Neurotoxicity Research

, Volume 8, Issue 1–2, pp 119–134 | Cite as

Molecular and cellular mechanisms of neuronal cell death in HIV dementia

Part III Molecular and Cellular Mechanisms of Neuronal Cell Death

Abstract

The deaths of neurons, astrocytes and endothelial cells have been described in patients with HIV (human immunodeficiency virus) dementia. HIV-1 does not infect neurons; instead, neurotoxic substances shed by infected glia and macrophages can induce a form of programmed cell death called apoptosis in neurons. These neurotoxins include the HIV-1 proteins Tat and gp120, as well as proinflammatory cytokines, chemokines, excitotoxins and proteases. In this article we review the evidence for apoptosis of various cell types within the brain of HIV-infected patients, and describein vitro andin vivo experimental studies that have elucidated the mechanisms by which HIV causes apoptosis of brain cells.

Keywords

HIV Dementia Astrocytes Endothelial cells apoptosis Tat gp120 cytokines chemokines excitotoxins proteases 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acquas E, A Bachis, RL Nosheny, I Cernak and I Mocchetti (2004) Human immunodeficiency virus type 1 protein gp120 causes neuronal cell death in the rat brain by activating caspases.Neurotoxicity Res. 5, 605–615.Google Scholar
  2. Adams JM and S Cory (1998) The Bcl-2 protein family: arbiters of cell survival.Science 281, 1322–1326.PubMedCrossRefGoogle Scholar
  3. Adamson DC, B Wildemann, M Sasaki, JD Glass, JC McArthur, VI Christov, TM Dawson and VL Dawson (1996) Immunologic NO synthase: elevation in severe AIDS dementia and induction by HIV-1 gp41.Science 274, 1917–1921.PubMedCrossRefGoogle Scholar
  4. Adamson DC, KL Kopnisky, TM Dawson and VL Dawson (1999a) Mechanisms and structural determinants of HIV-1 coat protein, gp41-induced neurotoxicity.J. Neurosci. 19, 64–71.PubMedGoogle Scholar
  5. Adamson DC, JC McArthur, TM Dawson and VL Dawson (1999b) Rate and severity of HIV-associated dementia (HAD): correlations with Gp41 and iNOS.Mol. Med. 5, 98–109.PubMedGoogle Scholar
  6. Adle-Biassette H, Y Levy, M Colombel, F Poron, S Natchev, C Keohane and F Gray (1995) Neuronal apoptosis in HIV infection in adults.Neuropathol. Appl. Neurobiol. 21, 218–227.PubMedCrossRefGoogle Scholar
  7. Adle-Biassette H, F Chretien, L Wingertsmann, C Hery, T Ereau, F Scaravilli, M Tardieu and F Gray (1999) Neuronal apoptosis does not correlate with dementia in HIV infection but is related to microglial activation and axonal damage.Neuropathol. Appl. Neurobiol. 25, 123–133.PubMedCrossRefGoogle Scholar
  8. Aksenov MY, U Hasselrot, AK Bansal, G Wu, A Nath, C Anderson, CF Mactutus and RM Booze (2001) Oxidative damage induced by the injection of HIV-1 Tat protein in the rat striatum.Neurosci. Lett. 305, 5–8.PubMedCrossRefGoogle Scholar
  9. Aloisi F, A Care, G Borsellino, P Gallo, S Rosa, A Bassani, A Cabibbo, U Testa, G Levi and C Peschle (1992) Production of hemolymphopoietic cytokines (IL-6, IL-8, colony-stimulating factors) by normal human astrocytes in response to IL-1 beta and tumor necrosis factor-alpha.J. Immunol. 149, 2358–2366.PubMedGoogle Scholar
  10. Antonsson B and JC Martinou (2000) The Bcl-2 protein family.Exp. Cell. Res. 256, 50–57.PubMedCrossRefGoogle Scholar
  11. Bachis A and I Mocchetti (2004) The chemokine receptor CXCR4 and not the N-methyl-D-aspartate receptor mediates gp120 neurotoxicity in cerebellar granule cells.J. Neurosci. Res. 75, 75–82.PubMedCrossRefGoogle Scholar
  12. Bachis A, EO Major and I Mocchetti (2003) Brain-derived neurotrophic factor inhibits human immunodeficiency virus-1/gp120-mediated cerebellar granule cell death by preventing gp120 internalization.J. Neurosci. 23, 5715–5722.PubMedGoogle Scholar
  13. Bagetta G, S Piccirilli, C Del Duca, LA Morrone, L Rombola, G Nappi, J De Alba, RG Knowles and MT Corasaniti (2004) Inducible nitric oxide synthase is involved in the mechanisms of cocaine enhanced neuronal apoptosis induced by HIV-1 gp120 in the neocortex of rat.Neurosci. Lett. 356, 183–186.PubMedCrossRefGoogle Scholar
  14. Baier-Bitterlich G, H Wachter and D Fuchs (1996) Oxidative stress and apoptosis in HIV infection.Science 271, 582–583.PubMedCrossRefGoogle Scholar
  15. Barger SW, D Horster, K Furukawa, Y Goodman, J Krieglstein and MP Mattson (1995) Tumor necrosis factors alpha and beta protect neurons against amyloid beta-peptide toxicity: evidence for involvement of a kappa B-binding factor and attenuation of peroxide and Ca2+ accumulation.Proc. Natl. Acad. Sci. USA 92, 9328–9332.PubMedCrossRefGoogle Scholar
  16. Baruchel S and MA Wainberg (1992) The role of oxidative stress in disease progression in individuals infected by the human immunodeficiency virus.J. Leukoc. Biol. 52, 111–114.PubMedGoogle Scholar
  17. Bazan NG, Zorumski CF and Clark GD (1993) The activation of phospholipase A2 and release of arachidonic acid and other lipid mediators at the synapse: the role of platelet-activating factor.J. Lipid Mediat. 6, 421–427.PubMedGoogle Scholar
  18. Belichenko PV, J Miklossy and MR Celio (1997) HIV-I induced destruction of neocortical extracellular matrix components in AIDS victims.Neurobiol. Dis. 4, 301–310.PubMedCrossRefGoogle Scholar
  19. Bell JE (1998) The neuropathology of adult HIV infection.Rev. Neurol. (Paris) 154, 816–829.Google Scholar
  20. Bennasser Y, A Badou, J Tkaczuk and E Bahraoui(2002) Signaling pathways triggered by HIV-1 Tat in human monocytes to induce TNF-alpha.Virology 303, 174–180.PubMedCrossRefGoogle Scholar
  21. Bennett BA, DE Rusyniak and CK Hollingsworth (1995) HIV-1 gp120-induced neurotoxicity to midbrain dopamine cultures.Brain Res. 705, 168–176.PubMedCrossRefGoogle Scholar
  22. Bito H, M Nakamura, Z Honda, T Izumi, T Iwatsubo, Y Seyama, A Ogura, Y Kudo and T Shimizu (1992) Platelet-activating factor (PAF) receptor in rat brain: PAF mobilizes intracellular Ca2+ in hippocampal neurons.Neuron 9, 285–294.PubMedCrossRefGoogle Scholar
  23. Boehning D, RL Patterson, L Sedaghat, NO Glebova, T Kurosaki and SH Snyder (2003) Cytochrome c binds to inositol (1,4,5) trisphosphate receptors, amplifying calcium-dependent apoptosis.Nat. Cell Biol. 5, 1051–1061.PubMedCrossRefGoogle Scholar
  24. Bonavia R, A Bajetto, S Barbero, A Albini, DM Noonan and G Schettini (2001) HIV-1 Tat causes apoptotic death and calcium homeostasis alterations in rat neurons.Biochem. Biophys. Res. Commun. 288, 301–308.PubMedCrossRefGoogle Scholar
  25. Boven LA, J Middel, P Portegies, J Verhoef, GH Jansen and HS Nottet (1999a) Overexpression of nerve growth factor and basic fibroblast growth factor in AIDS dementia complex.J. Neuroimmunol. 97, 154–162.PubMedCrossRefGoogle Scholar
  26. Boven LA, L Gomes, C Hery, F Gray, J Verhoef, P Portegies, M Tardieu and HS Nottet (1999b) Increased peroxynitrite activity in AIDS dementia complex: implications for the neuropathogenesis of HIV-1 infection.J. Immunol. 162,4319–43277.PubMedGoogle Scholar
