Kennedy, RN Gunn, R Myers, FE Rurkheimer, T Jones and RB Banati (2001)In vivo measurement of activated microglia in dementia.Lancet 358, 461–467.PubMedCrossRefGoogle Scholar
  20. Canevari L, AY Abramov and MR Duchen (2004) Toxicity of amyloid-ß peptide: tales of calcium, mitochondria, and oxidative stress.Neurochem. Res. 29, 637–650.PubMedCrossRefGoogle Scholar
  21. Chapman PF, GL White, MW Jones, D Cooper-Blacketer, VJ Marshall, M Irizarry, L Younkin, MA Good, TV Bliss BT Hyman, SG Younkin and KK Hsiao (1999) Impaired synaptic plasticity and learning in aged amyloid precursor protein transgenic mice.Nat. Neurosci. 2, 271–276.PubMedCrossRefGoogle Scholar
  22. Chen GJ, J Xu, SA Lahousse, NL Caggiano and SM de la Monte (2003) Transient hypoxia causes Alzheimer-type molecular biochemical abnormalities in cortical neurons: potential strategies for neuroprotection.J Alzhemer’s Dis. 5, 209–228.Google Scholar
  23. Chen J, Y Zhou, S Mueller-Steiner, L-F Chen, H Kwon, S Yi, L Mucke and L Gan (2005) SIRT1 protects against microglia-dependent amyloid-ß toxicity through inhibiting NF-κB signaling.J. Biol. Chem. 280, 40364–40374.PubMedCrossRefGoogle Scholar
  24. Cheng B, S Christakos and MP Mattson (1994) Tumor necrosis factors protect neurons against metabolic-excitotoxic insults and promote maintenance of calcium homeostasis.Neuron 12, 130–153.CrossRefGoogle Scholar
  25. Choi J, CA Malakowsky, JM Talent, CC Conrad, CA Carroll, ST Weintraub and RW Gracy (2003) Anti-apoptotic proteins are oxidized by Aβ25–35 in Alzheimer’s fibroblastsBiochim. Biophys. Acta 1637, 135–141.PubMedGoogle Scholar
  26. Christie, RH, M Freeman and BT Hyman (1996) Expression of the macrophage scavenger receptor, a multifunctional lipoprotein receptor, in microglia associated with senile plaques in Alzheimer’s disease.Am. J. Pathol. 148, 399–403.PubMedGoogle Scholar
  27. Colangelo V, J Schurr, MJ Ball, RP Pelaez, NG Bazan and WJ Lukiw (2002) Gene expression profiling of 12633 genes in Alzheimer hippocampal CA1: transcription and neurotrophic factor down-regulation and up-regulation of apoptotic and pro-inflammatory signaling.J. Neurosci. Res. 70, 462–473.PubMedCrossRefGoogle Scholar
  28. Combs CK, JC Karlo, S-C Kao and GE Landreth (2001) ß-Amyloid stimulation of microglia and monocytes results in TNFα-dependent expression of inducible nitric oxide synthase and neuronal apoptosis.J. Neurosci. 21, 1179–1188.PubMedGoogle Scholar
  29. Coraci IS, J Husemann, JW Berman, C Hulette, JH Dufour, GK Campanella, AD Luster, SC Silverstein and JB El Khoury (2002) CD36, a class B scavenger receptor, is expressed on microglia in Alzheimer’s disease brains and can mediate production of reactive oxygen species in response to ß-amyloid fibrils.Am. J. Pathol. 160, 101–112.PubMedGoogle Scholar
  30. D’Andrea MR, GM Cole and MD Ard (2004) The microglial phagocytic role with specific plaque types in the Alzheimer disease brain.Neurobiol. Aging 25, 675–683.PubMedCrossRefGoogle Scholar
  31. De Kosky ST, SD Styren, ME O’Malley, JR Gross, P Kochanek, D Marion, CH Evans and PD Robbins (1996), Interleukin-1 receptor antagonist suppresses neurotrophin response in injured rat brain.Ann. Neurol. 39, 123–127.CrossRefGoogle Scholar
  32. de la Torre JC (2002) Alzheimer’s disease as a vascular disorder: nosological evidence.Stroke 33, 1152–1162.PubMedCrossRefGoogle Scholar
  33. De Sampaio E, TC Spohr, R Martinez, EF da Silva, VM Neto and FC Gomez (2002) Neuro-glia interaction effects on GFAP gene: a novel role for TGBß1.Eur. J. Neurosci. 16, 2059–2069.CrossRefGoogle Scholar
  34. De Witt DA, G Perry, M Cohen, C Doller and J Silver (1998) Astrocytes regulate microglial phagocytosis of senile plaque cores of Alzheimer’s disease.Exp. Neurol 149, 329–340.CrossRefGoogle Scholar
  35. Dhandapani KM, M Hadman, L De Sevilla, MF Wade, VB Mahesh and DW Brann (2003) Astrocyte protection of neurons. Role of transforming growth factor-ß signaling via c-jun-Ap-1 protective pathway.J. Biol. Chem. 278, 43329–43339.PubMedCrossRefGoogle Scholar
  36. Dickson DW (1997) The pathogenesis of senile plaques.J. Neuropathol. Exp. Neurol. 56, 321–339.PubMedCrossRefGoogle Scholar
  37. Duyckaerts C, MA Colle, F Dessi, Y Crignon, F Piette and JJ Hauw (1998) The progression of the lesions in Alzheimerdisease — insights from a prospective clinicopathological study.J. Neural Transm. Suppl. 53, 119–126.PubMedGoogle Scholar
  38. Dziedzic T, I Wybranska, A Dembinska-Kiec, A Klimkowicz, A Slowik, J Pankiewicz, A Adzienicka and A Szczudlik (2003) Dexamethasone inhibits TNF-α synthesis more effectively in Alzheimer’s disease patients than in healthy individuals.Dement. Geriatr: Cogn. Disord. 16, 283–286.CrossRefGoogle Scholar
  39. Eikelenboom P and WA van Gool (2004) Neuroinflammatory perspectives on the two faces of Alzheimer’s disease.,J. Neural Transm. 111, 281–294.PubMedCrossRefGoogle Scholar
