Neurotoxicity Research

, Volume 7, Issue 1–2, pp 103–123 | Cite as

Involvement of quinolinic acid in aids dementia complex

  • Gilles J. Guillemin
  • Stephen J. Kerr
  • Bruce J. Brew


Human immunodeficiency virus (HIV) infection is often complicated by the development of acquired immunodeficiency syndrome (AIDS) dementia complex (ADC). Quinolinic acid (QUIN) is an end product of tryptophan, metabolized through the kynurenine pathway (KP) that can act as an endogenous brain excitotoxin when produced and released by activated macrophages/microglia, the very cells that are prominent in the pathogenesis of ADC. This review examines QUIN’s involvement in the features of ADC and its role in pathogenesis. We then synthesize these findings into a hypothetical model for the role played by QUIN in ADC, and discuss the implications of this model for ADC and other inflammatory brain diseases.


Quinolinic acid Kynurenine Kynurenic acid HIV AIDS Dementia Inflammatory brain disease Cytokines Chemokines N-methyl-D-aspartate Macrophages Microglia 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Achim CL, MP Heyes and CA Wiley (1993) Quantitation of human immunodeficiency virus, immune activation factors, and quinolinic acid in AIDS brains.J. Clin. Invest. 91, 2769–2775.PubMedCrossRefGoogle Scholar
  2. Achim CL, E Masliah, MP Heyes, PG Sarnacki, C Hilty, M Baldwin and CA Wiley (1996) Macrophage activation factors in brains of AIDS patients.J. Neuro-AIDS 1, 1–16.CrossRefGoogle Scholar
  3. Alberati-Giani D and AM Cesura (1998) Expression of the kynurenine enzymes in macrophages and microglial cells: regulation by immune modulators.Amino Acids 14, 251–255.PubMedCrossRefGoogle Scholar
  4. Allegri G, A Bertazzo, M Biasiolo, CV Costa and E Ragazzi (2003a) Kynurenine pathway enzymes in different species of animals.Adv. Exp. Med. Biol. 527, 455–463.PubMedGoogle Scholar
  5. Allegri G, CV Costa, A Bertazzo, M Biasiolo and E Ragazzi (2003b) Enzyme activities of tryptophan metabolism along the kynurenine pathway in various species of animals.Farmaco. 58, 329–336.CrossRefGoogle Scholar
  6. Allegri G, CV Costa, E Ragazzi, A Bertazzo and M Biasiolo (2003c) Kynurenine pathway enzymes in guinea pigs.Adv. Exp. Med. Biol. 527, 465–471.PubMedGoogle Scholar
  7. Allegri G, E Ragazzi, A Bertazzo, M Biasiolo and CV Costa (2003d) Tryptophan metabolism in rabbits.Adv. Exp. Med. Biol. 527, 473–479.PubMedGoogle Scholar
  8. Allegri G, Ragazzi E, Bertazzo A, Costa CV (2003e) Enzyme activities along the kynurenine pathway in mice.Adv. Exp. Med. Biol. 527, 497–510.PubMedGoogle Scholar
  9. Allegri G, Ragazzi E, Bertazzo A, Costa CV, Rocchi R (2003f) Tryptophan metabolism along the kynurenine pathway in rats.Adv. Exp. Med. Biol. 527, 481–496.PubMedGoogle Scholar
  10. An SF, B Giometto, M Groves, RF Miller, AA Beckett, F Gray, B Tavolato and F Scaravilli (1997) Axonal damage revealed by accumulation of beta-APP in HIV-positive individuals without AIDS.J. Neuropathol. Exp. Neurol. 56, 1262–1268.PubMedCrossRefGoogle Scholar
  11. Anderson E, W Zink, H Xiong and HE Gendelman (2002) HIV-1-associated dementia: a metabolic encephalopathy perpetrated by virus-infected and immune-competent mononuclear phagocytes.J. Acquir. Immune Defic. Syndr. 31 Suppl. 2, S43-S54.Google Scholar
  12. Arenzana-Seisdedos F, JL Virelizier, D Rousset, I Clark-Lewis, P Loetscher, B Moser and M Baggiolini (1996) HIV blocked by chemokine antagonist [letter].Nature 383, 400.PubMedCrossRefGoogle Scholar
  13. Banati RB, J Gehrmann, M Kellner and F Holsboer (1995) Antibodies against microglia/brain macrophages in the cerebrospinal fluid of a patient with acute amyotrophic lateral sclerosis andpresenile dementia.Clin. Neuropathol. 14, 197–200.PubMedGoogle Scholar
  14. Behan WM and TW Stone (2002) Enhanced neuronal damage by co-administration of quinolinic acid and free radicals, and protection by adenosine A2A receptor antagonists.Br. J. Pharmacol. 135, 1435–1442.PubMedCrossRefGoogle Scholar
  15. Behan WM, M McDonald, LG Darlington and TW Stone (1999) Oxidative stress as a mechanism for quinolinic acid-induced hippocampal damage: protection by melatonin and deprenyl.Br. J. Pharmacol. 128, 1754–1760.PubMedCrossRefGoogle Scholar
  16. Bell MD, DD Taub and VH Perry (1996) Overriding the brain’s intrinsic resistance to leukocyte recruitment with intraparenchymal injections of recombinant chemokines.Neuroscience 74, 283–292.PubMedCrossRefGoogle Scholar