  27. Breen EC, AR Rezai, K Nakajima, GN Beall, RT Mitsuyasu, T Hirano, T Kishimoto and O Martinez-Maza (1990) Infection with HIV is associated with elevated IL-6 levels and production.J. Immunol. 144, 480–484.PubMedGoogle Scholar
  28. Brenneman DE, GL Westbrook, SP Fitzgerald, DL Ennist, KL Elkins, MR Ruff and CB Pert (1988) Neuronal cell killing by the envelope protein of HIV and its prevention by vasoactive intestinal peptide.Nature 335, 639–642.PubMedCrossRefGoogle Scholar
  29. Brew BJ, J Corbeil, L Pemberton, L Evans, K Saito, R Penny, DA Cooper and MP Heyes (1995) Quinolinic acid production is related to macrophage tropic isolates of HIV-1.J. Neurovirol. 1, 369–374.PubMedCrossRefGoogle Scholar
  30. Bruce AJ, W Boling, MS Kindy, J Peschon, PJ Kraemer, MK Carpenter, FW Holtsberg and MP Mattson (1996) Altered neuronal and microglial responses to excitotoxic and ischemic brain injury in mice lacking TNF receptors.Nat. Med. 2, 788–794.PubMedCrossRefGoogle Scholar
  31. Bruce-Keller AJ, A Chauhan, FO Dimayuga, J Gee, JN Keller and A Nath (2003) Synaptic transport of human immunodeficiency virus-Tat protein causes neurotoxicity and gliosis in rat brain.J. Neurosci. 23, 8417–8422.PubMedGoogle Scholar
  32. Bukrinsky MI, HS Nottet, H Schmidtmayerova, L Dubrovsky, CR Flanagan, ME Mullins, SA Lipton and HE Gendelman (1995) Regulation of nitric oxide synthase activity in human immunodeficiency virus type 1 (HIV-1)-infected monocytes: implications for HIV-associated neurological disease.J. Exp. Med. 181, 735–745.PubMedCrossRefGoogle Scholar
  33. Burdo TH, M Nonnemacher, BP Irish, CH Choi, FC Krebs, S Gartner and B Wigdahl (2004) High-affinity interaction between HIV-1 Vpr and specific sequences that span the C/EBP and adjacent NF-kappaB sites within the HIV-1 LTR correlate with HIV-1-associated dementia.DNA Cell. Biol. 23, 261–269.PubMedCrossRefGoogle Scholar
  34. Caffrey M, DT Braddock, JM Louis, MA Abu-Asab, D Kingma, L Liotta, M Tsokos, N Tresser, LK Pannell, N Watts, AC Steven, MN Simon, SJ Stahl, PT Wingfield and GM Clore (2000) Biophysical characterization of gp41 aggregates suggests a model for the molecular mechanism of HIV-associated neurological damage and dementia.J. Biol. Chem. 275, 19877–19882.PubMedCrossRefGoogle Scholar
  35. Chan SL and MP Mattson (1999) Caspase and calpain substrates: roles in synaptic plasticity and cell death.J. Neurosci. Res. 58, 167–190.PubMedCrossRefGoogle Scholar
  36. Chang HC, F Samaniego, BC Nair, L Buonaguro and B Ensoli (1997) HIV-1 Tat protein exits from cells via a leaderless secretory pathway and binds to extracellular matrix-associated heparan sulfate proteoglycans through its basic region.Aids 11, 1421–1431.PubMedCrossRefGoogle Scholar
  37. Chao CC, TW Molitor and S Hu (1993) Neuroprotective role of IL-4 against activated microglia.J. Immunol. 151, 1473–1481.PubMedGoogle Scholar
  38. Chen P, M Mayne, C Power and A Nath (1997) The Tat protein of HIV-1 induces tumor necrosis factor-alpha production. Implications for HIV-1-associated neurological diseases.J. Biol. Chem. 272, 22385–22388.PubMedCrossRefGoogle Scholar
  39. Cheng B, S Cristakos and MP Mattson (1994) Tumor necrosis factors protect neurons against metabolic-excitotoxic insults and promote maintenance of calcium homeostasis.Neuron 12, 139–153.PubMedCrossRefGoogle Scholar
  40. Cheng GNJ, A Nath, B Knudsen, S Hochman, JD Geiger, M Ma and DS Magnuson (1998) Neuronal excitatory properties of human immunodeficiency virus type 1 Tat protein.Neuroscience 82, 97–106.PubMedCrossRefGoogle Scholar
  41. Chong YH, JY Seoh and HK Park (1998) Increased activity of matrix metalloproteinase-2 in human glial and neuronal cell lines treated with HIV-1 gp41 peptides.J. Mol. Neurosci. 10, 129–141.PubMedCrossRefGoogle Scholar
  42. Cinque GNP, L Vago, M Mengozzi, V Torri, D Ceresa, E Vicenzi, P Transidico, A Vagani, S Sozzani, A Mantovani, A Lazzarin and G Poli (1998) Elevated cerebrospinal fluid levels of monocyte chemotactic protein-1 correlate with HIV-1 encephalitis and local viral replication.Aids 12, 1327–1332.PubMedGoogle Scholar
  43. Cohen EA, G Dehni, JG Sodroski and WA Haseltine (1990) Human immunodeficiency virus vpr product is a virion-associated regulatory protein.J. Virol. 64, 3097–3099.PubMedGoogle Scholar
  44. Conant GNK,JC McArthur, DE Griffin, L Sjulson, LM Wahl and DN Irani (1999) Cerebrospinal fluid levels of MMP-2, 7, and 9 are elevated in association with human immunodeficiency virus dementia.Ann. Neurol. 46, 391–398.PubMedCrossRefGoogle Scholar
  45. Conant K, C St Hillaire, C Anderson, D Galey, J Wang and A Nath (2004) Human immunodeficiency virus type 1 Tat and methamphetamine affect the release and activation of matrix-degrading proteinases.J. Neurovirol. 10, 21–28.PubMedCrossRefGoogle Scholar
  46. Corasaniti MT, G Bagetta, D Rotiroti and G Nistico (1998) The HIV envelope protein gp120 in the nervous system: interactions with nitric oxide, interleukin-1beta and nerve growth factor signalling, with pathological implicationsin vivo andin vitro.Biochem. Pharmacol. 56, 153–156.PubMedCrossRefGoogle Scholar
  47. Cottet S, P Dupraz, F Hamburger, W Dolci, M Jaquet and B Thorens (2002) cFLIP protein prevents tumor necrosis factoralpha-mediated induction of caspase-8-dependent apoptosis in insulin-secreting betaTc-Tet cells.Diabetes 51, 1805–1814.PubMedCrossRefGoogle Scholar
  48. Curtain CC, F Separovic, D Rivett, A Kirkpatrick, AJ Waring, LM Gordon and AA Azad (1994) Fusogenic activity of aminoterminal region of HIV type 1 Nef protein.AIDS Res. Hum. Retroviruses 10, 1231–1240.PubMedGoogle Scholar
  49. Dalle-Donne I, A Scaloni, D Giustarini, E Cavarra, G Tell, G Lungarella, R Colombo, R Rossi and A Milzani (2005) Proteins as biomarkers of oxidative/nitrosative stress in diseases: the contribution of redox proteomics.Mass Spectrom. Rev. 24, 55–99.PubMedCrossRefGoogle Scholar
  50. Dawson TM, VL Dawson and SH Snyder (1993) Nitric oxide as a mediator of neurotoxicity.NIDA Res. Monogr. 136, 258–271; discussion, 271–253.PubMedGoogle Scholar
  51. Dawson VL, TM Dawson, GR Uhl and SH Snyder (1993) Human immunodeficiency virus type 1 coat protein neurotoxicity mediated by nitric oxide in primary cortical cultures.Proc. Natl. Acad. Sci. USA 90, 3256–3259.PubMedCrossRefGoogle Scholar
  52. Deshmukh M and EM Johnson Jr (1997) Programmed cell death in neurons: focus on the pathway of nerve growth factor depriva tion-induced death of sympathetic neurons.Mol. Pharmacol. 51, 897–906.PubMedGoogle Scholar
  53. Dhawan S, LA Toro, BE Jones and MS Meltzer (1992) Interactions between HIV-infected monocytes and the extracellular matrix: HIV-infected monocytes secrete neutral metalloproteases that degrade basement membrane protein matrices.J. Leukoc. Biol. 52, 244–248.PubMedGoogle Scholar