  40. Eikelenboom P, C Bate, WA Van Gool, JJM Hoozemans, JM Rozemuller, R Veerhuis and A Williams (2002) Neuroinflammation in Alzheimer’s disease and Prion disease.Glia 40, 232–239.PubMedCrossRefGoogle Scholar
  41. El Khoury JB, KJ Moore, TK Means, J Leung, K Terada, M Toft, MW Freeman and AD Luster (2003) CD36 mediates the innate response to ß-amyloid.J. Exp. Med. 197, 1657–1666.PubMedCrossRefGoogle Scholar
  42. Eriksen JL, SA Sagi, TE Smith, S Weggen, P Das, DC McLendon, W Ozols, KW Jessing, KH Zavitz, EH Koo and TE Golde (2003) NSAIDs and enantiomers of flurbiprofen target ψ-secretase and lower Aß42 in vivo.J. Clin. Invest. 112, 440–449.PubMedGoogle Scholar
  43. Etminan M, S Gill and A Samii (2003) Effect of non-steroidal anti-inflammatory drugs on risk of Alzheimer’s disease: systematic review and meta-analysis of observational studies.BMJ 327, 128–131.PubMedCrossRefGoogle Scholar
  44. Eyüpoglu LY, L Bechmann and R Nitsch (2003) Modification of microglial function protects from lesion-induced neuronal alteration and promotes sprouting in the hippocampus.FASEB J. 17, 1110–1111.PubMedGoogle Scholar
  45. Farkas E, GI De Jong, RA de Vos, EN Jansen Steur and PG Luiten (2000) Pathological features of cerebral cortical capillaries are doubled in Alzheimer’s disease and Parkinson’s disease.Acta Neurophathol. (Berl.) 100, 395–402.CrossRefGoogle Scholar
  46. Farrer LA, LA Cupples, JL Haines, B Hyman, WA Kukull, R Mayeux, RH Myers, MA Pericak-Vance, N Risch and CM van Duijn (1997) Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer’s disease. A meta-analysis. APOE and Alzheimer’s disease Meta Analysis Consortium.JAMA 278, 1349–1356.PubMedCrossRefGoogle Scholar
  47. Flanders KC, RF Ren and CF Lippa (1998) Transforming growth factor-betas in neurodegenerative disease.Prog. Neurobiol. 54, 71–85.PubMedCrossRefGoogle Scholar
  48. Forloni G, F Mangiarotti, N Angeretti, E Lucca and MG De Simoni (1997) ß-Amyloid fragment potentiates IL-6 and TNF-α secretion by LPS in astrocytes but not in microglia,Cytokine 9, 759–762.PubMedCrossRefGoogle Scholar
  49. Fu C, DJ Chute, ES Farag, J Garakian, JL Cummings and HV Vinters (2004) Comorbidity in dementia: an autopsy study.Arch. Pathol. Lab. Med. 128, 32–38.PubMedGoogle Scholar
  50. Geula C, CK Wu, D Saroff, A Lorenzo, M Yuan and BA Yankner (1998) Aging renders the brain vulnerable to amyloid ß-protein neurotoxicity.Nat. Med. 4, 827–831.PubMedCrossRefGoogle Scholar
  51. Giulian D and M Corpuz (1993) Microglial secretion products and their impact on the nervous system.Adv. Neurol. 59, 315–320.PubMedGoogle Scholar
  52. Giulian D, K Vaca and M Corpuz (1993) Brain glia release factors with opposing actions upon neuronal survival.J. Neurosci. 13, 29–37.PubMedGoogle Scholar
  53. Goldgaber D, HW Harris, T Hla, T Maciag, RJ Donnelly, JS Jacobsen, MP Vitek and DC Gajdusek (1989). Interleukin 1 regulates synthesis of amyloid ß-protein precursor mRNA in human endothelial cells.Proc. Natl., Acad. Sci. USA 86, 7606–7610.CrossRefGoogle Scholar
  54. Griffin WS and RE Mrak (2002) Interleukin-1 in the genesis and progression of and risk for development of neuronal degeneration in Alzheimer’s disease.J. Leukoc. Biol. 72, 233–238.PubMedGoogle Scholar
  55. Griffin WS, JG Sheng, SM Gentleman, DI Graham, RE Mrak and GW Roberts (1994) Microglial interleukin-1α expression in human head injury: correlations with neuronal and neuritic ß-amyloid precursor protein expression.Neurosci. Lett. 176, 133–136.PubMedCrossRefGoogle Scholar
  56. Griffin R, R Nally, Y Nolan, Y McCartney, J Linden and MA Lynch (2006) The age-related attenuation in long-term potentiation is associated with microglial activation.J. Neurochem. 99, 1263–1272.PubMedCrossRefGoogle Scholar
  57. Gylys KH, JA Fein, F Yang, DJ Willey, CA Miller and GM Cole (2004) Synaptic changes in Alzheimer’s disease: increased amyloid-ß and gliosis in suiviving terninals is accompanied by decreased PSD-95 fluorescence.Am. J. Pathol. 165, 1809–1817.PubMedGoogle Scholar
  58. Haass C (2004) Take five-BACE and the γ-secretase quartet conducts Alzheimer’s amyloid β-peptide generation.EMBO J 23, 483–488.PubMedCrossRefGoogle Scholar
  59. Hanisch UK (2002) Microglia as a source and target of cytokines.Glia 40, 140–155.PubMedCrossRefGoogle Scholar
  60. Harkany T, I Abraham, C Konva, C Nyakas, M Zarandi, B Penke and PG Lutten (2000) Mechanism of β-amyloid neurotoxicity perspectives of pharmacotherapy.Rev. Neurosci. 11, 329–382.PubMedGoogle Scholar
  61. Hashioka S, A Monji, T Ueda, S Kanba and H Nakanishi (2005) Amyloid-β fibril formation is not necessarily required for microglial activation by the peptidesNeurochem. Int. 47, 369–376.PubMedCrossRefGoogle Scholar
  62. Hauss-Wegrzyniak B, L Lukovic, M Bigaud and ME Stoeckel (1998) Brain inflammatory response induced by intiacerebroventricular infusion of lipopolysaccharide: an immunohistochemical study.Brain Res. 794, 211–224.PubMedCrossRefGoogle Scholar