  17. Bender DA and GM McCreanor (1982) The preferred route of kynurenine metabolism in the rat.Biochim. Biophys. Acta 717, 56–60.PubMedGoogle Scholar
  18. Benveniste EN (1994) Cytokine circuits in brain. Implications for AIDS dementia complex.Res. Publ. Assoc. Res. Nerv. Ment. Dis. 72, 71–88.PubMedGoogle Scholar
  19. Biggs CS (1997) Dopamine and glutamate control each other’s release in the basal ganglia: a microdialysis study of the entopedunclular nucleus and substantia nigra.Neurosci. Biobehav. Rev. 21, 497–504.PubMedCrossRefGoogle Scholar
  20. Bjorklund H, L Olson, D Dahl and R Schwarcz (1986) Short- and long-term consequences of intracranial injections of the excitotoxin, quinolinic acid, as evidenced by GFA immunohistochemistry of astrocytes.Brain Res. 371, 267–277.PubMedCrossRefGoogle Scholar
  21. Blight AR, TI Cohen, K Saito and MP Heyes (1995) Quinolinic acid accumulation and functional deficits following experimental spinal cord injury.Brain 118, 735–752.PubMedCrossRefGoogle Scholar
  22. Boegman RJ, SR el-Defrawy, K Jhamandas, RJ Beninger and SK Ludwin (1985) Quinolinic acid neurotoxicity in the nucleus basalis antagonized by kynurenic acid.Neurobiol. Aging 6, 33–336.CrossRefGoogle Scholar
  23. Boehme SA, FM Lio, D Maciejewski-Lenoir, KB Bacon and PJ Conlon (2000) The chemokine fractalkine inhibits fas-mediated cell death of brain microglia.J. Immunol. 165, 397–403.PubMedGoogle Scholar
  24. Bordelon YM, M-F Chesselet, D Nelson, F Welsh and M Erecinska (1997) Energetic dysfunction in quinolinic acid-lesioned rat striatum.J. Neurochem. 69, 1629–1639.PubMedGoogle Scholar
  25. Botting NP (1995) Chemistry and neurochemistry of the kynurenine pathway of tryptophan metabolism.Chem. Soc. Rev. 24, 401–412.CrossRefGoogle Scholar
  26. Brew BJ (1994) The clinical spectrum and pathogenesis of HIV encephalopathy, myelopathy, and peripheral neuropathy.Curr. Opin. Neurol. 7, 209–216.PubMedCrossRefGoogle Scholar
  27. Brew BJ (1999) AIDS dementia complex.Neurol. Clin. 17, 861–881.PubMedCrossRefGoogle Scholar
  28. Brew BJ (2004) Evidence for a change in AIDS dementia complex in the era of highly active antiretroviral therapy and the possibility of new forms of AIDS dementia complex.AIDS 18 Suppl.1, S75-S78.Google Scholar
  29. Brew BJ, M Rosenblum and RW Price (1988) AIDS dementia complex and primary HIV brain infection.J. Neuroimmunol. 20, 133–140.PubMedCrossRefGoogle Scholar
  30. Brew BJ, RB Bhalla, M Fleisher, M Paul, A Khan, MK Schwartz and RW Price (1989) Cerebrospinal fluid beta 2 microglobulin in patients infected with human immunodeficiency virus.Neurology 39, 830–834.PubMedGoogle Scholar
  31. Brew BJ, RB Bhalla, M Paul, H Gallardo, JC McArthur, MK Schwartz and RW Price (1990) Cerebrospinal fluid neopterin in human immunodeficiency virus type 1 infection.Ann. Neurol. 28, 556–560.PubMedCrossRefGoogle Scholar
  32. Brew BJ, RB Bhalla, M Paul, JJ Sidtis, JJ Keilp, AE Sadler, H Gallardo, JC McArthur, MK Schwartz and RW Price (1992) Cerebrospinal fluid beta 2-microglobulin in patients with AIDS dementia complex: an expanded series including response to zidovudine treatment.AIDS 6, 461–465.PubMedCrossRefGoogle Scholar
  33. Brew BJ, J Corbeil, L Pemberton, L Evans, K Saito, R Penny, DA Cooper and MP Heyes (1995a) Quinolinic acid production is related to macrophage tropic isolates of HIV-1.J. Neurovirol. 1, 369–374.PubMedCrossRefGoogle Scholar
  34. Brew BJ, M Rosenblum, K Cronin and RW Price (1995b) AIDS dementia complex and HIV-1 brain infection: clinical-virological correlations.Ann. Neurol. 38, 563–570.PubMedCrossRefGoogle Scholar
  35. Brew BJ, L Evans, C Byrne, L Pemberton and L Hurren (1996) The relationship between AIDS dementia complex and the presence of macrophage tropic and non-syncytium inducing isolates of human immunodeficiency virus type 1 in the cerebrospinal fluid.J. Neurovirol. 2, 152–157.PubMedCrossRefGoogle Scholar
  36. Brouwers P, MP Heyes, HA Moss, PL Wolters, DG Poplack, SP Markey and PA Pizzo (1993) Quinolinic acid in the cerebrospinal fluid of children with symptomatic human immunodeficiency virus type 1 disease: relationships to clinical status and therapeutic response.J. Infect. Dis. 168, 1380–1386.PubMedGoogle Scholar
  37. Calabresi P, A Pisani, D Centonze and G Bernardi (1997a) Synaptic plasticity and physiological interactions between dopamine and glutamate in the striatum.Neurosci. Biobehav. Rev. 21, 519–523.PubMedCrossRefGoogle Scholar