  54. Dickson DW, SC Lee, W Hatch, LA Mattiace, CF Brosnan and WD Lyman (1994) Macrophages and microglia in HIV-related CNS neuropathology.Res. Publ. Assoc. Res. Nerv. Ment. Dis. 72, 99–118.PubMedGoogle Scholar
  55. Diop AG, M Lesort, F Esclaire, M Dumas and J Hugon (1995) Calbindin D28K-containing neurons, and not HSP70-expressing neurons, are more resistant to HIV-1 envelope (gp120) toxicity in cortical cell cultures.J. Neurosci. Res. 42, 252–258.PubMedCrossRefGoogle Scholar
  56. Dragunow M (2004) CREB and neurodegeneration.Front. Biosci. 9, 100–103.PubMedCrossRefGoogle Scholar
  57. Dreyer EB, PK Kaiser, JT Offermann and SA Lipton (1990) HIV-1 coat protein neurotoxicity prevented by calcium channel antagonists.Science 248, 364–367.PubMedCrossRefGoogle Scholar
  58. Emilie D, M Peuchmaur, MC Maillot, MC Crevon, N Brousse, JF Delfraissy, J Dormont and P Galanaud (1990) Production of interleukins in human immunodeficiency virus-1-replicating lymph nodes.J. Clin. Invest. 86, 148–159.PubMedCrossRefGoogle Scholar
  59. Ensoli B, L Buonaguro, G Barillari, V Fiorelli, R Gendelman, RA Morgan, P Wingfield and RC Gallo (1993) Release, uptake, and effects of extracellular human immunodeficiency virus type 1 Tat protein on cell growth and viral transactivation.J. Virol. 67, 277–287.PubMedGoogle Scholar
  60. Ethell DW and LA Buhler (2003) Fas ligand-mediated apoptosis in degenerative disorders of the brain.J. Clin. Immunol. 23, 363–370.PubMedCrossRefGoogle Scholar
  61. Eugenin EA, TG D’Aversa, L Lopez, TM Calderon and JW Berman (2003) MCP-1 (CCL2) protects human neurons and astrocytes from NMDA or HIV-tat-induced apoptosis.J. Neurochem. 85, 1299–1311.PubMedCrossRefGoogle Scholar
  62. Eugenin EA, G Dyer, TM Calderon and JW Berman (2004) HIV-1 tat protein induces a migratory phenotype in human fetal microglia by a CCL2 (MCP-1)-dependent mechanism: possible role in neuroAIDS.Glia 49, 501–510.CrossRefGoogle Scholar
  63. Everall IP, G Trillo-Pazos, C Bell, M Mallory, V Sanders and E Masliah (2001) Amelioration of neurotoxic effects of HIV envelope protein gp120 by fibroblast growth factor: a strategy for neuroprotection.J. Neuropathol. Exp. Neurol. 60, 293–301.PubMedGoogle Scholar
  64. Ewart GD, T Sutherland, PW Gage and GB Cox (1996) The Vpu protein of human immunodeficiency virus type 1 forms cationselective ion channels.J. Virol. 70, 7108–7115.PubMedGoogle Scholar
  65. Favier A, C Sappey, P Leclerc, P Faure and M Micoud (1994) Antioxidant status and lipid peroxidation in patients infected with HIV.Chem. Biol. Interact. 91, 165–180.PubMedCrossRefGoogle Scholar
  66. Fine SM, RA Angel, SW Perry, LG Epstein, JD Rothstein, S Dewhurst and HA Gelbard (1996) Tumor necrosis factor alpha inhibits glutamate uptake by primary human astrocytes. Implications for pathogenesis of HIV-1 dementia.J. Biol. Chem. 271, 15303–15306.PubMedCrossRefGoogle Scholar
  67. Foga IO, A Nath, BB Hasinoff and JD Geiger (1997) Antioxidants and dipyridamole inhibit HIV-1 gp120-induced free radicalbased oxidative damage to human monocytoid cells.J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. 16, 223–229.PubMedGoogle Scholar
  68. Garden GA, SL Budd, E Tsai, L Hanson, M Kaul, DM D’Emilia, RM Friedlander, J Yuan, E Masliah and SA Lipton (2002) Caspase cascades in human immunodeficiency virus-associated neurodegeneration.J. Neurosci. 22, 4015–4024.PubMedGoogle Scholar
  69. Gary DS and MP Mattson (2001) Integrin signaling via the PI3-kinase-Akt pathway increases neuronal resistance to glutamateinduced apoptosis.J. Neurochem. 76, 1485–1496.PubMedCrossRefGoogle Scholar
  70. Gelbard HA, HS Nottet, S Swindells, M Jett, KA Dzenko, P Genis, R White, L Wang, YB Choi, D Zhanget al. (1994) Platelet-activating factor: a candidate human immunodeficiency virus type 1-induced neurotoxin.J. Virol. 68, 4628–4635.PubMedGoogle Scholar
  71. Gelbard HA, HJ James, LR Sharer, SW Perry, Y Saito, AM Kazee, BM Blumberg and LG Epstein (1995) Apoptotic neurons in brains from paediatric patients with HIV-1 encephalitis and progressive encephalopathy.Neuropathol. Appl. Neurobiol. 21, 208–217.PubMedCrossRefGoogle Scholar
  72. Gendelman HE, LM Baca, CA Kubrak, P Genis, S Burrous, RM Friedman, D Jacobs and MS Meltzer (1992) Induction of IFNalpha in peripheral blood mononuclear cells by HIV-infected monocytes. Restricted antiviral activity of the HIV-induced IFN.J. Immunol. 148, 422–429.PubMedGoogle Scholar
  73. Genis P, M Jett, EW Bernton, T Boyle, HA Gelbard, K Dzenko, RW Keane, L Resnick, Y Mizrachi, DJ Volskyet al. (1992) Cytokines and arachidonic metabolites produced during human immunodeficiency virus (HIV)-infected macrophage-astroglia interactions: implications for the neuropathogenesis of HIV disease.J. Exp. Med. 176, 1703–1718.PubMedCrossRefGoogle Scholar
  74. Giffard RG, L Xu, H Zhao, W Carrico, Y Ouyang, Y Qiao, R Sapolsky, G Steinberg, B Hu and MA Yenari (2004) Chaperones, protein aggregation, and brain protection from hypoxic/ischemic injury.J. Exp. Biol. 207, 3213–3220.PubMedCrossRefGoogle Scholar
  75. Gil L, G Martinez, I Gonzalez, A Tarinas, A Alvarez, A Giuliani, R Molina, R Tapanes, J Perez and OS Leon (2003) Contribution to characterization of oxidative stress in HIV/AIDS patients.Pharmacol. Res. 47, 217–224.PubMedCrossRefGoogle Scholar
  76. Giulian D, K Vaca and CA Noonan (1990) Secretion of neurotoxins by mononuclear phagocytes infected with HIV-1.Science 250, 1593–1596.PubMedCrossRefGoogle Scholar
  77. Giulian D, J Yu, X Li, D Tom, J Li, E Wendt, SN Lin, R Schwarcz and C Noonan (1996) Study of receptor-mediated neurotoxins released by HIV-1-infected mononuclear phagocytes found in human brain.J. Neurosci. 16, 3139–3153.PubMedGoogle Scholar
  78. Glass JD and SL Wesselingh (2001) Microglia in HIV-associated neurological diseases.Microsc. Res. Tech. 54, 95–105.PubMedCrossRefGoogle Scholar
  79. Gonzalez ME and L Carrasco (1998) The human immunodeficiency virus type 1 Vpu protein enhances membrane permeability.Biochemistry 37, 13710–13719.PubMedCrossRefGoogle Scholar
  80. Gonzalez ME and L Carrasco (2001) Human immunodeficiency virus type 1 VPU protein affects Sindbis virus glycoprotein processing and enhances membrane permeabilization.Virology 279, 201–209.PubMedCrossRefGoogle Scholar
  81. Gray F, H Adle-Biassette, F Chretien, G Lorin de la Grandmaison, G Force and C Keohane (2001) Neuropathology and neurodegeneration in human immunodeficiency virus infection. Pathogenesis of HIV-induced lesions of the brain, correlations with HIV-associated disorders and modifications according to treatments.Clin. Neuropathol. 20, 146–155.PubMedGoogle Scholar
  82. Greenspan HC (1993) The role of reactive oxygen species, antioxidants and phytopharmaceuticals in human immunodeficiency virus activity.Med. Hypotheses 40, 85–92.PubMedCrossRefGoogle Scholar