  63. Herrera-Molina R and R von Bernhardi (2005) Transforming growth factor-β1 produced by hippocampal cells modulates glial reactivity in culture.Neurobiol. Dis. 19, 229–236.PubMedCrossRefGoogle Scholar
  64. Herx, LM, S Rivest and VW Yong (2000) Central nervous system-initiated inflammation and neurotrophism in trauma: IL-1β is required for the production of ciliary neurotrophic factor.J. Immunol. 165, 2232–1239.PubMedGoogle Scholar
  65. Ho L, D Purohit, V Haroutinian, JD Luterman, F Willis, J Naslund, JD Buxbaum, RC Mohs, PS Aisen and GM Pasinetti (2001) Neuronal cyclooxigenase 2 expression in the hippocampal formation as a function of the clinical progression of Alzheimer disease.Arch. Neurol. 58, 487–492.PubMedCrossRefGoogle Scholar
  66. Hock C, K Heese, C Hulette, C Rosenberg and U Otten (2000) Region-specific neurotrophin imbalances in Alzheimer disease: decreased levels of brain-derived neurotrophic factor and increased levels of nerve growth factor in hippocampus and cortical areas.Arch. Neurol. 57, 846–851.PubMedCrossRefGoogle Scholar
  67. Hofmann MA, S Drury, C Fu, W Qu, A Taguchi, YT Lu, C Avila, N Kambham, A Bierhaus, P Nawroth, MF Neurath, T Slattery, D Beach, J McClary, M Nagashima, J Morser, D Stern and AM Schmidt (1999) RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides.Cell 97, 889–901.PubMedCrossRefGoogle Scholar
  68. Hsu H-Y, S-L Chiu, M-H Wen, K-Y Chen and K-F Hua (2001) Ligands of macrophage scavenger receptor induce cytokine expression via differential modulation of protein kinase signaling pathways.J. Biol. Chem. 276, 28719–28730.PubMedCrossRefGoogle Scholar
  69. Hu J and LJ Van Eldik (1999) Glial-derived proteins activate cultured astrocytes and enhance β-amyloid-induced glial activation.Brain Res. 842, 46–54.PubMedCrossRefGoogle Scholar
  70. Hu J, K Akama, G Krafft, B Chromy and L Van Eldik (1998) Amyloid-β peptide activates cultured astrocytes: morphological alterations, cytokine induction and nitric oxide release.Brain Res. 785, 195–206.PubMedCrossRefGoogle Scholar
  71. Husemann J and SC Silverstein (2001) Expression of scavenger receptor class B, type I, by astrocytes and vascular smooth muscle cells in normal adult mouse and human brain and in Alzheimer’s disease brain.Am. J. Pathol. 158, 825–832.PubMedGoogle Scholar
  72. Husemann J, JD Loike, R Anankov, M Febbraio and SC Silverstein (2002) Scavenger receptors in neurobiology and neuropathology: their role on microglia and other cells of the nervous system.Glia 40, 195–205.PubMedCrossRefGoogle Scholar
  73. Ishii K, F Muelhauser, U Lieb, M Picard, S Kuhl, B Penke, T Bayer, M Weissler, M Hennerici, K Beyreuther, T Hartmann and K Fassbender (2000) Subacute NO generation induced by Alzheimer’s β-amyloid in the living brain: reversal by inhibition of the inducible NO synthase.FASEB J. 14, 1485–1489.PubMedCrossRefGoogle Scholar
  74. Itzhaki RF, MA Wozniak, DM Appelt and BJ Balin (2004) Infiltration of the brain by pathogens causes Alzheiner’s disease.Neurobiol. Aging 25, 619–627.PubMedCrossRefGoogle Scholar
  75. Kalaria RN, SU Batí, WD Lust and G Perry (1993) The amyloid precursor protein in ischemic brain injury and chronic hypoperfusion.Ann. NY Acad. Sci. 695, 190–193.PubMedCrossRefGoogle Scholar
  76. Kamenetz F, T Tomita, H Hsieh, G Seabrook, D Borchelt, T Iwatsubo, S Sisodia and R Malinow (2003) APP processing and synaptic function.Neuron 37, 925–937.PubMedCrossRefGoogle Scholar
  77. Katsel PL, KL Davis and V Haroutunian (2005) Large-scale microarray studies of gene expression in multiple regions of the brain in schizophrenia and Alzheimer’s disease.Int. Rev. Neurobiol. 63, 41–82.PubMedCrossRefGoogle Scholar
  78. Kayed R, E Head, JL Thompson, TM McIntire, SC Milton, CW Cotman and CG Glabe (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis.Science 300, 486–489.PubMedCrossRefGoogle Scholar
  79. Kirchhoff F, R Dringen and C Giaume (2001) Pathways of neuron-astrocyte interactions and their possible role in neuroprotection.Eur. Arch. Psychiatry Clin. Neurosci. 251, 158–169.CrossRefGoogle Scholar
  80. Knopman DS, JE Parisi, A Salviati, M Floriach-Robert, BF Boeve, RJ Ivnik, GE Smith, DW Dickson, KA Johnson, LE Petersen, WC McDonald, H Braak and RC Petersen (2003) Neuropathology of cognitively normal elderly.J. Neuropathol. Exp. Neurol. 62, 1087–1095.PubMedGoogle Scholar
  81. Kolsch H, U Ptok, M Bagli, A Papassotiropoulos, S Schmitz, K Barkow, M Kockler, ML Rao, W Maier and R Heun (2001) Gene polymorphisms of interleukin-1α influence the course of Alzheimer’s disease.Ann. Neurol. 49, 818–819.PubMedCrossRefGoogle Scholar
  82. Krupinski J, P Kumar, S Kumar and J Kaluza (1996) Increased expression of TGF-β1 in brain tissue after ischemic stroke in humans.Stroke 27, 852–857.PubMedGoogle Scholar
  83. Kukull WA and JD Bowen (2002) Dementia epidemiology.Med. Clin. North Am. 86, 573–590.PubMedCrossRefGoogle Scholar