  38. Calabresi P, A Saiardi, A Pisani, J-H Baik, D Centonze, NB Mercuri, G Bernardi and E Borrelli (1997b) Abnormal synaptic plasticity in the striatum of mice lacking dopamine D(2) receptors.J. Neurosci. 17, 4536–4544.PubMedGoogle Scholar
  39. Chao CC, S Hu and PK Peterson (1996) Glia: the not so innocent bystanders.J. Neurovirol. 2, 234–239.PubMedCrossRefGoogle Scholar
  40. Chao CC, S Hu, G Gekker, JR Lokensgard, MP Heyes and PK Peterson (2000) U50,488 protection against HIV-1-related neurotoxicity: involvement of quinolinic acid suppression.Neuropharmacology 39, 150–160.PubMedCrossRefGoogle Scholar
  41. Chatterton JE, M Awobuluyi, LS Premkumar, H Takahashi, MTalantova, Y Shin, J Cui, S Tu, KA Sevarino, N Nakanishiet al. (2002) Excitatory glycine receptors containing the NR3 family of NMDA receptor subunits.Nature 415, 793–798.PubMedGoogle Scholar
  42. Chen Q, C Harris, CS Brown, A Howe, DJ Surmeier and A Reiner (1995) Glutamate-mediated excitotoxic death of cultured striated neurons is mediated by non-NMDA receptors.Exp. Neurol. 136, 212–224.PubMedCrossRefGoogle Scholar
  43. Cheng J, A Nath, B Knudsen, S Hochman, JD Geiger, M Ma and DSK Magnuson (1998) Neuronal excitatory properties of human immunodeficiency virus type 1 tat protein.Neuroscience 82, 97–106.PubMedCrossRefGoogle Scholar
  44. Clark GD, LT Happel, CF Zorumski and NG Bazan (1992) Enhancement of hippocampal excitatory synaptic transmission by platelet-activating factor.Neuron 9, 1211–1216.PubMedCrossRefGoogle Scholar
  45. Conant K, JC McArthur, DE Griffin, L Sjulson, LM Wahl and DN Irani (1999) Cerebrospinal fluid levels of MMP-2, 7, and 9 are elevated in association with human immunodeficiency virus dementia.Ann. Neurol. 46, 391–308.PubMedCrossRefGoogle Scholar
  46. Conrad A J, P Schmid, K Syndulko, EJ Singer, RM Nagra, JJ Russell and WW Tourtellotte (1995) Quantifying HIV-1 RNA using the polymerase chain reaction on cerebrospinal fluid and serum of seropositive individuals with and without neurologic abnormalities.J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. 10, 425–435.PubMedCrossRefGoogle Scholar
  47. Cota M, A Kleinschmidt, F Ceccherini-Silberstein, F Aloisi, M Mengozzi, A Mantovani, R Brack-Werner and G Poli (2000) Upregulated expression of i.e.-8, RANTES and chemokine receptors in human astrocytic cells infected with HIV-1.J. Neurovirol. 6, 75–83.PubMedCrossRefGoogle Scholar
  48. Cunningham AL, H Naif, N Saksena, G Lynch, J Chang, S Li, R Jozwiak, M Alali, B Wang, W Fearet al. (1997) HIV infection of macrophages and pathogenesis of AIDS dementia complex: interaction of the host cell and viral genotype.J. Leukoc. Biol. 62, 117–125.PubMedGoogle Scholar
  49. Curzon G (1996) Brain tryptophan. Normal and disturbed control.Adv. Exp. Med. Biol. 398, 27–34.PubMedGoogle Scholar
  50. De Carvalho LP, P Bochet and J Rossier (1996) The endogenous agonist quinolinic acid and the non endogenous homoquinolinic acid discriminate between NMDAR2 receptor subunits.Neurochem. Int. 28, 445–452.PubMedCrossRefGoogle Scholar
  51. Depboylu C, TA Reinhart, O Takikawa, Y Imai, H Maeda, H Mitsuya, D Rausch, LE Eiden and E Weihe (2004) Brain virus burden and indoleamine-2,3-dioxygenase expression during lentiviral infection of rhesus monkey are concomitantly lowered by 6-chloro-2’,3’-dideoxyguanosine.Eur. J. Neurosci. 19, 2997–3005.PubMedCrossRefGoogle Scholar
  52. Dihne M, F Block, H Korr and R Topper (2001) Time course of glial proliferation and glial apoptosis following excitotoxic CNS injury.Brain Res. 902, 178–189.PubMedCrossRefGoogle Scholar
  53. Dingledine R, K Borges, D Bowie and SF Traynelis (1999) The glutamate receptor ion channels.Pharmacol. Rev. 51, 7–61.PubMedGoogle Scholar
  54. Dore GJ, MG Law and BJ Brew (1996) Prospective analysis of seizures occurring in human immunodeficiency virus type-1 infection.J. Neuro-AIDS 1, 59–69.CrossRefGoogle Scholar
  55. Dore GJ, PK Correll, Y Li, JM Kaldor, DA Cooper and BJ Brew (1999) Changes to AIDS dementia complex in the era of highly active antiretroviral therapy.AIDS 13, 1249–1253.PubMedCrossRefGoogle Scholar
  56. Dore GJ, A McDonald, Y Li, JM Kaldor and BJ Brew (2003) Marked improvement in survival following AIDS dementia complex in the era of highly active antiretroviral therapy.AIDS 17, 1539–1545.PubMedCrossRefGoogle Scholar
  57. Du F, E Okuno, WO Whetsell, C Kohler and R Schwarcz (1990) Distribution of quinolinic acid phosphoribosyltransferase in the human hippocampal formation and parahippocampal gyrus.J. Comp. Neurol. 295, 71–82.PubMedCrossRefGoogle Scholar