  83. Greenspan HC and OI Aruoma (1994) Oxidative stress and apoptosis in HIV infection: a role for plant-derived metabolites with synergistic antioxidant activity.Immunol. Today 15, 209–213.PubMedCrossRefGoogle Scholar
  84. Gross E, CA Amella, L Pompucci, G Franchin, B Sherry and H Schmidtmayerova (2003) Macrophages and lymphocytes differentially modulate the ability of RANTES to inhibit HIV-1 infection.J. Leukoc. Biol. 74, 781–790.PubMedCrossRefGoogle Scholar
  85. Guy B, Y Riviere, K Dott, A Regnault and MP Kieny (1990) Mutational analysis of the HIV nef protein.Virology 176, 413–425.PubMedCrossRefGoogle Scholar
  86. Haughey NJ, CP Holden, A Nath and JD Geiger (1999) Involvement of inositol 1,4,5-trisphosphate-regulated stores of intracellular calcium in calcium dysregulation and neuron cell death caused by HIV-1 protein tat.J. Neurochem. 73, 1363–1374.PubMedCrossRefGoogle Scholar
  87. Haughey NJ, A Nath, MP Mattson, JT Slevin and JD Geiger (2001) HIV-1 Tat through phosphorylation of NMDA receptors potentiates glutamate excitotoxicity.J. Neurochem. 78, 457–467.PubMedCrossRefGoogle Scholar
  88. Haughey NJ, RG Cutler, A Tamara, JC McArthur, DL Vargas, CA Pardo, J Turchan, A Nath and MP Mattson (2004) Perturbation of sphingolipid metabolism and ceramide production in HIVdementia.Ann. Neurol. 55, 257–267.PubMedCrossRefGoogle Scholar
  89. Hayman M, G Arbuthnott, G Harkiss, H Brace, P Filippi, V Philippon, D Thomson, R Vigne andA Wright (1993) Neurotoxicity of peptide analogues of the transactivating protein tat from Maedi-Visna virus and human immunodeficiency virus.Neuroscience 53, 1–6.PubMedCrossRefGoogle Scholar
  90. Hesselgesser J, D Taub, P Baskar, M Greenberg, J Hoxie, DL Kolson and R Horuk (1998) Neuronal apoptosis induced by HIV-1 gp120 and the chemokine SDF-1 alpha is mediated by the chemokine receptor CXCR4.Curr. Biol. 8, 595–598.PubMedCrossRefGoogle Scholar
  91. Heyes MP, BJ Brew, A Martin, RW Price, AM Salazar, JJ Sidtis, JA Yergey, MM Mouradian, AE Sadler, J Keilpet al. (1991) Quinolinic acid in cerebrospinal fluid and serum in HIV-1 infection: relationship to clinical and neurological status.Ann. Neurol. 29, 202–209.PubMedCrossRefGoogle Scholar
  92. Heyes MP, CL Achim, CA Wiley, EO Major, K Saito and SP Markey (1996) Human microglia convert l-tryptophan into the neurotoxin quinolinic acid.Biochem. J. 320 (Pt. 2), 595–597.PubMedGoogle Scholar
  93. Heyes MP, RJ Ellis, L Ryan, ME Childers, I Grant, T Wolfson, S Archibald and TL Jernigan (2001) Elevated cerebrospinal fluid quinolinic acid levels are associated with region-specific cerebral volume loss in HIV infection.Brain 124, 1033–1042.PubMedCrossRefGoogle Scholar
  94. Holden CP, NJ Haughey, A Nath and JD Geiger (1999) Role of Na+/H+ exchangers, excitatory amino acid receptors and voltage-operated Ca2+ channels in human immunodeficiency virus type 1 gp120-mediated increases in intracellular Ca2+ in human neurons and astrocytes.Neuroscience 91, 1369–1378.PubMedCrossRefGoogle Scholar
  95. Hu S, H Ali, WS Sheng, LC Ehrlich, PK Peterson and CC Chao (1999) Gp-41-mediated astrocyte inducible nitric oxide synthase mRNA expression: involvement of interleukin-1beta production by microglia.J. Neurosci. 19, 6468–6474.PubMedGoogle Scholar
  96. Huang MB, O Weeks, LJ Zhao, M Saltarelli and VC Bond (2000) Effects of extracellular human immunodeficiency virus type 1 vpr protein in primary rat cortical cell cultures.J. Neurovirol. 6, 202–220.PubMedCrossRefGoogle Scholar
  97. Hudson L, J Liu, A Nath, M Jones, R Raghavan, O Narayan, D Male and I Everall (2000) Detection of the human immunodeficiency virus regulatory protein tat in CNS tissues.J. Neurovirol. 6, 145–155.PubMedCrossRefGoogle Scholar
  98. Ignatowicz E, AM Vezzani, M Rizzi and M D’Incalci (1991) Nerve cell death inducedin vivo by kainic acid and quinolinic acid does not involve apoptosis.Neuroreport 2, 651–654.PubMedCrossRefGoogle Scholar
  99. Israel N, MA Gougerot-Pocidalo, F Aillet and JL Virelizier (1992) Redox status of cells influences constitutive or induced NFkappa B translocation and HIV long terminal repeat activity in human T and monocytic cell lines.J. Immunol. 149, 3386–3393.PubMedGoogle Scholar
  100. Jennes W, C Vereecken, K Fransen, A de Roo and L Kestens (2004) Disturbed secretory capacity for macrophage inflammatory protein (MIP)-1 alpha and MIP-1 beta in progressive HIV infection.AIDS Res. Hum. Retroviruses 20, 1087–1091.PubMedCrossRefGoogle Scholar
  101. Johnson CR and WD Jarvis (2004) Caspase-9 regulation: an update.Apoptosis 9, 423–427.PubMedCrossRefGoogle Scholar
  102. Jones MV, JE Bell and A Nath (2000) Immunolocalization of HIV envelope gp120 in HIV encephalitis with dementia.Aids 14, 2709–2713.PubMedCrossRefGoogle Scholar
  103. Kerr JF, AH Wyllie and AR Currie (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics.Br. J. Cancer 26, 239–257.PubMedGoogle Scholar
  104. Ketas TJ, PJ Klasse, C Spenlehauer, M Nesin, I Frank, M Pope, JM Strizki, GR Reyes, BM Baroudy and JP Moore (2003) Entry inhibitors SCH-C, RANTES, and T-20 block HIV type 1 replication in multiple cell types.AIDS Res. Hum. Retroviruses 19, 177–186.PubMedCrossRefGoogle Scholar
  105. Khan NA, F Di Cello, A Nath and KS Kim (2003) Human immunodeficiency virus type 1 tat-mediated cytotoxicity of human brain microvascular endothelial cells.J. Neurovirol. 9, 584–593.PubMedCrossRefGoogle Scholar
  106. Kim JP and DW Choi (1987) Quinolinate neurotoxicity in cortical cell culture.Neuroscience 23, 423–432.PubMedCrossRefGoogle Scholar
  107. Kim TA, HK Avraham, YH Koh, S Jiang, IW Park and S Avraham (2003) HIV-1 Tat-mediated apoptosis in human brain microvascular endothelial cells.J. Immunol. 170, 2629–2637.PubMedGoogle Scholar
  108. Kitai R, ML Zhao, N Zhang, LL Hua and SC Lee (2000) Role of MIP-1beta and RANTES in HIV-1 infection of microglia: inhibition of infection and induction by IFNbeta.J. Neuroimmunol. 110, 230–239.PubMedCrossRefGoogle Scholar
  109. Kobayashi S, Y Hamamoto, N Kobayashi and N Yamamoto (1990) Serum level of TNF alpha in HIV-infected individuals.Aids 4, 169–170.PubMedGoogle Scholar
  110. Kothakota S, T Azuma, C Reinhard, A Klippel, J Tang, K Chu, TJ McGarry, MW Kirschner, K Koths, DJ Kwiatkowski and LT Williams (1997) Caspase-3-generated fragment of gelsolin: effector of morphological change in apoptosis.Science 278, 294–298.PubMedCrossRefGoogle Scholar
  111. Kruman II, A Nath and MP Mattson (1998) HIV-1 protein Tat induces apoptosis of hippocampal neurons by a mechanism involving caspase activation, calcium overload, and oxidative stress.Exp. Neurol. 154, 276–288.PubMedCrossRefGoogle Scholar
  112. Lahdevirta J, CP Maury, AM Teppo and H Repo (1988) Elevated levels of circulating cachectin/tumor necrosis factor in patients with acquired immunodeficiency syndrome.Am. J. Med. 85, 289–291.PubMedCrossRefGoogle Scholar