  84. Lambert MP, AK Barlow, BA Chromy, C Edwards, R Freeds, M Liosatos, TE Morgan, L Rozovsky, B Trommer, KL Viola, P Wals, C Zhang, CE Finch, GA Krafft and WL Klein (1998) Diffusible, nonfibrillar ligands derived from Aβ1–42 are potent central nervous system neurotoxins.Proc. Natl. Acad. Sci. USA 95, 6448–6453.PubMedCrossRefGoogle Scholar
  85. Lim GP, F Yang, T Chu, P Chen, W Beech, B Teter, T Tran, O Ubeda, K Hsiao Ashe, SA Frautschy and GM Cole (2000) Ibuprofen suppresses plaque pathology and inflammation in a mouse model of Alzheimer’s disease.J. Neurosci. 20, 5709–5714.PubMedGoogle Scholar
  86. Liu Y, R Dargusch and D Schubert (1997) β-Amyloid toxicity does not require RAGE protein.Biochem. Biophys. Res. Comman. 237, 37–40.CrossRefGoogle Scholar
  87. Lovell MA, SP Gabbita and WR Markesbery (1999) Increased DNA oxidation and decreased levels of repair products in Alzheimer’s disease ventricular CSF.J. Neurochem. 72, 771–776.PubMedCrossRefGoogle Scholar
  88. Lovell MA, C Xie and WR Markesbery (2001) Acrolein is increased in Alzheimer’s disease brain and is toxic to primary hippocampal cultures.Neurobiol. Aging 22, 187–194.PubMedCrossRefGoogle Scholar
  89. Lue, LF, L Brachova, DG Walker, Y Shen and J Rogers (1996) Characterization of glial cultures from rapid autopsies of Alzheimer’s and control patients.Neurobiol. Aging 17, 421–429.PubMedCrossRefGoogle Scholar
  90. Lue LF, R Rydel, EF Brigham, LB Yang, H Hampel, GM Murphy Jr, L Brachova, SD Yan, DG Walker, Y Shen and J Rogers (2001a) Inflammatory repertoire of Alzheimer’s disease and nondemented elderly microgliain vitro.Glia 35, 72–79.PubMedCrossRefGoogle Scholar
  91. Lue LF, DG Walker, L Brachova, TG Beach, J Rogers, AM Schmidt, DM Stern and SD Yan (2001b) Involvement of microglial receptor for advanced glycation end products (RAGE) in Alzheimer’s disease: identification of a cellular activation mechanism.Exp. Neurol. 171, 29–45.PubMedCrossRefGoogle Scholar
  92. Lukiw WJ and NG Bazan (2000) Neuroinflammatory signalling upregulation in Alzheimer’s disease.Neurochem. Res. 25, 1173–1184.PubMedCrossRefGoogle Scholar
  93. Luterman JD, V Haroutunian, S Yemul, L Ho, D Purohit, PS Aisen, R Mohs and GM Pasinetti (2000) Cytokine gene expression as a function of the clinical progression of Alzheimer disease dementia.Arch. Neurol. 57, 1153–1160.PubMedCrossRefGoogle Scholar
  94. Luth H, G Munch and T Arendt (2002) Aberant, expression of NOS isoforms in Alzheimer’s disease is structurally related to nitrotyrosine formation.Brain Res. 953, 135–143.PubMedCrossRefGoogle Scholar
  95. Malchiodi-Albedi F, MR Domenici, S Paradisi, A Bernardo, MA Ajmone-Cat and L Minghetti (2001) Astrocytes contribute to neuronal impairment in Aβ toxicity increasing apoptosis in rat hippocampal neurons.Glia 34, 68–72.PubMedCrossRefGoogle Scholar
  96. Matsuoka Y, M Picciano, B Malester, J LaFrancois, C Zehr, JM Daeschner, JA Olschowka, MI Fonseca, MK O’Banion, JA Tenner, CA Lemere and K Duff (2001) Inflammatory responses to amyloidosis in a transgenic mouse model of Alzheimer’s disease.Am. J. Pathol. 158, 1345–1354.PubMedGoogle Scholar
  97. Mattson MP (2000) Apoptosis in neurodegenerative disorders.Mol. Cell Biol. Rev. 1, 120–129.CrossRefGoogle Scholar
  98. McCann SM (1997) The nitric oxide hypothesis of brain aging.Exp. Geront. 32, 431–440.CrossRefGoogle Scholar
  99. McCartney-Francis NL and SM Wahl (2002) Dysregulation of IFN-γ signaling pathways in the absence of TGF-β1.J. Immunol. 169, 5941–5947.PubMedGoogle Scholar
  100. McDonalds DR, ME Bamberger, CK Combs and GE Landreth (1998) β-Amyloid fibrils activate parallel mitogen-activated protein kinase pathways in microglia and THP1 monocytes.J. Neurosci. 18, 4451–4460.Google Scholar
  101. McGeer PL and EG McGeer (2001) Inflammation, autotoxicity and Alzheimer’s disease.Neurobiol. Aging 22, 799–809.PubMedCrossRefGoogle Scholar
  102. Meda L, MA Cassatella, GI Szendrei, LJ Otvos, P Baron, M Villalba, P Ferrari and F Rossi (1995) Activation of microglial cells by β-amyloid protein and interferon-γ.Nature 374, 647–650.PubMedCrossRefGoogle Scholar
  103. Meda L, P Baron, E Prat, E Scarpini, G Scarlato, MA Cassatella and F Rossi (1999) Proinflammatory profile of cytokine production by human monocytes and murine microglia stimulated with β-amyloid [25–35].J. Neuroimmunol. 93, 45–52.PubMedCrossRefGoogle Scholar
  104. Meda L, P Baron and G Scarlato (2001) Glial activation in Alzheimer’s disease: the role of Aβ and its associated proteins.Neurobiol. Aging 22, 885–893.PubMedCrossRefGoogle Scholar
  105. Mehlhorn G, M Hollbron and R Schliebs (2000) Induction of cytokines in glial cells surrounding cortical β-amyloid plaques in transgenic Tg2576 mice with Alzheimer pathology.Int. Dev. Neurosci. 18, 423–431.CrossRefGoogle Scholar