  58. Du F, E Okuno, WO Whetsell, C Köhler and R Schwarcz (1991) Immunohistochemical localization of quinolinic acid phosphoribosyltransferase in the human neostriatum.Neuroscience 42, 397–406.PubMedCrossRefGoogle Scholar
  59. Eastman CL (1989) Cytotoxicity of 3-hydroxykynurenine in a neuronal hybrid cell line.Brain Res. 495, 225–231.PubMedCrossRefGoogle Scholar
  60. Emilie D and P Galanaud (1998) Cytokines and chemokines in HIV infection: implications for therapy.Int. Rev. Immunol. 16, 705–726.PubMedCrossRefGoogle Scholar
  61. Ensoli F, A Cafaro, V Fiorelli, B Vannelli, B Ensoli and CJ Thiele (1995) HIV-1 infection of primary human neuroblasts.Virology 210, 221–225.PubMedCrossRefGoogle Scholar
  62. Esiri MM, SC Biddolph and CS Morris (1998) Prevalence of Alzheimer plaques in AIDS.J. Neurol. Neurosurg. Psychiatry 65, 29–33.PubMedCrossRefGoogle Scholar
  63. Espey MG, ON Chernyshev, JJ Reinhard, MA Namboodiri and CA Colton (1997) Activated human microglia produce the excitotoxin quinolinic acid.Neuroreport 8, 431–434.PubMedCrossRefGoogle Scholar
  64. Eugenin EA, TG D’Aversa, L Lopez, TM Calderon and JW Berman (2003) MCP-1 (CCL2) protects human neurons and astrocytes from NMDA or HIV-tat-induced apoptosis.J. Neurochem. 85, 1299–1311.PubMedCrossRefGoogle Scholar
  65. Everall IP, PJ Luthert and PL Lantos (1991) Neuronal loss in the frontal cortex in HIV infection.Lancet 337, 1119–1121.PubMedCrossRefGoogle Scholar
  66. Fallarino F, U Grohmann, C Vacca, R Bianchi, C Orabona, A Spreca, MC Fioretti and P Puccetti (2002) T cell apoptosis by tryptophan catabolism.Cell Death Differ. 9, 1069–1077.PubMedCrossRefGoogle Scholar
  67. Fan J, HZ Bass and JL Fahey (1993) Elevated IFN-γ and decreased IL-2 gene expression are associated with HIV infection.J. Immunol. 151, 5031–5040.PubMedGoogle Scholar
  68. Flanagan EM, JB Erickson, OH Viveros, SY Chang and JF Reinhard Jr (1995) Neurotoxin quinolinic acid is selectively elevated in spinal cords of rats with experimental allergic encephalomyelitis.J. Neurochem. 64, 1192–1196.PubMedGoogle Scholar
  69. Fontana G, L Valenti and M Raiteri (1997) Gp120 can revert antagonism at the glycine site of NMDA receptors mediating gaba release from cultured hippocampal neurons.J. Neurosci. Res. 49, 732–738.PubMedCrossRefGoogle Scholar
  70. Freese A, M DiFiglia, WJ Koroshetz, MF Beal and JB Martin (1990) Characterization and mechanism of glutamate neurotoxicity in primary striatal cultures.Brain Res. 521, 254–264.PubMedCrossRefGoogle Scholar
  71. Frei K, T Leist, A Meager, P Gallo, D Leppert, R Zinkernagel and A Fontana (1988) Production of B cell stimulatory factor 2 and interferon- in the central nervous system during viral meningitis and encephalitis.J. Exp. Med. 168, 449–453.PubMedCrossRefGoogle Scholar
  72. Fuchs D. A Hausen, G Reibnegger, ER Werner, G Werner-Felmayer, MP Dierich and H Watcher (1989) Interferon-gamma concentration are increased in sera from individuals infected with human immunodeficency virus type 1.J. Acquir. Immune Defic. Syndr. 2, 158–162.PubMedGoogle Scholar
  73. Fujigaki S, K Saito, M Takemura, H Fujii, H Wada, A Noma and M Seishima (1998) Species differences in L-tryptophan-kynurenine pathway metabolism: quantification of anthranilic acid and its related enzymes.Arch. Biochem. Biophys. 358, 329–335.PubMedCrossRefGoogle Scholar
  74. Galarraga E, DJ Surmeier and ST Kitai (1990) Quinolinate and kainate neurotoxicity in neostriatal cultures is potentiated by coculturing with neocortical neurons.Brain Res. 512, 269–276.PubMedCrossRefGoogle Scholar
  75. Gallo RC, A Garzino-Demo and AL DeVico (1999) HIV infection and pathogenesis: what about chemokines?J. Clin. Immunol. 19, 293–299.PubMedCrossRefGoogle Scholar
  76. Garside S, JCS Furtado and MF Mazurek (1996) Dopamine-glutamate interactions in the striatum: behaviourally relevant modification of excitotoxicity by dopamine receptor-mediated mechanisms.Neuroscience 75, 1065–1074.PubMedCrossRefGoogle Scholar
  77. Gelbard HA, HS Nottet, S Swindells, M Jett, KA Dzenko, P Genis, R White, L Wang, YB Choi, D Zhanget al. (1994) Platelet-activating factor: a candidate human immunodeficiency virus type 1-induced neurotoxin.J. Virol. 68, 4628–4635.PubMedGoogle Scholar
  78. Genis P, M Jett, EW Bernton, T Boyle, HA Gelbard, K Dzenko, RW Keane, L Resnick, Y Mizrachi, DJ Volskyet al. (1992) Cytokines and arachidonic metabolites produced during human immunodeficiency virus (HIV)-infected macrophage-astroglia interactions: implications for the neuropathogenesis of HIV disease.J. Exp. Med. 176, 1703–1718.PubMedCrossRefGoogle Scholar