  113. Lannuzel A, PM Lledo, HO Lamghitnia, JD Vincent and M Tardieu (1995) HIV-1 envelope proteins gp120 and gp160 potentiate NMDA-induced [Ca2+]i increase, alter [Ca2+]i homeostasis and induce neurotoxicity in human embryonic neurons.Eur. J. Neurosci. 7, 2285–2293.PubMedCrossRefGoogle Scholar
  114. Larkin M (1998) Nerve growth factor promising in diabetic neuropathy. and in HIV-1-related neuropathy.Lancet 352, 1039.PubMedCrossRefGoogle Scholar
  115. Legrand-Poels S, D Vaira, J Pincemail, A van de Vorst and J Piette (1990) Activation of human immunodeficiency virus type 1 by oxidative stress.AIDS Res. Hum. Retroviruses 6, 1389–1397.PubMedGoogle Scholar
  116. Leveque T, G Le Pavec, A Boutet, M Tardieu, D Dormont and G Gras (2004) Differential regulation of gelatinase A and B and TIMP-1 and -2 by TNFalpha and HIV virions in astrocytes.Microbes Infect. 6, 157–163.PubMedCrossRefGoogle Scholar
  117. Levy DN, Y Refaeli, RR MacGregor and DB Weiner (1994) Serum Vpr regulates productive infection and latency of human immunodeficiency virus type 1.Proc. Natl. Acad. Sci. USA 91, 10873–10877.PubMedCrossRefGoogle Scholar
  118. Lipton SA (1993) Human immunodeficiency virus-infected macrophages, gp120, and N-methyl-D-aspartate receptor-mediated neurotoxicity.Ann. Neurol. 33, 227–228.PubMedCrossRefGoogle Scholar
  119. Lipton SA, NJ Sucher, PK Kaiser and EB Dreyer (1991) Synergistic effects of HIV coat protein and NMDA receptor-mediated neurotoxicity.Neuron 7, 111–118.PubMedCrossRefGoogle Scholar
  120. Liu H, D Chao, EE Nakayama, H Taguchi, M Goto, X Xin, JK Takamatsu, H Saito, Y Ishikawa, T Akaza, T Juji, Y Takebe, T Ohishi, K Fukutake, Y Maruyama, S Yashiki, S Sonoda, T Nakamura, Y Nagai, A Iwamoto and T Shioda (1999) Polymorphism in RANTES chemokine promoter affects HIV-1 disease progression.Proc. Natl. Acad. Sci. USA 96, 4581–4585.PubMedCrossRefGoogle Scholar
  121. Liu X, H Zou, C Slaughter and X Wang (1997) DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis.Cell 89, 175–184.PubMedCrossRefGoogle Scholar
  122. Liuzzi GM, CM Mastroianni, MP Santacroce, M Fanelli, C D’Agostino, V Vullo and P Riccio (2000) Increased activity of matrix metalloproteinases in the cerebrospinal fluid of patients with HIV-associated neurological diseases.J. Neurovirol. 6, 156–163.PubMedCrossRefGoogle Scholar
  123. Mabrouk K, J Van Rietschoten, E Vives, H Darbon, H Rochat and JM Sabatier (1991) Lethal neurotoxicity in mice of the basic domains of HIV and SIV Rev proteins. Study of these regions by circular dichroism.FEBS Lett. 289, 13–17.PubMedCrossRefGoogle Scholar
  124. Maggirwar SB, N Tong, S Ramirez, HA Gelbard and S Dewhurst (1999) HIV-1 Tat-mediated activation of glycogen synthase kinase-3beta contributes to Tat-mediated neurotoxicity.J. Neurochem. 73, 578–586.PubMedCrossRefGoogle Scholar
  125. Magnuson DS, BE Knudsen, JD Geiger, RM Brownstone and A Nath (1995) Human immunodeficiency virus type 1 tat activates non-N-methyl-D-aspartate excitatory amino acid receptors and causes neurotoxicity.Ann. Neurol. 37, 373–380.PubMedCrossRefGoogle Scholar
  126. Maragos WF, P Tillman, M Jones, AJ Bruce-Keller, S Roth, JE Bell and A Nath (2003) Neuronal injury in hippocampus with human immunodeficiency virus transactivating protein, Tat.Neuroscience 117, 43–53.PubMedCrossRefGoogle Scholar
  127. Marshall H (2001) RANTES polymorphism affects susceptibility to HIV and asthma.Trends Immunol. 22, 13.Google Scholar
  128. Martin A, MP Heyes, AM Salazar, DL Kampen, J Williams, WA Law, ME Coats and SP Markey (1992) Progressive slowing of reaction time and increasing cerebrospinal fluid concentrations of quinolinic acid in HIV-infected individuals.J. Neuropsychiatry Clin. Neurosci. 4, 270–279.PubMedGoogle Scholar
  129. Martinou JC, S Desagher and B Antonsson (2000) Cytochrome c release from mitochondria: all or nothing.Nat. Cell. Biol. 2, E41-E43.PubMedCrossRefGoogle Scholar
  130. Mastroianni CM, F Paoletti, AP Massetti, M Falciano and V Vullo (1990) Elevated levels of tumor necrosis factor (TNF) in the cerebrospinal fluid from patients with HIV-associated neurological disorders.Acta Neurol. (Napoli) 12, 66–67.Google Scholar
  131. Mastroianni CM, F Paoletti, C Valenti, V Vullo, E Jirillo and S Delia (1992) Tumour necrosis factor (TNF-alpha) and neurological disorders in HIV infection.J. Neurol. Neurosurg. Psychiatry 55, 219–221.PubMedCrossRefGoogle Scholar
  132. Mattson MP (2000) Apoptosis in neurodegenerative disorders.Nat. Rev. Mol. Cell. Biol. 1, 120–129.PubMedCrossRefGoogle Scholar
  133. Mattson MP (2003) Excitotoxic and excitoprotective mechanisms: abundant targets for the prevention and treatment of neurodegenerative disorders.Neuromolecular Med. 3, 65–94.PubMedCrossRefGoogle Scholar
  134. Mattson MP and S Camandola (2001) NF-kappaB in neuronal plasticity and neurodegenerative disorders.J. Clin. Invest. 107, 247–254.PubMedCrossRefGoogle Scholar
  135. Mayne M, AC Bratanich, P Chen, F Rana, A Nath and C Power (1998) HIV-1 tat molecular diversity and induction of TNF-alpha: implications for HIV-induced neurological disease.Neuroimmunomodulation 5, 184–192.PubMedCrossRefGoogle Scholar
  136. McArthur JC (2004) HIV dementia: an evolving disease.J. Neuroimmunol. 157, 3–10.PubMedCrossRefGoogle Scholar
  137. McArthur JC, C Yiannoutsos, DM Simpson, BT Adornato, EJ Singer, H Hollander, C Marra, M Rubin, BA Cohen, T Tucker, BA Navia, G Schifitto, D Katzenstein, C Rask, L Zaborski, ME Smith, S Shriver, L Millar, DB Clifford and IJ Karalnik (2000) A phase II trial of nerve growth factor for sensory neuropathy associated with HIV infection. AIDS Clinical Trials Group Team 291.Neurology 54, 1080–1088.PubMedGoogle Scholar
  138. McDermott DH, MJ Beecroft, CA Kleeberger, FM Al-Sharif, WE Ollier, PA Zimmerman, BA Boatin, SF Leitman, R Detels, AH Hajeer and PM Murphy (2000) Chemokine RANTES promoter polymorphism affects risk of both HIV infection and disease progression in the Multicenter AIDS Cohort Study.Aids 14, 2671–2678.PubMedCrossRefGoogle Scholar
  139. McDonald ES and AJ Windebank (2000) Mechanisms of neurotoxic injury and cell death.Neurol. Clin. 18, 525–540.PubMedCrossRefGoogle Scholar
  140. Meucci O and RJ Miller (1996) gp120-induced neurotoxicity in hippocampal pyramidal neuron cultures: protective action of TGF-beta1.J. Neurosci. 16, 4080–4088.PubMedGoogle Scholar
  141. Meyerhoff DJ, S MacKay, L Bachman, N Poole, WP Dillon, MW Weiner and G Fein (1993) Reduced brain N-acetylaspartate suggests neuronal loss in cognitively impaired human immunodeficiency virus-seropositive individuals: in vivo 1H magnetic resonance spectroscopic imaging.Neurology 43, 509–515.PubMedGoogle Scholar
  142. Miller B, M Sarantis, SF Traynelis and D Attwell (1992) Potentiation of NMDA receptor currents by arachidonic acid.Nature 355, 722–725.PubMedCrossRefGoogle Scholar
  143. Milstien S, N Sakai, BJ Brew, C Krieger, JH Vickers, K Saito and MP Heyes (1994) Cerebrospinal fluid nitrite/nitrate levels in neurologic diseases.J. Neurochem. 63, 1178–1180.PubMedGoogle Scholar