  106. Melton LM, AB Keith, S Davis, AE Oakley, JA Edwardson and CM Morris (2003) Chronic glial activation, neurodegeneration, and APP immunoreactive deposits following acute administration of double-stranded RNA.Glia 44, 1–12.PubMedCrossRefGoogle Scholar
  107. Mrak R and S Griffin (2001) The role of activated astrocytes and of the neurotrophic cytokine S100B in the pathogenesis of Alzheimer’s disease.Neurobiol. Aging 22, 915–922.PubMedCrossRefGoogle Scholar
  108. Mrak R, J Sheng and S Griffin (1995) Glial cytokines in Alzheimer’s disease.Hum. Pathol. 26, 816–823.PubMedCrossRefGoogle Scholar
  109. Murray CA and M Lynch (1998) Evidence that increased hippocampal expression of the cytokine interleukin-1β is a common trigger for age- and stress-induced impairments in long-term potentiation.J. Neurosci. 18, 2974–2981.PubMedGoogle Scholar
  110. Murray CA, B McGahon, S McBennet and M Lynch (1997) Interleukin-1β inhibits glutamate release in hippocampus of young, but not aged, rats.Neurobiol. Aging 18, 343–348.PubMedCrossRefGoogle Scholar
  111. Nagele RG, J Wegiel, V Venkatamaran, H Imaki, KC Wang and J Wegiel (2004) Contribution of glial cells to the development of amyloid plaques in Alzheimer’s disease.Neurobiol. Aging 25, 663–674.PubMedCrossRefGoogle Scholar
  112. Nedergaard M (1994) Direct signaling from astrocytes to neurons in cultures of mammalian brain cells.Science 263, 1768–1771.PubMedCrossRefGoogle Scholar
  113. Neumann H and H Wekerle (1998) Neuronal control of the immune response in the central nervous system: linking brain immunity to neurodegeneration.J. Neuropathol. Exp. Neurol. 57, 1–9.PubMedCrossRefGoogle Scholar
  114. Neuroinflammation Working group (2000) Inflammation and Alzheimer’s disease.Neurobiol. Aging 21, 383–421.CrossRefGoogle Scholar
  115. Nguyen MD, J-P Julien and S Rivest (2002) Innate immunity: the missing link in neuroprotection and neurodegeneration?Nat. Rev. Neurosci. 3, 216–227.PubMedCrossRefGoogle Scholar
  116. Nichols NR (1999) Glial responses to steroids as markers of brain aging.J. Neurobiol. 40, 585–601.PubMedCrossRefGoogle Scholar
  117. Obermayr RP, L Mayerhofer, M Knechtelsdorfer, N Merisch, ER Huber, G Geyer and K-H Tragl (2005) The age-related down-regulation of the growth horm one/insulin-like growth factor-1 axis in the elderly male is reversed considerably by donepezil, a drug for Alzheimer’s disease.Exp. Gerontol. 40, 157–163.PubMedCrossRefGoogle Scholar
  118. Palop JJ, B Jones, L Kekonius, J Chin, GQ Yu, J Raber, E Masliah and L Mucke (2003) Neuronal depletion of calcium-dependent proteins in the dentate gyrus is tightly linked to Alzheimer’s disease-related cognitive deficits.Proc. Natl. Acad. Sci. USA 100, 9572–9577.PubMedCrossRefGoogle Scholar
  119. Papassotiropoulos A, M Bagli, F Jessen, TA Bayer, W Maier, ML Rao and R Heun (1999) A genetic variation of the inflammatory cytokine interleukin-6 delays the initial onset and reduces the risk for sporadic Alzheimer’s disease.Ann. Neurol. 45, 666–668.PubMedCrossRefGoogle Scholar
  120. Paresce DM, RN Ghosh and FR Maxfield (1996) Microglial cells internalize aggregates of the Alzheimer’s disease amyloid β-protein via a scavenger receptor.Neuron 17, 553–565PubMedCrossRefGoogle Scholar
  121. Paresce DM, H Chung and FR Maxfield (1997) Slow degradation of aggregates of the Alzheimer’s disease amyloid β-protein by microglial cells.J. Biol. Chem. 272, 29390–29397.PubMedCrossRefGoogle Scholar
  122. Pasinetti GL (1998) Cyclooxigenase and inflammation in Alzheimer’s disease: Experimental approaches and clinical interventions.J. Neurosci. Res. 54, 1–6.PubMedCrossRefGoogle Scholar
  123. Pawate S, Q Shen, F Fan and NR Bhat (2004) Redox regulation of glial inflammatory response to lipopolysaccharide and interferon γ.J. Neurosci. Res. 77, 540–551.PubMedCrossRefGoogle Scholar
  124. Pike CJ, AJ Walencewicz, CG Glabe and CW Cotan (1991)In vitro aging of β-amyloid protein causes peptide aggregation and neurotoxicity.Brain Res. 563, 311–314.PubMedCrossRefGoogle Scholar
  125. Prehn JHM, WP Bindokas, J Jordán, MF Galindo, GD Ghadge, RP Roos, LH Boise, CB Thompson, S Krajewski, JC Reed and RJ Miller (1996) Protective effect of transforming growth factor-β1 on β-amyloid neurotoxicity in rat hippocampal neurons.Mol. Pharmacol. 49, 319–328.PubMedGoogle Scholar
  126. Prinz M, O Kann, HJ Draheim, RR Schumann, H Kettenmann, JR Webwer and UK Hanisch (1999) Microglial activation by components of gram-positive and-negative bacteria: distinct and common routes to the induction of ion channels and cytokines.J. Neuropathol. Exp. Neurol. 58, 1078–1089.PubMedCrossRefGoogle Scholar
  127. Ramirez G, R Toro, H Döbeli, R von Bernhardi (2005) Protection of rat primary hippocampal cultures from Aβ cytotoxicity by pro-inflammatory molecules is mediated by astrocytes.Neurobiol. Dis. 19, 243–254.PubMedCrossRefGoogle Scholar