  79. Giulian D, K Vaca and CA Noonan (1990) Secretion of neurotoxins by mononuclear phagocytes infected with HIV-1.Science 250, 1593–1596.PubMedCrossRefGoogle Scholar
  80. Giulian D, E Wendt, K Vaca and CA Noonan (1993) The envelope glycoprotein of human immunodeficiency virus type 1 stimulates release of neurotoxins from monocytes.Proc. Natl. Acad. Set USA 90, 2769–2773.CrossRefGoogle Scholar
  81. Giulian D, J Yu, X Li, D Tom, J Li, E Wendt, SN Lin, R Schwarcz and C Noonan (1996) Study of receptor-mediated neurotoxins released by HIV-1-infected mononuclear phagocytes found in human brain.J. Neurosci. 16, 3139–3153.PubMedGoogle Scholar
  82. Glass JD, SL Wesselingh, OA Selnes and JC McArthur (1993) Clinical-neuropathologic correlation in HIV-associated dementia.Neurology 43, 2230–2237.PubMedGoogle Scholar
  83. Glass JD, H Fedor, SL Wesselingh and JC McArthur (1995) Immunocytochemical quantitation of human immunodeficiency virus in the brain: Correlations with dementia.Ann. Neurol. 38, 755–762.PubMedCrossRefGoogle Scholar
  84. Goda K, R Kishimoto, S Shimizu, Y Hamane and M Ueda (1996) Quinolinic acid and active oxygens. possible contribution of active oxygens during cell death in the brain.Adv. Exp. Med. Biol. 398, 247–254.PubMedGoogle Scholar
  85. Gogate N, K Kristensson, E Norrby and T Olsson (1991) Gamma interferon expression and major histocompatibility complex induction during measles and vesicular somatitis infections of the brain.J. Neuroimmunol. 31, 19–26.PubMedCrossRefGoogle Scholar
  86. Gorry P, D Purcell, J Howard and D McPhee (1998) Restricted HIV-1 infection of human astrocytes: potential role of nef in the regulation of virus replication.J. Neurovirol. 4, 377–386.PubMedGoogle Scholar
  87. Grant RS, H Naif, SJ Thuruthyil, N Nasr, T Littlejohn, O Takikawa and V Kapoor (2000) Induction of indolamine 2,3-dioxygenase in primary human macrophages by human immunodeficiency virus type 1 is strain dependent.J. Virol. 74, 4110–4115.PubMedCrossRefGoogle Scholar
  88. Griffin DE, JC McArthur and DR Cornblath (1991) Neopterin and interferon-gamma in serum and cerebrospinal fluid of patients with HIV-associated neurological disease.Neurology 41, 69–74.PubMedGoogle Scholar
  89. Grimaldi LME, GV Martino, SM Franciotta, R Brustia, A Castagna, R Pristerà and A Lazzarin (1991) Elevated alpha-tumor necrosis factor levels in spinal fluid from HIV-1-infected patients with central nervous system involvement.Ann. Neurol. 29, 21–25.PubMedCrossRefGoogle Scholar
  90. Grimwood S, KA Wafford, A Macaulay and PH Hutson (2002) N-Methyl-D-aspartate receptor subtype-selectivity of homoquinolinate: an electrophysiological and radioligand binding study using both native and recombinant receptors.J. Neurochem. 82, 794–800.PubMedCrossRefGoogle Scholar
  91. Grohmann U, F Fallarino and P Puccetti (2003) Tolerance, DCs and tryptophan: much ado about IDO.Trends Immunol. 24, 242–248.PubMedCrossRefGoogle Scholar
  92. Guillemin GJ and BJ Brew (2002) Implications of the kynurenine pathway and quinolinic acid in Alzheimer’s disease.Redox. Rep. 7, 199–206.PubMedCrossRefGoogle Scholar
  93. Guillemin G, J Croitoru, RL Grand, M Franck-Duchenne, D Dormont and FD Boussin (2000) Simian immunodeficiency virus mac251 infection of astrocytes.J. Neurovirol. 6, 173–186.PubMedCrossRefGoogle Scholar
  94. Guillemin GJ, SJ Kerr, GA Smythe, DG Smith, V Kapoor, PJ Armati, J Croitoru and BJ Brew (2001) Kynurenine pathway metabolism in human astrocytes: a paradox for neuronal protection.J. Neurochem. 78, 1–13.CrossRefGoogle Scholar
  95. Guillemin GJ, J Croitoru-Lamoury, D Dormont, PJ Armati and BJ Brew (2003a) Quinolinic acid upregulates chemokine production and chemokine receptor expression in astrocytes.Glia 41, 371–381.PubMedCrossRefGoogle Scholar
  96. Guillemin GJ, DG Smith, GA Smythe, PJ Armati and BJ Brew (2003b) Expression of the kynurenine pathway enzymes in human microglia and macrophages.Adv. Exp. Med. Biol. 527, 105–112.PubMedGoogle Scholar
  97. Guillemin GJ, G Smythe, L Veas, O Takikawa and BJ Brew (2003c) Abeta 1-42 induces production of quinolinic acid by human macrophages and microglia.Neuroreport 14, 311–315.CrossRefGoogle Scholar
  98. Guillemin GJ, G Smythe, O Takikawa and BJ Brew (2004) Expression of indoleamine 2,3 dioxygenase and production of quinolinic acid by human microglia, astrocytes and neurons.Glia 49(1), 15–23.CrossRefGoogle Scholar