  144. Misse D, PO Esteve, B Renneboog, M Vidal, M Cerutti, Y St Pierre, H Yssel, M Parmentier and F Veas (2001) HIV-1 glycoprotein 120 induces the MMP-9 cytopathogenic factor production that is abolished by inhibition of the p38 mitogen-activated protein kinase signaling pathway.Blood 98, 541–547.PubMedCrossRefGoogle Scholar
  145. Mocchetti I and A Bachis (2004) Brain-derived neurotrophic factor activation of TrkB protects neurons from HIV-1/gp120-induced cell death.Crit. Rev. Neurobiol. 16, 51–58.PubMedCrossRefGoogle Scholar
  146. Mollace V, D Salvemini, DP Riley, C Muscoli, M Iannone, T Granato, L Masuelli, A Modesti, D Rotiroti, R Nistico, A Bertoli, CF Perno and S Aquaro (2002) The contribution of oxidative stress in apoptosis of human-cultured astroglial cells induced by supernatants of HIV-1-infected macrophages.J. Leukoc. Biol. 71, 65–72.PubMedGoogle Scholar
  147. Muller WE, HC Schroder, H Ushijima, J Dapper and J Bormann (1992) gp120 of HIV-1 induces apoptosis in rat cortical cell cultures: prevention by memantine.Eur. J. Pharmacol. 226, 209–214.PubMedCrossRefGoogle Scholar
  148. Muller WE, G Pergande, H Ushijima, C Schleger, M Kelve and S Perovic (1996) Neurotoxicity in rat cortical cells caused by N-methyl-D-aspartate (NMDA) and gp120 of HIV-1: induction and pharmacological intervention.Prog. Mol. Subcell. Biol. 16, 44–57.PubMedGoogle Scholar
  149. Muzio M, BR Stockwell, HR Stennicke, GS Salvesen and VM Dixit (1998) An induced proximity model for caspase-8 activation.J. Biol. Chem. 273, 2926–2930.PubMedCrossRefGoogle Scholar
  150. Nakamura H, H Masutani and J Yodoi (2002) Redox imbalance and its control in HIV infection.Antioxid. Redox Signal. 4, 455–464.PubMedCrossRefGoogle Scholar
  151. Nath Aand J Geiger (1998) Neurobiological aspects of human immunodeficiency virus infection: neurotoxic mechanisms.Prog. Neurobiol. 54, 19–33.PubMedCrossRefGoogle Scholar
  152. Nath A, K Conant, P Chen, C Scott and EO Major (1999) Transient exposure to HIV-1 Tat protein results in cytokine production in macrophages and astrocytes. A hit and run phenomenon.J. Biol. Chem. 274, 17098–17102.PubMedCrossRefGoogle Scholar
  153. Navia BA, ES Cho, CK Petito and RW Price (1986) The AIDS dementia complex: II.Neuropathology. Ann. Neurol. 19, 525–535.Google Scholar
  154. New DR, M Ma, LG Epstein, A Nath and HA Gelbard (1997) Human immunodeficiency virus type 1 Tat protein induces death by apoptosis in primary human neuron cultures.J. Neurovirol. 3, 168–173.PubMedGoogle Scholar
  155. Nguyen BY, M Clerici, DJ Venzon, S Bauza, WJ Murphy, DL Longo, M Baseler, N Gesundheit, S Broder, G Shearer and R Yarchoan (1998) Pilot study of the immunologic effects of recombinant human growth hormone and recombinant insulinlike growth factor in HIV-infected patients.Aids 12, 895–904.PubMedCrossRefGoogle Scholar
  156. Nicotera P, E Bonfoco and B Brune (1995) Mechanisms for nitric oxide-induced cell death: involvement of apoptosis.Adv. Neuroimmunol. 5, 411–420.PubMedCrossRefGoogle Scholar
  157. Nosheny RL, A Bachis, E Acquas and I Mocchetti (2004) Human immunodeficiency virus type 1 glycoprotein gp120 reduces the levels of brain-derived neurotrophic factorin vivo: potential implication for neuronal cell death.Eur. J. Neurosci. 20, 2857–2864.PubMedCrossRefGoogle Scholar
  158. Nunez EA and N Christeff (1994) Steroid hormone, cytokine, lipid and metabolic disturbances in HIV infection.Baillieres Clin. Endocrinol. Metab. 8, 803–824.PubMedCrossRefGoogle Scholar
  159. Otake K, Y Fujii, T Nakaya, Y Nishino, Q Zhong, K Fujinaga, M Kameoka, K Ohki and K Ikuta (1994) The carboxyl-terminal region of HIV-1 Nef protein is a cell surface domain that can interact with CD4+ T cells.J. Immunol. 153, 5826–5837.PubMedGoogle Scholar
  160. Pace GW and CD Leaf (1995) The role of oxidative stress in HIV disease.Free Radic. Biol. Med. 19, 523–528.PubMedCrossRefGoogle Scholar
  161. Patel CA, M Mukhtar and RJ Pomerantz (2000) Human immunodeficiency virus type 1 Vpr induces apoptosis in human neuronal cells.J. Virol. 74, 9717–9726.PubMedCrossRefGoogle Scholar
  162. Patel CA, M Mukhtar, S Harley, J Kulkosky and RJ Pomerantz (2002) Lentiviral expression of HIV-1 Vpr induces apoptosis in human neurons.J. Neurovirol. 8, 86–99.PubMedCrossRefGoogle Scholar
  163. Pattarini R, A Pittaluga and M Raiteri (1998) The human immunodeficiency virus-1 envelope protein gp120 binds through its V3 sequence to the glycine site of N-methyl-D-aspartate receptors mediating noradrenaline release in the hippocampus.Neuroscience 87, 147–157.PubMedCrossRefGoogle Scholar
  164. Petito CK and B Roberts (1995) Evidence of apoptotic cell death in HIV encephalitis.Am. J. Pathol. 146, 1121–1130.PubMedGoogle Scholar
  165. Piller SC, GD Ewart, A Premkumar, GB Cox and PW Gage (1996) Vpr protein of human immunodeficiency virus type 1 forms cation- selective channels in planar lipid bilayers.Proc. Natl. Acad. Sci. USA 93, 111–115.PubMedCrossRefGoogle Scholar
  166. Piller SC, GD Ewart, DA Jans, PW Gage and GB Cox (1999) The amino-terminal region of Vpr from human immunodeficiency virus type 1 forms ion channels and kills neurons.J. Virol. 73, 4230–4238.PubMedGoogle Scholar
  167. Pittaluga A, R Pattarini, P Severi and M Raiteri (1996) Human brain N-methyl-D-aspartate receptors regulating noradrenaline release are positively modulated by HIV-1 coat protein gp120.Aids 10, 463–468.PubMedCrossRefGoogle Scholar
  168. Pittaluga A, R Pattarini, M Feligioni and M Raiteri (2001)N-methyl-D-aspartate receptors mediating hippocampal noradrenaline and striatal dopamine release display differential sensitivity to quinolinic acid, the HIV-1 envelope protein gp120, external pH and protein kinase C inhibition.J. Neurochem. 76, 139–148.PubMedCrossRefGoogle Scholar
  169. Polster BM and G Fiskum (2004) Mitochondrial mechanisms of neural cell apoptosis.J. Neurochem. 90, 1281–1289.PubMedCrossRefGoogle Scholar
  170. Puissant B, M Abbal and A Blancher (2003) Polymorphism of human and primate RANTES, CX3CR1, CCR2 and CXCR4 genes with regard to HIV/SIV infection.Immunogenetics 55, 275–283.PubMedCrossRefGoogle Scholar
  171. Pulliam L, BG Herndier, NM Tang and MS McGrath (1991) Human immunodeficiency virus-infected macrophages produce soluble factors that cause histological and neurochemical alterations in cultured human brains.J. Clin. Invest. 87, 503–512.PubMedCrossRefGoogle Scholar
  172. Ramirez SH, JF Sanchez, CA Dimitri, HA Gelbard, S Dewhurst and SB Maggirwar (2001) Neurotrophins prevent HIV Tat-induced neuronal apoptosis via a nuclear factor-kappaB (NF-kappaB)-dependent mechanism.J. Neurochem. 78, 874–889.PubMedCrossRefGoogle Scholar
  173. Ranki A, M Nyberg, V Ovod, M Haltia, I Elovaara, R Raininko, H Haapasalo and K Krohn (1995) Abundant expression of HIV Nef and Rev proteins in brain astrocytesin vivo is associated with dementia.Aids 9, 1001–1008.PubMedCrossRefGoogle Scholar