  128. Rogers JT, LM Leiter, J McPhee, CM Cahill, SS Zhan, H Potter and LN Nilsson (1999) Translation of the Alzheimer amyloid precursor protein mRNA is up-regulated by interleukin-1 through 5′-untranslated region sequences.J. Biol. Chem. 274, 6421–6431.PubMedCrossRefGoogle Scholar
  129. Rogers J, R Strohmeyer, CJ Kovelowski and R Li (2002) Microglia and inflammatory mechanisms in the clearance of amyloid-β peptide.Glia 40, 260–269.PubMedCrossRefGoogle Scholar
  130. Roses AD (1996) Apolipoprotein E in neurology.Curr. Opin. Neurol. 4, 265–270.Google Scholar
  131. Ross FM, SM Allan, NJ Rothwell, A Verkhratsky (2003) A dual role for interleukin-1 in LTP in mouse hippocampal slices.J. Neuroimmunol. 144, 61–67.PubMedCrossRefGoogle Scholar
  132. Rota E, G Bellone, P Rocca, P Bergamasco, G Emanuelli and P Ferrero (2006) Increased intrathecal TGF-β1, but not IL-12, IFN-γ and IL-10 levels in Alzheimer’s disease patients.Neurol. Sci. 27, 33–39PubMedCrossRefGoogle Scholar
  133. Roth AD, G Ramirez, R Alarcón and R von Bernhardi (2005) Oligodendrocytes damage in Alzheimer’s disease: β-amyloid toxicity and inflammation.Biol. Res. 38, 381–387.PubMedCrossRefGoogle Scholar
  134. Rothwell N and G Luheshi (2000) Interleukin 1 in the brain: biology, pathology and therapeutic target.Trends Neurosci. 23, 618–625.PubMedCrossRefGoogle Scholar
  135. Sala G, G Galimberti, C Canevari, ME Raggi, V Isella, M Facheris, I Appollonio and C Ferrarese (2003) Peripheral cytokine release in Alzheimer patients: correlation with disease severity.Neurobiol. Aging 24, 909–914.PubMedCrossRefGoogle Scholar
  136. Sastre M, I Dewachter, GE Landreth, TM Wilson, T Klockgether, F Van Leuven and MT Heneka (2003) Nonsteroidal anti-inflammatory drugs and peroxisome proliferator-activated receptor-γ agonists modulate immunostimulated processing of amyloid precursor protein through regulation of β-secretase.J. Neurosci. 23, 9796–9804.PubMedGoogle Scholar
  137. Sastre M, I Dewachter, S Rossner, N Bogdanovic, E Rosen, P Borghgraef, BO Evert, L Dumitrescu-Ozimek, DR Thal, G Landreth, J Walter, T Kloockgether, F van Leuven and MT Heneka (2006) Nonsteroidal anti-inflammatory drugs repress β-secretase gene promoter activity by the activation of PPARγ.Proc. Natl. Acad. Sci. USA 103, 443–448.PubMedCrossRefGoogle Scholar
  138. Saud K, R Herrera-Molina and R von Bernhardi (2005) Proand anti-inflammatory cytokines regulate the ERK pathway: implication of the timing for the activation of microglial cells.Neurotox. Res. 8, 277–287.PubMedGoogle Scholar
  139. Schenk D, R Barbour, W Dunn, G Gordon, H Grajeda, T Guido, K Hu, J Huang, K Johnson-Wood, K Khan, D Kholodenko, M Lee, Z Liao, I Lieberburg, R Motter, L Mutter, F Soriano, G Shopp, N Vasquez, C Vandevert, S Walker, M Wogulis, T Yednock, D Games and P Seubert (1999) Immunization with amyloid-β attenuates Alzheimer-disease-like pathology in the PDAPP mouse.Nature 400, 173–177.PubMedCrossRefGoogle Scholar
  140. Selkoe DJ (1996) Amyloid β-protein and the genetics of Alzheimer’s disease.J. Biol. Chem. 271, 18295–18298.PubMedGoogle Scholar
  141. Selkoe DJ (2000) The origins of Alzheimer’s disease: A is for amyloid.JAMA 283, 1615–1617.PubMedCrossRefGoogle Scholar
  142. Selkoe DJ (2001) Alzheimer’s disease: genes, proteins and therapy.Physiol. Rev. 81, 741–766.PubMedGoogle Scholar
  143. Selkoe DJ (2002) Alzheimer’s disease: is a synaptic failure.Science 298, 789–791.PubMedCrossRefGoogle Scholar
  144. Sheng JG, FA Boop, RE Mrak and WS Griffin (1994) Increased neuronal β-amyloid precursor protein expression in human temporal lobe epilepsy: association with interleukin-1α immunoreactivity.J. Neurochem. 63, 1872–1879.PubMedCrossRefGoogle Scholar
  145. Sheng JG, RE Mrak and WS Griffin (1995) Microglial interleukin-1α expression in brain regions in Alzheimer’s disease: correlation with neuritic plaque distribution.Neuropathol. Appl. Neurobiol. 21, 290–301.PubMedCrossRefGoogle Scholar
  146. Sheng JG, RE Mrak and WS Griffin (1997) Neuritic plaque evolution in Alzheimer’s disease is accompanied by transition of activated microglia from primed to enlarged to phagocytic forms.Acta Neuropathol. (Berl.) 94, 1–5.CrossRefGoogle Scholar
  147. Sheng JG, SH Bora, G Xu, DR Borchelt, DL Price and VL Koliatos (2003) Lipopolysaccharide-induced-neuroinflammation increases intracellular accumulation of amyloid precursor protein and amyloid β-peptide in APPswe transgenic mice.Neurobiol. Dis. 14, 133–145.PubMedCrossRefGoogle Scholar
  148. Sierra A, AC Gottfried-Blackmore, BS McEwen and K Bulloch (2007) Microglia derived from aging mice exhibit an altered inflammatory profile.Glia 55, 412–424.PubMedCrossRefGoogle Scholar
  149. Simard AR, D Soulet, G Gowing, JP Julien and S Rivest (2006) Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer’s disease.Neuron 49, 489–502.PubMedCrossRefGoogle Scholar
  150. Smith MA, K Hirai, K Hsiao, MA Pappolla, PL Harris, SL Siedlak, M Tabaton and G Perry (1998) Amyloid-β deposition in Alzheimer transgenic mice is associated with oxidative stress.J. Neurochem. 70, 2212–2215.PubMedGoogle Scholar