  99. Guo H, YX Jin, M Ishikawa, YM Huang, PH van der Meide, H Link and BG Xiao (1998) Regulation of beta-chemokine mRNA expression in adult rat astrocytes by lipopolysaccharide, proinflammatory and immunoregulatory cytokines.Scand. J. Immunol. 48, 502–508.PubMedCrossRefGoogle Scholar
  100. Halperin JJ and MP Heyes (1992) Neuroactive kynurenines in Lyme borreliosis.Neurology 42, 43–50.PubMedGoogle Scholar
  101. Hayashi M, Y Luo, J Laning, RM Strieter and ME Dorf (1995) Production and function of monocyte chemoattractant protein-1 and other beta-chemokines in murine glial cells.J. Neuroimmunol. 60, 143–150.PubMedCrossRefGoogle Scholar
  102. He J, Y Chen, M Farzan, H Choe, A Ohagen, S Gartner, J Busciglio, X Yang, W Hofmann, W Newmanet al. (1997) CCR3 and CCR5 are co-receptors for HIV-1 infection of microglia.Nature 385, 645–649.PubMedCrossRefGoogle Scholar
  103. Hesselgesser J, D Taub, P Baskar, M Greenberg, J Hoxie, DL Kolson and R Horuk (1998) Neuronal apoptosis induced by HIV-1 gp120 and the chemokine SDF-1 alpha is mediated by the chemokine receptor CXCR4.Curr. Biol. 8, 595–598.PubMedCrossRefGoogle Scholar
  104. Heyes MP (1992) Quinolinic acid in culture media used forin vitro neurotoxicology studies.Neurosci. Lett. 145, 234–235.PubMedCrossRefGoogle Scholar
  105. Heyes MP (1996) The kynurenine pathway and neurologic disease. Therapeutic strategies.Adv. Exp. Med. Biol. 398, 125–129.PubMedGoogle Scholar
  106. Heyes MP, BJ Brew, A Martin, RW Price, AM Salazar, JJ Sidtis, JA Yergey, MM Mouradian, AE Sadler, J Keilpet al. (1991) Quinolinic acid in cerebrospinal fluid and serum in HIV-1 infection: relationship to clinical and neurological status.Ann. Neurol. 29, 202–209.PubMedCrossRefGoogle Scholar
  107. Heyes MP, BJ Brew, K Saito, BJ Quearry, RW Price, K Lee, RB Bhalla, M Der and SP Markey (1992a) Inter-relationships between quinolinic acid, neuroactive kynurenines, neopterin and beta 2-microglobulin in cerebrospinal fluid and serum of HIV-1 -infected patients.J. Neuroimmunol. 40, 71–80.PubMedCrossRefGoogle Scholar
  108. Heyes MP, K Saito, JS Crowley, LE Davis, MA Demitrack, M Der, LA Dilling, J Elia, MJ Kruesi, A Lackneret al. (1992b) Quinolinic acid and kynurenine pathway metabolism in inflammatory and non-inflammatory neurological disease.Brain 115 (Pt 5), 1249–1273.PubMedCrossRefGoogle Scholar
  109. Heyes MP, K Saito, D Jacobowitz, SP Markey, O Takikawa and JH Vickers (1992c) Poliovirus induces indoleamine-2,3-dioxygenase and quinolinic acid synthesis in macaque brain.FASEB J. 6, 2977–2989.PubMedGoogle Scholar
  110. Heyes MP, K Saito and SP Markey (1992d) Human macrophages convert L-tryptophan into the neurotoxin quinolinic acid.Biochem J. 283, 633–635.PubMedGoogle Scholar
  111. Heyes MP, K Saito, S Milstien and SJ Schiff (1995) Quinolinic acid in tumors, hemorrhage and bacterial infections of the central nervous system in children.J. Neurol. Sci. 133, 112–118.PubMedCrossRefGoogle Scholar
  112. Heyes MP, CL Achim, CA Wiley, EO Major, K Saito and SP Markey (1996) Human microglia convert L-tryptophan into the neurotoxin quinolinic acid.Biochem. J. 320, 595–597.PubMedGoogle Scholar
  113. Heyes MP, CY Chen, EO Major and K Saito (1997a) Different kynurenine pathway enzymes limit quinolinic acid formation by various human cell types.Biochem. J. 326, 351–356.PubMedGoogle Scholar
  114. Heyes MP, K Saito, CY Chen, MG Proescholdt, TS Nowak Jr, J Li, KE Beagles, MA Proescholdt, MA Zito, K Kawaiet al. (1997b) Species heterogeneity between gerbils and rats: quinolinate production by microglia and astrocytes and accumulations in response to ischemic brain injury and systemic immune activation.J. Neurochem. 69, 1519–1529.PubMedGoogle Scholar
  115. Heyes MP, K Saito, A Lackner, CA Wiley, CL Achim and SP Markey (1998) Sources of the neurotoxin quinolinic acid in the brain of HIV-1- infected patients and retro virus-infected macaques.FASEB J. 12, 881–896.PubMedGoogle Scholar
  116. Heyes MP, RJ Ellis, L Ryan, ME Childers, I Grant, T Wolfson, S Archibald and TL Jernigan (2001) Elevated cerebrospinal fluid quinolinic acid levels are associated with region-specific cerebral volume loss in HIV infection.Brain 124, 1033–1042.PubMedCrossRefGoogle Scholar
  117. Horimoto N, J Nabekura and T Ogawa (1996) Developmental changes in arachidonic acid potentiation of NMDA currents in cortical neurones.NeuroReport 7, 2463–2467.PubMedCrossRefGoogle Scholar