  174. Rath PC and BB Aggarwal (1999) TNF-induced signaling in apoptosis.J. Clin. Immunol. 19, 350–364.PubMedCrossRefGoogle Scholar
  175. Ratan RR, TH Murphy and JM Baraban (1994) Oxidative stress induces apoptosis in embryonic cortical neurons.J. Neurochem. 62, 376–379.PubMedGoogle Scholar
  176. Renatus M, HR Stennicke, FL Scott, RC Liddington and GS Salvesen (2001) Dimer formation drives the activation of the cell death protease caspase 9.Proc. Natl. Acad. Sci. USA 98, 14250–14255.PubMedCrossRefGoogle Scholar
  177. Rodriguez J and Y Lazebnik (1999) Caspase-9 and APAF-1 form an active holoenzyme.Genes Dev. 13, 3179–3184.PubMedCrossRefGoogle Scholar
  178. Roederer M, SW Ela, FJ Staal, LA Herzenberg and LA Herzenberg (1992)N-acetylcysteine: a new approach to anti-HIV therapy.AIDS Res. Hum. Retroviruses 8, 209–217.PubMedGoogle Scholar
  179. Rostasy K, L Monti, C Yiannoutsos, M Kneissl, J Bell, TL Kemper, JC Hedreen and BA Navia (1999) Human immunodeficiency virus infection, inducible nitric oxide synthase expression, and microglial activation: pathogenetic relationship to the acquired immunodeficiency syndrome dementia complex.Ann. Neurol. 46, 207–216.PubMedCrossRefGoogle Scholar
  180. Rothwell N, S Allan and S Toulmond (1997) The role of interleukin 1 in acute neurodegeneration and stroke: pathophysiological and therapeutic implications.J. Clin. Invest. 100, 2648–2652.PubMedCrossRefGoogle Scholar
  181. Rudel T and GM Bokoch (1997) Membrane and morphological changes in apoptotic cells regulated by caspase-mediated activation of PAK2.Science 276, 1571–1574.PubMedCrossRefGoogle Scholar
  182. Sabatier JM, E Vives, K Mabrouk, A Benjouad, H Rochat, A Duval, B Hue and E Bahraoui (1991) Evidence for neurotoxic activity of tat from human immunodeficiency virus type 1.J. Virol. 65, 961–967.PubMedGoogle Scholar
  183. Sabri F, K Titanji, A De Milito and F Chiodi (2003) Astrocyte activation and apoptosis: their roles in the neuropathology of HIV infection.Brain Pathol. 13, 84–94.PubMedGoogle Scholar
  184. Sacktor N, N Haughey, R Cutler, A Tamara, J Turchan, C Pardo, D Vargas and A Nath (2004) Novel markers of oxidative stress in actively progressive HIV dementia.J. Neuroimmunol. 157, 176–184.PubMedCrossRefGoogle Scholar
  185. Sakahira H, M Enari and S Nagata (1998) Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis.Nature 391, 96–99.PubMedCrossRefGoogle Scholar
  186. Salazar-Gonzalez JF, O Martinez-Maza, N Aziz, JA Kolberg, T Yeghiazarian, LP Shen and JL Fahey (1997) Relationship of plasma HIV-RNA levels and levels of TNF-alpha and immune activation products in HIV infection.Clin. Immunol. Immunopathol. 84, 36–45.PubMedCrossRefGoogle Scholar
  187. Salvesen GS and VM Dixit (1999) Caspase activation: the inducedproximity model.Proc. Natl. Acad. Sci. USA 96, 10964–10967.PubMedCrossRefGoogle Scholar
  188. Savio T and G Levi (1993) Neurotoxicity of HIV coat protein gp120, NMDA receptors, and protein kinase C: a study with rat cerebellar granule cell cultures.J. Neurosci. Res. 34, 265–272.PubMedCrossRefGoogle Scholar
  189. Scorziello A, T Florio, A Bajetto, S Thellung and G Schettini (1997) TGF-beta1 prevents gp120-induced impairment of Ca2+ homeostasis and rescues cortical neurons from apoptotic death.J. Neurosci. Res. 49, 600–607.PubMedCrossRefGoogle Scholar
  190. Scott-Algara D, F Vuillier, M Marasescu, J de Saint Martin and G Dighiero (1991) Serum levels of IL-2, IL-1 alpha, TNF-alpha, and soluble receptor of IL-2 in HIV-1-infected patients.AIDS Res. Hum. Retroviruses 7, 381–386.PubMedCrossRefGoogle Scholar
  191. Shapshak P, R Duncan, A Minagar, P Rodriguez de la Vega, RV Stewart and K Goodkin (2004) Elevated expression of IFNgamma in the HIV-1 infected brain.Front. Biosci. 9, 1073–1081.PubMedCrossRefGoogle Scholar
  192. Shatrov VA, F Ratter, A Gruber, W Droge and V Lehmann (1996) HIV type 1 glycoprotein 120 amplifies tumor necrosis factorinduced NF-kappa B activation in Jurkat cells.AIDS Res. Hum. Retroviruses 12, 1209–1216.PubMedGoogle Scholar
  193. Sheikh MS and Y Huang (2003) Death receptor activation complexes: it takes two to activate TNF receptor 1.Cell Cycle 2, 550–552.PubMedGoogle Scholar
  194. Shi B, U De Girolami, J He, S Wang, A Lorenzo, J Busciglio and D Gabuzda (1996) Apoptosis induced by HIV-1 infection of the central nervous system.J. Clin. Invest. 98, 1979–1990.PubMedCrossRefGoogle Scholar
  195. Shi B, J Raina, A Lorenzo, J Busciglio and D Gabuzda (1998) Neuronal apoptosis induced by HIV-1 Tat protein and TNFalpha: potentiation of neurotoxicity mediated by oxidative stress and implications for HIV-1 dementia.J. Neurovirol. 4, 281–290.PubMedCrossRefGoogle Scholar
  196. Shor-Posner G, R Lecusay, G Morales, A Campa and MJ Miguez-Burbano (2002) Neuroprotection in HIV-positive drug users: implications for antioxidant therapy.J. Acquir. Immune Defic. Syndr. 31 Suppl 2, S84-S88.PubMedGoogle Scholar
  197. Singh IN, RJ Goody, C Dean, NM Ahmad, SE Lutz, PE Knapp, A Nath and KF Hauser (2004) Apoptotic death of striatal neurons induced by human immunodeficiency virus-1 Tat and gp120: differential involvement of caspase-3 and endonuclease G.J. Neurovirol. 10, 141–151.PubMedCrossRefGoogle Scholar
  198. Smith DG, GJ Guillemin, L Pemberton, S Kerr, A Nath, GA Smythe and BJ Brew (2001) Quinolinic acid is produced by macrophages stimulated by platelet activating factor, Nef and Tat.J. Neurovirol. 7, 56–60.PubMedCrossRefGoogle Scholar
  199. Soontornniyomkij V, G Wang, CA Pittman, CA Wiley and CL Achim (1998) Expression of brain-derived neurotrophic factor protein in activated microglia of human immunodeficiency virus type 1 encephalitis.Neuropathol. Appl. Neurobiol. 24, 453–460.PubMedCrossRefGoogle Scholar
  200. Stennicke HR, JM Jurgensmeier, H Shin, Q Deveraux, BB Wolf, X Yang, Q Zhou, HM Ellerby, LM Ellerby, D Bredesen, DR Green, JC Reed, CJ Froelich and GS Salvesen (1998) Pro-caspase-3 is a major physiologic target of caspase-8.J. Biol. Chem. 273, 27084–27090.PubMedCrossRefGoogle Scholar
  201. Stennicke HR, QL Deveraux, EW Humke, JC Reed, VM Dixit and GS Salvesen (1999) Caspase-9 can be activated without proteolytic processing.J. Biol. Chem. 274, 8359–8362.PubMedCrossRefGoogle Scholar
  202. Sui Y, R Potula, N Dhillon, D Pinson, S Li, A Nath, C Anderson, J Turchan, D Kolson, O Narayan and S Buch (2004) Neuronal apoptosis is mediated by CXCL10 overexpression in simian human immunodeficiency virus encephalitis.Am. J. Pathol. 164, 1557–1566.PubMedGoogle Scholar
  203. Sung JH, SA Shin, HK Park, RC Montelaro and YH Chong (2001) Protective effect of glutathione in HIV-1 lytic peptide 1-induced cell death in human neuronal cells.J. Neurovirol. 7, 454–465.PubMedCrossRefGoogle Scholar