  151. Smits HA, LA Boven, CF Pereira, J Verhoef and HS Nottet (2000) Role of macrophage activation in the pathogenesis of Alzheimer’s disease and human immunodeficiency virus type 1-associated dementia.Eur. J. Clin. Invest. 30, 526–535.PubMedCrossRefGoogle Scholar
  152. Smits HA, AJ van Beelen, NM de Vos, A Rijmus, T van der Bruggen, J Verhoef, FL van Muiswinkel and HS Nottet (2001) Activation of human macrophages by amyloid-β is attenuated by astrocytes.J. Immunol. 166, 6869–6876.PubMedGoogle Scholar
  153. Smits HA, A Rijsmus, JH van Loon, JW Wat, J Verhoef, LA Boven and HS Nottet (2002) Amyloid-β-induced chemokine production in primary human macrophages and astrocytes,J. Neuroimmunol. 127, 160–168.PubMedCrossRefGoogle Scholar
  154. Sortino MA, M Chisari, S Merlo, C Vancheri, M Caruso, F Nicoletti, PL Canonico and A Copan (2004) Glia mediates the neuroprotective action of estradiol on β-amyloid-induced neuronal death.Endocrinology 145, 5080–5086.PubMedCrossRefGoogle Scholar
  155. Stewart WF, C Kawas, M Corrada and EJ Metter (1997) Risk of Alzheimer’s disease and duration of NSAID use.Neurology 48, 626–632.PubMedGoogle Scholar
  156. Streit WJ (2002) Microglia as neuroprotective, immunocompetent cells of the CNS.Glia 40, 133–139.PubMedCrossRefGoogle Scholar
  157. Streit WJ, NW Sammons, AJ Kuhns and DL Sparks (2004) Dystrophic microglia in the aging human brain.Glia 45, 208–212.PubMedCrossRefGoogle Scholar
  158. Sudo S, J Tanaka, K Toku, J Desaki, S Matsuda, T Arai, M Sakanaka and N Maeda (1998) Neurons induce the activation of microglial cellsin vitro.Exp. Neurol. 154, 499–510.PubMedCrossRefGoogle Scholar
  159. Takahashi RH, CG Almeida, PF Kearney, F Yu, MT Lin, TA Milner and GK Gouras (2004) Oligomerization of Alzheimer’s β-amyloid within processes and synapses of cultured neurons and brain.J. Neurosci. 24, 3592–3599.PubMedCrossRefGoogle Scholar
  160. Tegeder I, J Pfeilschifter and G Geisslinger (2001) Cyclooxygenase-independent actions of cyclooxygenase inhibitors.FASEB J. 15, 2057–2072.PubMedCrossRefGoogle Scholar
  161. Trejo JL, E Carro, E Garcia-Galloway and I Torres-Aleman (2004) Role of insulin-like growth factor-I signaling in neurodegenerative disease.J. Mol. Med. 82, 156–162.PubMedCrossRefGoogle Scholar
  162. Ueberham U, E Ueberham, H Gruschka and T Arendt (2006) Altered subcellular location of phosphorylated Smads in Alzheimer’s disease.Eur. J. Neurosci. 24, 2327–2334.PubMedCrossRefGoogle Scholar
  163. Uylings HB and JM de Brabander (2002) Neuronal changes in normal human aging and Alzheimer’s disease.Brain Cogn. 49, 268–276.PubMedCrossRefGoogle Scholar
  164. Vermeer SE, ND Prins, T den Heijer, A Hofman, PJ Koudstaat and MM Breteler (2003) Silent brain infarcts and the risk of dementia and cognitive decline.N. Engl. J. Med. 348, 1215–1222.PubMedCrossRefGoogle Scholar
  165. Vincent VA, FJ Tielders and AM Van Dam (1997) Inhibition of endotoxin-induced nitric oxide synthase production in microglial cells by the presence of astroglial cells: a role for transforming growth factor β.Glia 19, 190–198.PubMedCrossRefGoogle Scholar
  166. Vitkovic L, J Bockaert and C Jacque (2000) “Inflammatory” Cytokines: neuromodulators in normal Brain?J. Neurochem. 74, 457–471.PubMedCrossRefGoogle Scholar
  167. von Bernhardi R (2005) Aging: biochemistry and functional changes of the central nervous system.Rev. Chil Neuro-Psiquiat. 43, 297–304.Google Scholar
  168. von Bernhardi R and J Eugenin (2004) Microglia — astrocyte interaction in Alzheimer’s disease: modulation of cell reactivity to Aβ.Brain Res. 1025, 186–193.CrossRefGoogle Scholar
  169. von Bernhardi R and G Ramirez (2001) Microglia-astrocyte interaction in Alzheimer’s disease: friends or foes for the nervous system?Biol. Res. 34, 123–128Google Scholar
  170. von Bernhardi, R, G Ramirez, H Matile and H Döbeli (2001) Immobilized APP constructs: a tool for thein vitro screening of glial cell reactivity.Eur. J. Neurosci. 14, 946–956.CrossRefGoogle Scholar
  171. von Bernhardi R, G Ramirez, R Toro and J Eugenin (2007) Pro-inflammatory conditions promote neuronal damage mediated by amyloid precursor protein-and degradation by microglial cells in culture.Neurobiol. Dis. 26, 153–164.CrossRefGoogle Scholar
  172. Walsh DM, DM Hartley, Y Kusumoto, Y Fezoui, MM Condrom, A Lomakin, GB Benedeck and DJ Selkoe (1999) Amyloid β-protein fibrillogenesis. Structure and biological activity of protofibrillar intermediates.J. Biol. Chem. 274, 25945–25952.PubMedCrossRefGoogle Scholar
  173. Walsh DM, I Klyubin, JV Fadeeva, WK Cullen, R Anwyl, MS Wolfe, MJ Rowan and DJ Selkoe (2002) Naturally secreted oligomers of amyloid β-proteins potently inhibit hippocampal long term potentiationin vivo.Nature 416, 535–539.PubMedCrossRefGoogle Scholar
  174. Weggen S, JL Eriksen, P Das, SA Sagi, R Wang, CU Pietrzik, KA Findlay, TE Smith, MP Murphy, T Bulter, DE Kang, N Marquez-Sterling, TE Golde and EH Koo (2001) A subset of NSAIDs lower amyloidogenic Aβ42 independently of cyclooxygenase activity.Nature 414, 212–216.PubMedCrossRefGoogle Scholar
  175. Wegiel J, KC Wang, M Tarnawski and B Lach (2000) Microglial cells are the driving force in fibrillar plaque formation, whereas astrocytes are a leading factor in plaque degradation.Acta Neuropathol. (Berl.) 100, 356–364CrossRefGoogle Scholar
  176. Wegiel J, KC Wang, H Imaki, R Rubenstein, A Wronska, M Osuchowski, WJ Lipinski, LC Walker and H LeVine (2001) The role of microglial cells and astrocytes in fibrillar plaque evolution in transgenic APP(SW) mice.Neurobiol. Aging 22, 49–61.PubMedCrossRefGoogle Scholar
  177. Wen Y, O Onyewuchi, S Yang, R Liu and JW Simpinks (2004) Increased β-secretase activity and expression in rats following transient cerebral ischemia.Brain Res. 1009, 1–8.PubMedCrossRefGoogle Scholar
  178. Westphalen RI, HL Scott and PR Dodd (2003) Synaptic vesicle transport and synaptic membrane transporter sites in excitatory amino acid nerve terminals in Alzheimer disease.J. Neural Transm. 110, 1013–1027.PubMedCrossRefGoogle Scholar
  179. Witting A, P Muller, A Hermann, H Kettenmann and C Nolte (2000) Phagocytic clearance of apoptotic neurons by microglia/brain macrophagesin vitro: involvement of lectin-, integrin-, and phosphatidyl-serine-mediated recognition.J. Neurochem. 75, 1060–1070.PubMedCrossRefGoogle Scholar
  180. Wyss-Coray T (2006) Inflammation in Alzheimer disease: driving force, bystander or beneficial response?Nat. Med. 12, 1005–1015.PubMedGoogle Scholar
  181. Wyss-Coray T and L Mucke (2002) Inflammation in neurodegenerative disease — a double-edged sword.Neuron 35, 419–432.PubMedCrossRefGoogle Scholar
  182. Wyss-Coray T, C Lin, F Yan, GQ Yu, M Rohde, L McConlogue, F Masliah and L Mucke (2001) TGF-β1 promotes microglial amyloid-β clearance and reduces plaque burden in transgenic mice.Nat. Med. 6, 612–618.CrossRefGoogle Scholar
  183. Wyss-Coray T, F Yan, AH Lin, JD Lambris, JJ Alexander, RJ Quigg and E Masliah (2002) Prominent neurodegeneration and increased plaque formation in complement-inhibited Alzheimer’s mice.Proc. Natl. Acad. Sci. USA 99, 10837–10842.PubMedCrossRefGoogle Scholar
  184. Wyss-Coray T, JD Loike, TC Brionne, E Lu, R Anankov, F Yan, SC Silverstein and J Husemann (2003) Adult mouse astrocytes degrade amyloid-βin vitro andin situ.Nat. Med. 9, 453–457.PubMedCrossRefGoogle Scholar
  185. Xiao B, X Bai, G Zhang, B Höjeberg and H Link (1996) Shift from anti- to pro-inflammatory cytokine profiles in microglia through LPS- or IFN-γ-mediated pathways.Neuro Report 7, 1893–1898.Google Scholar
  186. Yasojima K, C Schwab, EG McGeer and PL McGeer (2000) Human neurons generate C-reactive protein and amyloid: upregulation in Alzheimer’s disease.Brain Res. 887, 80–89.PubMedCrossRefGoogle Scholar
  187. Yokota M, TC Saido, E Tani, I Yamaura and N Minami (1996) Cytotoxic fragment of amyloid precursor protein accumulates in hippocampus after global forebrain ischemia.J. Cereb. Blood Flow Metab. 16, 1219–1223.PubMedCrossRefGoogle Scholar
  188. Younkin SG (2001) Amyloid-β vaccination: reduced plaques and improved cognition.Nat. Med. 7, 18–19.PubMedCrossRefGoogle Scholar
  189. Zhang Z, M Chopp and C Powers (1997a) Temporal profile of microglial response following transient (2h) middle cerebral artery occlusion.Brain Res. 744, 189–198.PubMedCrossRefGoogle Scholar
  190. Zhang F, C Eckman, S Younkin, KK Hsiao and C Iadecola (1997b) Increased susceptibility to ischemic brain damage in transgenic mice overexpressing the amyloid precursor protein.J. Neurosci. 17, 7655–7661.PubMedGoogle Scholar
  191. Zhu Y, S Roth-Eichhorn, N Braun, C Culmsee, A Rami and J Krieglstein (2000) The expression of transforming growth factor-β1 (TGF-β1) in hippocampal neurons: a temporary upregulated protein level after transient forebrain ischemia in the rat.Brain Res. 866, 286–298.PubMedCrossRefGoogle Scholar
  192. Zhu Y, GY Yang, B Ahlemeyer, L Pang, XM Che and C Culmsee (2002) Transforming growth factor-β1 increasesbad phosphorylation and protects neurons against damage.J. Neurosci. 22, 3898–3909.PubMedGoogle Scholar
  193. Zhu Y, C Culmsee, S Klumpp and J Krieglstein (2004a) Neuroprotection by transforming growth factor-β1 involves activation of nuclear factor-κB through phosphatidylinositol-3-OH kinase/Akt and mitogen-activated protein kinase-extracellular-signal regulated kinase 1, 2 signaling pathways.Neuroscience 123, 897–906.PubMedCrossRefGoogle Scholar
  194. Zhu X, AK Raina, G Perry and MA Smith (2004b) Alzheimer’s disease: the two-hit hypothesis.Lancet Neurol. 3, 219–226.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  1. 1.Department of Neurology, Faculty of MedicinePontificia Universidad Católica de ChileSantiagoChile

Personalised recommendations