  118. Horuk R (1999) Chemokine receptors and HIV-1: the fusion of two major research fields.Immunol. Today 20, 89–94.PubMedCrossRefGoogle Scholar
  119. Hurwitz AA, WD Lyman and JW Berman (1995) Tumor necrosis factor alpha and transforming growth factor beta upregulate astrocyte expression of monocyte chemoattractant protein-1.J. Neuroimmunol. 57, 193–198.PubMedCrossRefGoogle Scholar
  120. Ilzecka J, T Kocki, Z Stelmasiak and WA Turski (2003) Endogenous protectant kynurenic acid in amyotrophic lateral sclerosis.Acta Neurol. Scand. 107, 412–418.PubMedCrossRefGoogle Scholar
  121. Kanki R, T Nakamizo, H Yamashita, T Kihara, H Sawada, K Uemura, J Kawamata, H Shibasaki, A Akaike and S Shimohama (2004) Effects of mitochondrial dysfunction on glutamate receptor-mediated neurotoxicity in cultured rat spinal motor neurons.Brain Res. 1015, 73–81.PubMedCrossRefGoogle Scholar
  122. Kedzierska K and SM Crowe (2001) Cytokines and HIV-1: interactions and clinical implications.Antivir. Chem. Chemother. 12, 133–150.PubMedGoogle Scholar
  123. Kedzierska K and SM Crowe (2002) The role of monocytes and macrophages in the pathogenesis of HIV-1 infection.Curr. Med. Chem. 9, 1893–1903.PubMedGoogle Scholar
  124. Kelder W, JC McArthur, T Nance-Sproson, D McClernon and DE Griffin (1998) Beta-chemokines MCP-1 and RANTES are selectively increased in cerebrospinal fluid of patients with human immunodeficiency virus-associated dementia.Ann. Neurol. 44, 831–835.PubMedCrossRefGoogle Scholar
  125. Kerr SJ, PJ Armati and BJ Brew (1995) Neurocytotoxity of quinolinic acid in human brain cultures.J. Neurovirol. 1, 375–380.PubMedCrossRefGoogle Scholar
  126. Kerr S J, P J Armati, LA Pemberton, G Smythe and B J Brew (1997a) Kynurenine pathway inhibition with 6-chloro-D-tryptophan reduces neurotoxicity of HIV-infected macrophage supernatantsNeurology 48, A94 (Abstr.).Google Scholar
  127. Kerr SJ, PJ Armati, LA Pemberton, G Smythe, B Tattam and BJ Brew (1997b) Kynurenine pathway inhibition reduces neurotoxicity of HIV-1-infected macrophages.Neurology 49, 1671–1681.PubMedGoogle Scholar
  128. Kerr SJ, PJ Armati, GJ Guillemin and BJ Brew (1998) Chronic exposure of human neurons to quinolinic acid results in neuronal changes consistent with AIDS dementia complex.AIDS 12, 355–363.PubMedCrossRefGoogle Scholar
  129. Khaspekov LG and IV Viktorov (1988) Effect of quinolinic acid on neurons in dissociated cultures of cells of different structures of the brain.Biull. Eksp. Biol. Med. 106, 103–106.PubMedGoogle Scholar
  130. Kida E and E Matyja (1988) Ultrastructural alterations induced by quinolinic acid in organotypic culture of rat hippocampus.Clin. Neuropathol. 7, 176.Google Scholar
  131. Kim JP and DW Choi (1987) Quinolinate neurotoxicity in cortical cell culture.Neuroscience 23, 423–432.PubMedCrossRefGoogle Scholar
  132. Kinman LM, JM Worlein, J Leigh, H Bielefeldt-Ohmann, DM Anderson, SL Hu, WR Morton, BD Anderson and RJ Ho (2004) HIV in central nervous system and behavioral development: an HIV-2287 macaque model of AIDS.AIDS 18, 1363–1370.PubMedCrossRefGoogle Scholar
  133. KohJ and DW Choi (1988) Cultured striatal neurons containing NADPH-diaphorase or acetylcholinesterase are selectively resistant to injury by NMDA receptor agonists.Brain Res. 446, 374–378.PubMedCrossRefGoogle Scholar
  134. Kohler C, E Okuno, PR Flood and R Schwarcz (1987) Quinolinic acid phosphoribosyltransferase: preferential glial localization in the rat brain visualized by immunocytochemistry.Proc. Natl. Acad. Sci. USA 84, 3491–2495.PubMedCrossRefGoogle Scholar
  135. Kohler C, LG Eriksson, PR Flood, JA Hardie, E Okuno and R Schwarcz (1988a) Quinolinic acid metabolism in the rat brain. Immunohistochemical identification of 3-hydroxyanthranilic acid oxygenase and quinolinic acid phosphoribosyltransferase in the hippocampal region.J. Neurosci. 8, 975–987.PubMedGoogle Scholar
  136. Kohler C, LG Eriksson, E Okuno and R Schwarcz (1988b) Localization of quinolinic acid metabolizing enzymes in the rat brain. Immunohistochemical studies using antibodies to 3-hydroxyanthranilic acid oxygenase and quinolinic acid phosphoribosyltransferase.Neuroscience 27, 49–76.PubMedCrossRefGoogle Scholar
  137. Kohler C, A Peterson, LG Eriksson, E Okuno and R Schwarcz (1988c) Immunohistochemical identification of quinolinic acid phosphoribosyltransferase in glial cultures from rat brain.Neurosci. Lett. 84, 115–119.PubMedCrossRefGoogle Scholar