  204. Suryadevara R, S Holter, K Borgmann, R Persidsky, C Labenz-Zink, Y Persidsky, HE Gendelman, L Wu and A Ghorpade (2003) Regulation of tissue inhibitor of metalloproteinase-1 by astrocytes: links to HIV-1 dementia.Glia 44, 47–56.PubMedCrossRefGoogle Scholar
  205. Takeda-Hirokawa N, LP Neoh, H Akimoto, H Kaneko, T Hishikawa, I Sekigawa, H Hashimoto, S Hirose, T Murakami, N Yamamoto, T Mimura and Y Kaneko (1997) Role of curdlan sulfate in the binding of HIV-1 gp120 to CD4 molecules and the production of gp120-mediated TNF-alpha.Microbiol. Immunol. 41, 741–745.PubMedGoogle Scholar
  206. Toborek M, YW Lee, H Pu, A Malecki, G Flora, R Garrido, B Hennig, HC Bauer and A Nath (2003) HIV-Tat protein induces oxidative and inflammatory pathways in brain endothelium.J. Neurochem. 84, 169–179.PubMedCrossRefGoogle Scholar
  207. Tornatore C, R Chandra, JR Berger and EO Major EO (1994a) HIV-1 infection of subcortical astrocytes in the pediatric central nervous system.Neurology 44, 481–487.PubMedGoogle Scholar
  208. Tornatore C, K Meyers, W Atwood, K Conant and E Major (1994b) Temporal patterns of human immunodeficiency virus type 1 transcripts in human fetal astrocytes.J. Virol. 68, 93–102.PubMedGoogle Scholar
  209. Towfighi A, RL Skolasky, C St Hillaire, K Conant and JC McArthur (2004) CSF soluble Fas correlates with the severity of HIV-associated dementia.Neurology 62, 654–656.PubMedGoogle Scholar
  210. Trillo-Pazos G, E McFarlane-Abdulla, IC Campbell, GJ Pilkington and IP Everall (2000) Recombinant nef HIV-IIIB protein is toxic to human neurons in culture.Brain Res. 864, 315–326.PubMedCrossRefGoogle Scholar
  211. Turchan J, CB Pocernich, C Gairola, A Chauhan, G Schifitto, DA Butterfield, S Buch, O Narayan, A Sinai, J Geiger, JR Berger, H Elford and A Nath (2003) Oxidative stress in HIV demented patients and protection ex vivo with novel antioxidants.Neurology 60, 307–314.PubMedGoogle Scholar
  212. Ushijima H, S Ando, T Kunisada, HC Schroder, HP Klocking, A Kijjoa and WE Muller (1993) HIV-1 gp120 and NMDA induce protein kinase C translocation differentially in rat primary neuronal cultures.J. Acquir. Immune Defic. Syndr. 6, 339–343.PubMedGoogle Scholar
  213. Viviani B, E Corsini, M Binaglia, CL Galli and M Marinovich (2001) Reactive oxygen species generated by glia are responsible for neuron death induced by human immunodeficiency virusglycoprotein 120in vitro. Neuroscience 107, 51–58.Google Scholar
  214. Wahl LM, ML Corcoran, SW Pyle, LO Arthur, A Harel-Bellan and WL Farrar (1989) Human immunodeficiency virus glycoprotein (gp120) induction of monocyte arachidonic acid metabolites and interleukin 1.Proc. Natl. Acad. Sci. USA 86, 621–625.PubMedCrossRefGoogle Scholar
  215. Wang J, AA Lobito, F Shen, F Hornung, A Winoto and MJ Lenardo (2000) Inhibition of Fas-mediated apoptosis by the B cell antigen receptor through c-FLIP.Eur. J. Immunol. 30, 155–163.PubMedCrossRefGoogle Scholar
  216. Weeks BS (1998) The role of HIV-1 activated leukocyte adhesion mechanisms and matrix metalloproteinase secretion in AIDS pathogenesis (Review).Int. J. Mol. Med. 1, 361–366.PubMedGoogle Scholar
  217. Weis S, B Neuhaus and P Mehraein (1994) Activation of microglia in HIV-1 infected brains is not dependent on the presence of HIV-1 antigens.Neuroreport 5, 1514–1516.PubMedCrossRefGoogle Scholar
  218. Werner T, S Ferroni, T Saermark, R Brack-Werner, RB Banati, R Mager, L Steinaa, GW Kreutzberg and V Erfle (1991) HIV-1 Nef protein exhibits structural and functional similarity to scorpion peptides interacting with K+ channels.Aids 5, 1301–1308.PubMedCrossRefGoogle Scholar
  219. Wesselingh SL, C Power, JD Glass, WR Tyor, JC McArthur, JM Farber, JW Griffin and DE Griffin (1993) Intracerebral cytokine messenger RNA expression in acquired immunodeficiency syndrome dementia.Ann. Neurol. 33, 576–582.PubMedCrossRefGoogle Scholar
  220. Wong GH, JH Elwell, LW Oberley and DV Goeddel (1989) Manganous superoxide dismutase is essential for cellular resistance to cytotoxicity of tumor necrosis factor.Cell 58, 923–931.PubMedCrossRefGoogle Scholar
  221. Wu P, P Price, B Du, WC Hatch and EF Terwilliger (1996) Direct cytotoxicity of HIV-1 envelope protein gp120 on human NT neurons.Neuroreport 7, 1045–1049.PubMedCrossRefGoogle Scholar
  222. Wyllie AH, JF Kerr and AR Currie (1980) Cell death: the significance of apoptosis.Int. Rev. Cytol. 68, 251–306.PubMedCrossRefGoogle Scholar
  223. Xu Y, J Kulkosky, E Acheampong, G Nunnari, J Sullivan and RJ Pomerantz (2004) HIV-1-mediated apoptosis of neuronal cells: Proximal molecular mechanisms of HIV-1-induced encephalopathy.Proc. Natl. Acad. Sci. USA 101, 7070–7075.PubMedCrossRefGoogle Scholar
  224. Yeh WC, A Itie, AJ Elia, M Ng, HB Shu, A Wakeham, C Mirtsos, N Suzuki, M Bonnard, DV Goeddel and TW Mak (2000) Requirement for Casper (c-FLIP) in regulation of death receptor-induced apoptosis and embryonic development.Immunity 12, 633–642.PubMedCrossRefGoogle Scholar
  225. Zangerle R, D Fuchs, G Reibnegger, G Werner-Felmayer, H Gallati, H Wachter and ER Werner (1995) Serum nitrite plus nitrate in infection with human immunodeficiency virus type-1.Immunobiology 193, 59–70.PubMedGoogle Scholar
  226. Zauli G, P Secchiero, L Rodella, D Gibellini, P Mirandola, M Mazzoni, D Milani, DR Dowd, S Capitani and M Vitale (2000) HIV-1 Tat-mediated inhibition of the tyrosine hydroxylase gene expression in dopaminergic neuronal cells.J. Biol. Chem. 275, 4159–4165.PubMedCrossRefGoogle Scholar
  227. Zegarra-Moran O, A Rasola, M Rugolo, AM Porcelli, B Rossi and LJ Galietta (1999) HIV-1 nef expression inhibits the activity of a Ca2+-dependent K+ channel involved in the control of the resting potential in CEM lymphocytes.J. Immunol. 162, 5359–5366.PubMedGoogle Scholar
  228. Zhang K, GA McQuibban, C Silva, GS Butler, JB Johnston, J Holden, I Clark-Lewis, CM Overall and C Power (2003) HIVinduced metalloproteinase processing of the chemokine stromal cell derived factor-1 causes neurodegeneration.Nat. Neurosci. 6, 1064–1071.PubMedCrossRefGoogle Scholar
  229. Zheng J, MR Thylin, A Ghorpade, H Xiong, Y Persidsky, R Cotter, D Niemann, M Che, YC Zeng, HA Gelbard, RB Shepard, JM Swartz and HE Gendelman (1999) Intracellular CXCR4 signaling, neuronal apoptosis and neuropathogenic mechanisms of HIV-1-associated dementia.J. Neuroimmunol. 98, 185–200.PubMedCrossRefGoogle Scholar
  230. Zhou BY, Y Liu, B Kim, Y Xiao and JJ He (2004) Astrocyte activation and dysfunction and neuron death by HIV-1 Tat expression in astrocytes.Mol. Cell. Neurosci. 27, 296–305.PubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • W. Li
    • 1
  • D. Galey
    • 1
  • Mark P. Mattson
    • 2
    • 3
  • Avindra Nath
    • 1
    • 3
  1. 1.RT Johnson Division of Neuroimmunology and Neurological Infection, Department of NeurologyJohns Hopkins UniversityBaltimoreUSA
  2. 2.Laboratory of NeurosciencesNational Institute on Aging Intramural Research ProgramBaltimoreUSA
  3. 3.Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations