Neurotoxicity Research

, Volume 14, Issue 2–3, pp 237–248 | Cite as

Cell and receptor type-specific alterations in markers of GABA neurotransmission in the prefrontal cortex of subjects with schizophrenia

  • David A. LewisEmail author
  • Takanori Hashimoto
  • Harvey M. Morris


Impairments in cognitive control, such as those involved in working memory, are associated with dysfunction of the dorsolateral prefrontal cortex (DLPFC) in individuals with schizophrenia. This dysfunction appears to result, at least in part, from abnormalities in GABA-mediated neurotransmission. In this paper, we review recent findings indicating that the altered DLPFC circuitry in subjects with schizophrenia reflects changes in the expression of genes that encode selective presynaptic and postsynaptic components of GABA neurotransmission. Specifically, using a combination of methods, we found that subjects with schizophrenia exhibited expression deficits in GABA-related transcripts encoding presynaptic regulators of GABA neurotransmission, neuropeptide markers of specific subpopulations of GAB A neurons, and certain subunits of the GABAA receptor. In particular, alterations in the expression of the neuropeptide somatostatin suggested that GABA neurotransmission is impaired in the Martinotti subset of GABA neurons that target the dendrites of pyramidal cells. In contrast, none of the GABA-related transcripts assessed to date were altered in the DLPFC of monkeys chronically exposed to antipsychotic medications, suggesting that the effects observed in the human studies reflect the disease process and not its treatment. In concert with previous findings, these data suggest that working memory dysfunction in schizophrenia may be attributable to altered GABA neurotransmission in specific DLPFC microcircuits.


Postmortem Neuropeptides Somatostatin GABAA receptor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akbarian S and HS Huang (2006) Molecular and cellular mechanisms of altered GAD1/GAD67 expression in schizophrenia and related disorders.Brain Res. Rev. 52, 293–304.PubMedCrossRefGoogle Scholar
  2. Akbarian S, JJ Kim, SG Potkin, JO Hagman, A Tafazzoli, WE Bunney Jr and EG Jones (1995) Gene expression for glutamic acid decarboxylase is reduced without loss of neurons inprefrontal cortex of schizophrenics.Arch. Gen. Psychiatry 52, 258–266.PubMedGoogle Scholar
  3. Andreasen NC, R Rezai, R Alliger, VW Swayze II, M Flaum, P Kirchner, G Cohen and DS O’Leary (1992) Hypofrontality in neuroleptic-naive patients and in patients with chronic schizophrenia: assessment with xenon 133 single-photon emission computed tomography and the Tower of London.Arch. Gen. Psychiatry 49, 943–958.PubMedGoogle Scholar
  4. Asada H, Y Kawamura, K Maruyama, H Kume, R Ding, FY Ji, N Kanbara, H Kuzume, M Sanbo, T Yagi and K Obata (1996) Mice lacking the 65 kDa isoform of glutamic acid decarboxylase (GAD65) maintain normal levels of GAD67 and GABA in their brains but are susceptible to seizures.Biochem. Biophys. Res. Comm. 229, 891–895.PubMedCrossRefGoogle Scholar
  5. Asada H, Y Kawamura, K Maruyama, H Kume, R Ding, N Kanbara, H Kuzume, M Sanbo, T Yagi and K Obata (1997) Cleft palate and decreased brain γ-aminobutyric acid in mice lacking the 67-kDa isoform of glutamic acid decarboxylase.Proc. Natl. Acad. Sci. USA 94, 6496–6499.PubMedCrossRefGoogle Scholar
  6. Baddeley A (1992) Working memory.Science 255, 556–559.PubMedCrossRefGoogle Scholar
  7. Barch DM (2006) What can research on schizophrenia tell us about the cognitive neuroscience of working memory?Neuroscience 139, 73–84.PubMedCrossRefGoogle Scholar
  8. Barch DM, YI Sheline, JG Csernansky and AZ Snyder (2003) Working memory and prefrontal cortex dysfunction: specificity to schizophrenia compared with major depression.Biol. Psychiatry 53, 376–384.PubMedCrossRefGoogle Scholar
  9. Battaglioli G, H Liu and DL Martin (2003) Kinetic differences between the isoforms of glutamate decarboxylase: implications for the regulation of GABA synthesis.J. Neurochem. 86, 879–887.PubMedCrossRefGoogle Scholar
  10. Bayer SA and J Altman (1990) Development of layer I and the subplate in the rat neocortex.Exp. Neurol. 107, 48–62.PubMedCrossRefGoogle Scholar
  11. Beasley CL, ZJ Zhang, I Patten and GP Reynolds (2002) Selective deficits in prefrontal cortical GABAergic neurons in schizophrenia defined by the presence of calcium-binding proteins.Biol. Psychiatry 52, 708–715.PubMedCrossRefGoogle Scholar
  12. Benes FM, SL Vincent, A Marie and Y Khan (1996) Up-regulation of GABA-A receptor binding on neurons of the prefrontal cortex in schizophrenic subjects.Neuroscience 75, 1021–1031.PubMedCrossRefGoogle Scholar
  13. Benes FM, MS Todtenkopf, P Logiotatos and M Williams (2000) Glutamate decarboxylase(65)-immunoreactive terminals in cingulate and prefrontal cortices of schizophrenic and bipolar brain.J. Chem. Neuroanat. 20, 259–269.PubMedCrossRefGoogle Scholar
  14. Bird ED, EGS Spokes and LL Iversen (1979) Increased dopamine concentration in limbic areas of brain from patients dying with schizophrenia.Brain 102, 347–360.PubMedCrossRefGoogle Scholar
  15. Brown AS (2006) Prenatal infection as a risk factor for schizophrenia.Schizophr. Bull. 32, 200–202.PubMedCrossRefGoogle Scholar
  16. Buchsbaum M (1990) The frontal lobes, basal ganglia and temporal lobes as sites for schizophrenia.Schizophr. Bull. 16, 379–389.PubMedGoogle Scholar
  17. Callicott JH, VS Mattay, BA Verchinski, S Marenco, MF Egan and DR Weinberger (2003) Complexity of prefrontal cortical dysfunction in schizophrenia: more than up or down.Am. J. Psychiatry 160, 2209–2215.PubMedCrossRefGoogle Scholar
  18. Cannon TD, DC Glahn, J Kim, TG Van Erp, K Karlsgodt, MS Cohen, KH Nuechterlein, S Bava and D Shirinyan (2005) Dorsolateral prefrontal cortex activity during maintenance and manipulation of information in working memory in patients with schizophrenia.Arch. Gen. Psychiatry 62, 1071–1080.PubMedCrossRefGoogle Scholar
  19. Carter CS, W Perlstein, R Ganguli, J Brar, M Mintun and JD Cohen (1998) Functional hypofrontality and working memory dysfunction in schizophrenia.Am. J. Psychiatry 155, 1285–1287.PubMedGoogle Scholar
  20. Chun JJM and CJ Shatz (1989) Interstitial cells of the adult neocortical white matter are the remnant of the early generated subplate neuron population.J. Comp. Neurol. 282, 555–569.PubMedCrossRefGoogle Scholar
  21. Condé F, JS Lund, DM Jacobowitz, KG Baimbridge and DA Lewis (1994) Local circuit neurons immunoreactive for calretinin, calbindin D-28k, or parvalbumin in monkey prefrontal cortex: distribution and morphology.J. Comp. Neurol. 341, 95–116.PubMedCrossRefGoogle Scholar
  22. Cosway R, M Byrne, R Clafferty, A Hodges, E Grant, SS Abukmeil, SM Lawrie, P Miller and EC Johnstone (2000) Neuropsychological change in young people at high risk for schizophrenia: results from the first two neuropsychological assessments of the Edinburgh High Risk Study.Psychol. Med. 30, 1111–1121.PubMedCrossRefGoogle Scholar
  23. Cotter D, S Landau, C Beasley, R Stevenson, G Chana, L MacMillan and I Everall (2002) The density and spatial distribution of GABAergic neurons, labelled using calcium binding proteins, in the anterior cingulate cortex in major depressive disorder, bipolar disorder, and schizophrenia.Biol. Psychiatry 51, 377–386.PubMedCrossRefGoogle Scholar
  24. Davidson M, A Reichenberg, J Rabinowitz, M Weiser, Z Kaplan and M Mark (1999) Behavioral and intellectual markers for schizophrenia in apparently healthy male adolescents.Am. J. Psychiatry 156, 1328–1335.PubMedGoogle Scholar
  25. DeFelipe J (1997) Types of neurons, synaptic connections and chemical characteristics of cells immunoreactive for calbindin-D28K, parvalbumin and calretinin in the neocortex.J. Chem. Neuroanat. 14, 1–19.PubMedCrossRefGoogle Scholar
  26. DeLima AD and JH Morrison (1989) Ultrastructural analysis of somatostatin-immunoreactive neurons and synapses in the temporal and occipital cortex of the macaque monkey.J. Comp. Neurol. 283, 212–227.CrossRefGoogle Scholar
  27. Egan MF, TE Goldberg, T Gscheidle, M Weirich, R Rawlings, TM Hyde, L Bigelow and DR Weinberger (2001) Relative risk for cognitive impairments in siblings of patients with schizophrenia.Biol. Psychiatry 50, 98–107.PubMedCrossRefGoogle Scholar
  28. Eggan SM, T Hashimoto and DA Lewis (2008) Reduced cortical cannabinoid 1 receptor mRNA and protein expression in schizophrenia.Arch. Gen. Psychiatry 65, 772–784.PubMedCrossRefGoogle Scholar
  29. Elvevåg B and TE Goldberg (2000) Cognitive impairment in schizophrenia is the core of the disorder.Crit. Rev. Neurobiol. 14, 1–21.PubMedGoogle Scholar
  30. Farrant M and Z Nusser (2005) Variations on an inhibitory theme: phasic and tonic activation of GABAA receptors.Nat. Rev. Neurosci. 6, 215–229.PubMedCrossRefGoogle Scholar
  31. Foldy C, SY Lee, J Szabadics, A Neu and I Soltesz (2007) Cell type-specific gating of perisomatic inhibition by cholecystokinin.Nat. Neurosci. 10, 1128–1130.PubMedCrossRefGoogle Scholar
  32. Freund TF and I Katona (2007) Perisomatic inhibition.Neuron 56, 33–42.PubMedCrossRefGoogle Scholar
  33. Fritschy JM and H Mohler (1995) GABAA-receptor heterogeneity in the adult rat brain: differential regional and cellular distribution of seven major subunits.J. Comp. Neurol. 359, 154–194.PubMedCrossRefGoogle Scholar
  34. Gabbott PLA and SJ Bacon (1996) Local circuit neurons in the medial prefrontal cortex (areas 24a,b,c, 25 and 32) in the monkey: II. Quantitative areal and laminar distributions.J. Comp. Neurol. 364, 609–636.PubMedCrossRefGoogle Scholar
  35. Gibson JR, M Beierlein and BW Connors (1999) Two networks of electrically coupled inhibitory neurons in neocortex.Nature 402, 75–79. Gold JM (2004) Cognitive deficits as treatment targets in schizophrenia.Schizophr. Res. 72, 21-28.PubMedCrossRefGoogle Scholar
  36. Goldman-Rakic PS (1987) Circuitry of primate prefrontal cortex and regulation of behavior by representational memory, In:Handbook of Physiology (Plum F and V Mountcastle, Eds.) (American Physiological Society:Bethesda, MD), pp 373–417.Google Scholar
  37. Goldman-Rakic PS (1999) The physiology approach: functional architecture of working memory and disordered cognition in schizophrenia.Biol. Psychiatry 46, 650–661.PubMedCrossRefGoogle Scholar
  38. Gonzalez-Burgos G and DA Lewis (2008) GAB A neurons and the mechanisms of network oscillations: implications for understanding cortical dysfunction in schizophrenia.Schizophr. Bull. 34, 944–961.PubMedCrossRefGoogle Scholar
  39. Gorba T and P Wahle (1999) Expression of trkB and trkC but not BDNF mRNA in neurochemically identified interneurons in rat visual cortexin vivo and in organotypic cultures.Eur. J. Neurosci. 11, 1179–1190.PubMedCrossRefGoogle Scholar
  40. Green MF (1996) What are the functional consequences of neurocognitive deficits in schizophrenia?Am. J. Psychiatry 153, 321–330.PubMedGoogle Scholar
  41. Green MF (1998)Schizophrenia From a Neurocognitive Perspective: Probing the Impenetrable Darkness (Allyn and Bacon:Boston, MA).Google Scholar
  42. Guidotti A, J Auta, JM Davis, VD Gerevini, Y Dwivedi, DR Grayson, F Impagnatiello, G Pandey, C Pesold, R Sharma, D Uzunov and E Costa (2000) Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder.Arch. Gen. Psychiatry 57, 1061–1069.PubMedCrossRefGoogle Scholar
  43. Gur RC and RE Gur (1995) Hypofrontality in schizophrenia: RIP?Lancet 345, 1383–1384.PubMedCrossRefGoogle Scholar
  44. Hanada S, T Mita, N Nishino and C Tanaka (1987) [3H] Muscimol binding sites increased in autopsied brains of chronic schizophrenics.Life Sci. 40, 239–266.CrossRefGoogle Scholar
  45. Harvey PD, E Howanitz, M Parrella, L White, M Davidson, RC Mohs, J Hoblyn and KL Davis (1998) Symptoms, cognitive functioning, and adaptive skills in geriatric patients with lifelong schizophrenia: a comparison across treatment sites.Am. J. Psychiatry 155, 1080–1086.PubMedGoogle Scholar
  46. Hashimoto T, DW Volk, SM Eggan, K Mirnics, JN Pierri, Z Sun, AR Sampson and DA Lewis (2003) Gene expression deficits in a subclass of GABA neurons in the prefrontal cortex of subjects with schizophrenia.J. Neurosci. 23, 6315–6326.PubMedGoogle Scholar
  47. Hashimoto T, SE Bergen, QL Nguyen, B Xu, LM Monteggia, JN Pierri, Z Sun, AR Sampson and DA Lewis (2005) Relationship of brain-derived neurotrophic factor and its receptor TrkB to altered inhibitory prefrontal circuitry in schizophrenia.J. Neurosci. 25, 372–383.PubMedCrossRefGoogle Scholar
  48. Hashimoto T, D Arion, T Unger, JG Maldonado-Aviles, HM Morris, DW Volk, K Mirnics and DA Lewis (2008) Alterations in GABA-related transcriptome in the dorsolateral prefrontal cortex of subjects with schizophrenia.Mol. Psychiatry 13, 147–161.PubMedCrossRefGoogle Scholar
  49. Hendry SHC, EG Jones and PC Emson (1984) Morphology, distribution, and synaptic relations of somatostatin-and neuropeptide Y-immunoreactive neurons in rat and monkey neocortex.J. Neurosci. 4, 2497–2517.PubMedGoogle Scholar
  50. Hendry SHC, MM Huntsman, A Viñuela, H Mohler, AL de Blas and EG Jones (1994) GABAA receptor subunit immunoreactivity in primate visual cortex: distribution in macaques and humans and regulation by visual input in adulthood.J. Neurosci. 14, 2383–2401.PubMedGoogle Scholar
  51. Huntsman MM, BV Tran, SG Potkin, WE Bunney and EG Jones (1998) Altered ratios of alternatively spliced long and short γ2 subunit mRNAs of the γ-amino butyrate type A receptor in prefrontal cortex of schizophrenics.Proc. Natl. Acad. Sci. USA 95, 15066–15071.PubMedCrossRefGoogle Scholar
  52. Hyman SE and WS Fenton (2003) Medicine. What are the right targets for psychopharmacology?Science 299, 350–351.PubMedCrossRefGoogle Scholar
  53. Ishikawa M, K Mizukami, M Iwakiri and T Asada (2005) Immunohistochemical and immunoblot analysis of γ-aminobutyric acid B receptor in the prefrontal cortex of subjects with schizophrenia and bipolar disorder.Neurosci. Lett. 383, 272–277.PubMedCrossRefGoogle Scholar
  54. Karson MA, KC Whittington and BE Alger (2008) Cholecystokinin inhibits endocannabinoid-sensitive hippocampal IPSPs and stimulates others.Neuropharmacology 54, 117–128.PubMedCrossRefGoogle Scholar
  55. Kawaguchi Y (1995) Physiological subgroups of nonpyramidal cells with specific morphological characteristics in layer II/ m of rat frontal cortex.J. Neurosci. 15, 2638–2655.PubMedGoogle Scholar
  56. Kawaguchi Y and S Kondo (2002) Parvalbumin, somatostatin and cholecystokinin as chemical markers for specific GABAergic interneuron types in the rat frontal cortex.J. Neurocytol. 31, 277–287.PubMedCrossRefGoogle Scholar
  57. Kawaguchi Y and Y Kubota (1993) Correlation of physiological subgroupings of nonpyramidal cells with parvalbuminand calbindinD28k-immunoreactive neurons in layer V of rat frontal cortex.J. Neurophysiol. 70, 387–396.PubMedGoogle Scholar
  58. Kawaguchi Y and Y Kubota (1996) Physiological and morphological identification of somatostatin- or vasoactive intestinal polypeptide-containing cells among GABAergic cell subtypes in rat frontal cortex.J. Neurosci. 16, 2701–2715.PubMedGoogle Scholar
  59. Kawaguchi Y and Y Kubota (1997) GABAergic cell subtypes and their synaptic connections in rat frontal cortex.Cereb. Cortex 7, 476–486.PubMedCrossRefGoogle Scholar
  60. Keefe RS, CE Eesley and MP Poe (2005) Defining a cognitive function decrement in schizophrenia.Biol. Psychiatry 57, 688–691.PubMedCrossRefGoogle Scholar
  61. Kostovic I and P Rakic (1980) Cytology and the time of origin of interstitial neurons in the white matter in infant and adult human and monkey telencephalon.J. Neurocytol. 9, 219–242.PubMedCrossRefGoogle Scholar
  62. Kralic JE, ER Korpi, TK O’Buckley, GE Homanics and AL Morrow (2002) Molecular and pharmacological characterization of GABAA receptor alpha1 subunit knockout mice.J. Pharmacol. Exp. Ther. 302, 1037–1045.PubMedCrossRefGoogle Scholar
  63. Krimer LS, AV Zaitsev, G Czanner, S Kroner, G Gonzalez-Burgos, NV Povysheva, S Iyengar, G Barrionuevo and DA Lewis (2005) Cluster analysis-based physiological classification and morphological properties of inhibitory neurons in layers 2–3 of monkey dorsolateral prefrontal cortex.J. Neurophysiol. 94, 3009–3022.PubMedCrossRefGoogle Scholar
  64. Kubota Y, R Hattori and Y Yui (1994) Three distinct subpopulations of GABAergic neurons in rat frontal agranular cortex.Brain Res. 649, 159–173.PubMedCrossRefGoogle Scholar
  65. Lewis DA and P Levitt (2002) Schizophrenia as a disorder of neurodevelopment.Annu. Rev. Neurosci. 25, 409–432.PubMedCrossRefGoogle Scholar
  66. Lewis DA, T Hashimoto and DW Volk (2005) Cortical inhibitory neurons and schizophrenia.Nat. Rev. Neurosci. 6, 312–324.PubMedCrossRefGoogle Scholar
  67. Lisman JE, JT Coyle, RW Green, DC Javitt, FM Benes, S Heckers and AA Grace (2008) Circuit-based framework for understanding neurotransmitter and risk gene interactions in schizophrenia.Trends Neurosci. 31, 234–242.PubMedCrossRefGoogle Scholar
  68. Lund JS and DA Lewis (1993) Local circuit neurons of developing and mature macaque prefrontal cortex: Golgi and immunocytochemical characteristics.J. Comp. Neurol. 328, 282–312.PubMedCrossRefGoogle Scholar
  69. Luskin MB and CJ Shatz (1985) Studies of the earliest generated cells of the cat’s visual cortex: cogeneration of the subplate and marginal zones.J. Neurosci. 5, 1062–1075.PubMedGoogle Scholar
  70. Ma Y, H Hu, AS Berrebi, PH Mathers and A Agmon (2006) Distinct subtypes of somatostatin-containing neocortical interneurons revealed in transgenic mice.J. Neurosci. 26, 5069–5082.PubMedCrossRefGoogle Scholar
  71. MacDonald AW III, CS Carter, JG Kerns, S Ursu, DM Barch, AJ Holmes, VA Stenger and JD Cohen (2005) Specificity of prefrontal dysfunction and context processing deficits to schizophrenia in never-medicated patients with first-episode psychosis.Am. J. Psychiatry 162, 475–484.PubMedCrossRefGoogle Scholar
  72. Mangan PS, C Sun, M Carpenter, HP Goodkin, W Sieghart and J Kapur (2005) Cultured hippocampal pyramidal neurons express two kinds of GABAA receptors.Mol. Pharmacol. 67, 775–788.PubMedCrossRefGoogle Scholar
  73. Manoach DS (2003) Prefrontal cortex dysfunction during working memory performance in schizophrenia: reconciling discrepant findings.Schizophr. Res. 60, 285–298.PubMedCrossRefGoogle Scholar
  74. Markram H, M Toledo-Rodriguez, Y Wang, A Gupta, G Silberberg and C Wu (2004) Interneurons of the neocortical inhibitory system.Nat. Rev. Neurosci. 5, 793–807.PubMedCrossRefGoogle Scholar
  75. Mason GF, DL Martin, SB Martin, D Manor, NR Sibson, A Patel, DL Rothman and KL Behar (2001) Decrease in GAB A synthesis rate in rat cortex following GABA-transaminase inhibition correlates with the decrease in GAD(67) protein.Brain Res. 914, 81–91.PubMedCrossRefGoogle Scholar
  76. McBain CJ and A Fisahn (2001) Interneurons unbound.Nat. Rev. Neurosci. 2, 11–23.PubMedCrossRefGoogle Scholar
  77. Melchitzky DS, SR Sesack and DA Lewis (1999) Parvalbuminimmunoreactive axon terminals in macaque monkey and human prefrontal cortex: laminar, regional and target specificity of Type I and Type II synapses.J. Comp. Neurol. 408, 11–22.PubMedCrossRefGoogle Scholar
  78. Melchitzky DS, SM Eggan and DA Lewis (2005) Synaptic targets of calretinin-containing axon terminals in macaque monkey prefrontal cortex.Neuroscience 130, 185–195.PubMedCrossRefGoogle Scholar
  79. Miller EK and JD Cohen (2001) An integrative theory of prefrontal cortex function.Annu. Rev. Neurosci. 24, 167–202PubMedCrossRefGoogle Scholar
  80. Mirnics K, FA Middleton, A Marquez, DA Lewis and P Levitt (2000) Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex.Neuron 28, 53–67.PubMedCrossRefGoogle Scholar
  81. Morris HM, T Hashimoto and DA Lewis (2008) Alterations in somatostatin mRNA expression in the dorsolateral prefrontal cortex of subjects with schizophrenia or schizoaffective disorder.Cereb. Cortex 18, 1575–1587.PubMedCrossRefGoogle Scholar
  82. Nusser Z, W Sieghart and P Somogyi (1998) Segregation of different GABAA receptors to synaptic and extrasynaptic membranes of cerebellar granule cells.J. Neurosci. 18, 1693–1703.PubMedGoogle Scholar
  83. Ohnuma T, SJ Augood, H Arai, PJ McKenna and PC Emson (1999) Measurement of GABAergic parameters in the prefrontal cortex in schizophrenia: focus on GABA content, GABAA receptor α-1 subunit messenger RNA and human GABA transporter-1 (HGAT-1) messenger RNA expression.Neuroscience 93, 441–448.PubMedCrossRefGoogle Scholar
  84. Patel AB, RA de Graaf, DL Martin, G Battaglioli and KL Behar (2006) Evidence that GAD65 mediates increased GABA synthesis during intense neuronal activityin vivo.J. Neurochem. 97, 385–396.PubMedCrossRefGoogle Scholar
  85. Perlstein WM, CS Carter, DC Noll and JD Cohen(2001) Relation of prefrontal cortex dysfunction to working memory and symptoms in schizophrenia.Am. J. Psychiatry 158, 1105–1113.PubMedCrossRefGoogle Scholar
  86. Petryshen TL, FA Middleton, AR Tahl, GN Rockwell, S Purcell, KA Aldinger, A Kirby, CP Morley, L McGann, KL Gentile, SG Waggoner, HM Medeiros, C Carvalho, A Macedo, M Albus, W Maier, M Trixler, P Eichhammer, SG Schwab, DB Wildenauer, MH Azevedo, MT Pato, CN Pato, MJ Daly and P Sklar (2005) Genetic investigation of chromosome 5q GABAA receptor subunit genes in schizophrenia.Mol. Psychiatry 10, 1074–1088.PubMedCrossRefGoogle Scholar
  87. Pierri JN, AS Chaudry, T-U Woo and DA Lewis (1999) Alterations in chandelier neuron axon terminals in the prefrontal cortex of schizophrenic subjects.Am. J. Psychiatry 156, 1709–1719.PubMedGoogle Scholar
  88. Ponomarev I, R Maiya, MT Harnett, GL Schafer, AE Ryabinin, YA Blednov, H Morikawa, SL Boehm, GE Homanics, AE Berman, KH Lodowski, SE Bergeson and RA Harris (2006) Transcriptional signatures of cellular plasticity in mice lacking the α1 subunit of GABAA receptors.J. Neurosci. 26, 5673–5683.PubMedCrossRefGoogle Scholar
  89. Rao SG, GV Williams and PS Goldman-Rakic (2000) Destruction and creation of spatial tuning by disinhibition: GABAA blockade of prefrontal cortical neurons engaged by working memory.J. Neurosci. 20, 485–494.PubMedGoogle Scholar
  90. Reyes A, R Lujar, BN Rozov, P Somogyi and B Sakman (1998) Target-cell-specific facilitation and depression in neocortical circuits.Nat. Neurosci. 1, 279–285.PubMedCrossRefGoogle Scholar
  91. Sawaguchi T, M Matsumura and K Kubota (1989) Delayed response deficits produced by local injection of bicuculline into the dorsolateral prefrontal cortex in Japanese macaque monkeys.Exp. Brain Res. 75, 457–469.PubMedCrossRefGoogle Scholar
  92. Saykin AJ, DL Shtasel, RE Gur, DB Kester, LH Mozley, P Stafiniak and RC Gur (1994) Neuropsychological deficits in neuroleptic naive patients with first-episode schizophrenia.Arch. Gen. Psychiatry 51, 124–131.PubMedGoogle Scholar
  93. Silberberg G and H Markram (2007) Disynaptic inhibition between neocortical pyramidal cells mediated by Martinotti cells.Neuron 53, 735–746.PubMedCrossRefGoogle Scholar
  94. Silver H and P Feldman (2005) Evidence for sustained attention and working memory in schizophrenia sharing a common mechanism.J. Neuropsychiatry Clin. Neurosci. 17, 391–398.PubMedGoogle Scholar
  95. Silver H, P Feldman, W Bilker and RC Gur (2003) Working memory deficit as a core neuropsychological dysfunction in schizophrenia.Am. J. Psychiatry 160, 1809–1816.PubMedCrossRefGoogle Scholar
  96. Simpson MDC, P Slater, JFW Deakin, MC Royston and WJ Skan (1989) Reduced GABA uptake sites in the temporal lobe in schizophrenia.Neurosci. Lett. 107, 211–215.PubMedCrossRefGoogle Scholar
  97. Sitskoorn MM, A Aleman, SJ Ebisch, MC Appels and RS Kahn (2004) Cognitive deficits in relatives of patients with schizophrenia: a meta-analysis.Schizophr. Res. 71, 285–295.PubMedCrossRefGoogle Scholar
  98. Smith EE and J Jonides (1999) Storage and executive processes in the frontal lobes.Science 283, 1657–1661.PubMedCrossRefGoogle Scholar
  99. Somogyi P and T Klausberger (2005) Defined types of cortical interneurone structure space and spike timing in the hippocampus.J. Physiol. 562, 9–26.PubMedCrossRefGoogle Scholar
  100. Straub RE, BK Lipska, MF Egan, TE Goldberg, JH Callicott, MB Mayhew, RK Vakkalanka, BS Kolachana, JE Kleinman and DR Weinberger (2007) Allelic variation in GAD1 (GAD67) is associated with schizophrenia and influences cortical function and gene expression.Mol. Psychiatry 12, 854–869.PubMedCrossRefGoogle Scholar
  101. Tan HY, WC Choo, CS Fones and MW Chee (2005) fMRI study of maintenance and manipulation processes within working memory in first-episode schizophrenia.Am. J. Psychiatry 162, 1849–1858.PubMedCrossRefGoogle Scholar
  102. Taylor SF (1996) Cerebral blood flow activation and functional lesions in schizophrenia.Schizophr. Res. 19, 129–140.PubMedCrossRefGoogle Scholar
  103. Torrey EF, BM Barci, MJ Webster, JJ Bartko, JH Meador-Woodruff and MB Knable (2005) Neurochemical markers for schizophrenia, bipolar disorder, and major depression in postmortem brains.Biol. Psychiatry 57, 252–260.PubMedCrossRefGoogle Scholar
  104. Van Snellenberg JX, IJ Torres and AE Thornton (2006) Functional neuroimaging of working memory in schizophrenia: task performance as a moderating variable.Neuropsychology 20, 497–510.PubMedCrossRefGoogle Scholar
  105. Vawter MP, JM Crook, TM Hyde, JE Kleinman, DR Weinberger, KG Becker and WJ Freed (2002) Microarray analysis of gene expression in the prefrontal cortex in schizophrenia: a preliminary study.Schizophr. Res. 58, 11–20.PubMedCrossRefGoogle Scholar
  106. Volk DW, MC Austin, JN Pierri, AR Sampson and DA Lewis (2000) Decreased glutamic acid decarboxylase67 messenger RNA expression in a subset of prefrontal cortical γ-aminobutyric acid neurons in subjects with schizophrenia.Arch. Gen. Psychiatry 57, 237–245.PubMedCrossRefGoogle Scholar
  107. Volk DW, MC Austin, JN Pierri, AR Sampson and DA Lewis (2001) G AB A transporter-1 mRNA in the prefrontal cortex in schizophrenia: decreased expression in a subset of neurons.Am. J. Psychiatry 158, 256–265.PubMedCrossRefGoogle Scholar
  108. Volk DW, JN Pierri, J-M Fritschy, S Auh, AR Sampson and DA Lewis (2002) Reciprocal alterations in pre- and postsynaptic inhibitory markers at chandelier cell inputs to pyramidal neurons in schizophrenia.Cereb. Cortex 12, 1063–1070.PubMedCrossRefGoogle Scholar
  109. Wang XJ, J Tegner, C Constantinidis and PS Goldman-Rakic (2004) Division of labor among distinct subtypes of inhibitory neurons in a cortical microcircuit of working memory.Proc. Natl. Acad. Sci. USA 101, 1368–1373.PubMedCrossRefGoogle Scholar
  110. Wei W, N Zhang, Z Peng, CR Houser and I Mody (2003) Perisynaptic localization of delta subunit-containing GABAA receptors and their activation by GABA spillover in the mouse dentate gyrus.J. Neurosci. 23, 10650–10661.PubMedGoogle Scholar
  111. Weickert CS, DL Ligons, T Romanczyk, G Ungaro, TM Hyde, MM Herman, DR Weinberger and JE Kleinman (2005) Reductions in neurotrophin receptor mRNAs in the prefrontal cortex of patients with schizophrenia.Mol. Psychiatry 10, 637–650.PubMedCrossRefGoogle Scholar
  112. Weinberger DR, KF Berman and RF Zec (1986) Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia. I. Regional cerebral blood flow evidence.Arch. Gen. Psychiatry 43, 114–124.PubMedGoogle Scholar
  113. Weinberger DR, KF Berman and BP Illowsky (1988) Physiological dysfunction of dorsolateral prefrontal cortex in schizophrenia: III. Anew cohort and evidence for a monoaminergic mechanism.Arch. Gen. Psychiatry 45, 609–615.PubMedGoogle Scholar
  114. Weinberger DR, MF Egan, A Bertolino, JH Callicott, VS Mattay, BK Lipska, KF Berman and TE Goldberg (2001) Prefrontal neurons and the genetics of schizophrenia.Biol. Psychiatry 50, 825–844.PubMedCrossRefGoogle Scholar
  115. Williams SM, PS Goldman-Rakic and C Leranth (1992) The synaptology of parvalbumin-immunoreactive neurons in primate prefrontal cortex.J. Comp. Neurol. 320, 353–369.PubMedCrossRefGoogle Scholar
  116. Wonders CP and SA Anderson (2006) The origin and specification of cortical interneurons.Nat. Rev. Neurosci. 7, 687–696.PubMedCrossRefGoogle Scholar
  117. Woo T-U, JL Miller and DA Lewis (1997) Schizophrenia and the parvalbumin-containing class of cortical local circuit neurons.Am. J. Psychiatry 154, 1013–1015.PubMedGoogle Scholar
  118. Zaitsev AV, G Gonzalez-Burgos, NV Povysheva, S Kroner, DA Lewis and LS Krimer (2005) Localization of calcium-binding proteins in physiologically and morphologically characterized interneurons of monkey dorsolateral prefrontal cortex.Cereb. Cortex 15, 1178–1186.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • David A. Lewis
    • 1
    • 2
    Email author
  • Takanori Hashimoto
    • 1
  • Harvey M. Morris
    • 2
  1. 1.Department of PsychiatryUniversity of PittsburghPittsburgh
  2. 2.Department of NeuroscienceUniversity of PittsburghPittsburgh

Personalised recommendations