  138. Kong LY, BC Wilson, MK Mcmillian, GY Bing, PM Hudson and JS Hong (1996) The effects of the HIV-1 envelope protein gp120 on the production of nitric oxide and proinflammatory cytokines in mixed glial cell cultures.Cell Immunol. 172, 77–83.PubMedCrossRefGoogle Scholar
  139. Kumar U (2004) Characterization of striatal cultures with the effect of QUIN and NMDA.Neurosci. Res. 49, 29–38.PubMedCrossRefGoogle Scholar
  140. Kure K, WD Lyman, KM Weidenheim and DW Dickson (1990) Cellular localization of an HIV-1 antigen in subacute AIDS encephalitis using an improved double-labeling immunohistochemical method.Am. J. Pathol. 136, 1085–1092.PubMedGoogle Scholar
  141. Lane JH, VG Sasseville, MO Smith, P Vogel, DR Pauley, MP Heyes and AA Lackner (1996) Neuroinvasion by simian immunodeficiency virus coincides with increased numbers of perivascular macrophages/microglia and intrathecal immune activation.J. Neurovirol. 2, 423–432.PubMedCrossRefGoogle Scholar
  142. Lapin IP (1978) Stimulant and convulsive effects of kynurenines injected into brain ventricles in mice.J. Neural Transm. 42, 37–43.PubMedCrossRefGoogle Scholar
  143. Lapin IP, IB Prakhie and IP Kiseleva (1982) Excitatory effects of kynurenine and its metabolites, amino acids and convulsants administered into brain ventricles: differences between rats and mice.J. Neural Transm. 54, 229–238.PubMedCrossRefGoogle Scholar
  144. Lee B and LJ Montaner (1999) Chemokine immunobiology in HIV-1 pathogenesis.J. Leukoc. Biol. 65, 552–565.PubMedGoogle Scholar
  145. Lipton SA (1992) Requirement for macrophages in neuronal injury induced by HIV envelope protein gp120.NeuroReport 3, 913–915.PubMedCrossRefGoogle Scholar
  146. Lipton SA (1994) HIV coat protein gp120 induces soluble neurotoxins in culture medium.Neurosci. Res. Commun. 15, 31–37.Google Scholar
  147. Lipton SA (1997) Neuropathogenesis of acquired immunodeficiency syndrome dementia.Curr. Opin. Neurol. 10, 247–253.PubMedGoogle Scholar
  148. Lipton SA (1998) Neuronal injury associated with HIV-1: approaches to treatment.Annu. Rev. Pharmacol. Toxicol. 38, 159–177.PubMedCrossRefGoogle Scholar
  149. Lipton SA, YB Choi, ZH Pan, SZ Lei, HS Chen, NJ Sucher, J Loscalzo, DJ Singel and JS Stamler (1993) A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds.Nature 364, 626–632.PubMedCrossRefGoogle Scholar
  150. Look MP, M Altfeld, KA Kreuzer, R Riezler, SP Stabler, RH Allen, T Sauerbruch and JK Rockstroh (2000) Parallel decrease in neurotoxin quinolinic acid and soluble tumor necrosis factor receptor p75 in serum during highly active antiretroviral therapy of HIV type 1 disease.AIDS Res. Hum. Retroviruses 16, 1215–1221.PubMedCrossRefGoogle Scholar
  151. Magnuson DSK, BE Knudsen, JD Geiger, RM Brownstone and A Nath (1995) Human immunodeficiency virus type 1 tat activates non-N-methyl-D-aspartate receptors and causes neurotoxicity.Ann. Neurol. 37, 373–380.PubMedCrossRefGoogle Scholar
  152. Mankowski JL, SE Queen, PM Tarwater, KJ Fox and VH Perry (2002) Accumulation of beta-amyloid precursor protein in axons correlates with CNS expression of SIV gp41.J. Neuropathol. Exp. Neurol. 61, 85–90.PubMedGoogle Scholar
  153. Martin D and D Lodge (1987) Biphasic effect of quinolinate on frog spinal, but not rat cortical, neurones: N-methyl-D-aspartate-like depolarisation and a novel type of hyperpolarisation.Neurosci. Lett. 75, 175–180.PubMedCrossRefGoogle Scholar
  154. Martin A, MP Heyes, AM Salazar, DL Kampen, J Williams, WA Law, ME Coats and SP Markey (1992) Progressive slowing of reaction time and increasing cerebrospinal fluid concentrations of quinolinic acid in HIV-infected individuals.J. Neuropsychiatry Clin. Neurosci. 4, 270–279.PubMedGoogle Scholar
  155. Masliah E, CL Achim, N Ge, R DeTeresa, RD Terry and CA Wiley (1992) Spectrum of human immunodeficiency virus-associated neocortical damage.Ann. Neurol. 32, 321–329.PubMedCrossRefGoogle Scholar
  156. Masliah E, RK Heaton, TD Marcotte, RJ Ellis, CA Wiley, M Mallory, CL Achim, JA McCutchan, JA Nelson, JH Atkinsonet al. (1997) Dendritic injury is a pathological substrate for human immunodeficiency virus-related cognitive disorders.Ann. Neurol. 42, 963–972.PubMedCrossRefGoogle Scholar
  157. Matsuyama T, N Kobayashi and N Yamamoto (1991) Cytokines and HIV infection: is AIDS a tumor necrosis factor disease?AIDS 5, 1405–1417.PubMedCrossRefGoogle Scholar
  158. Matyja E and E Kida (1991) Protective effect of nimodipine against quinolinic acid-induced damage of rat hippocampusin vitro. Neuropatho. Pol. 29, 69–77.Google Scholar
  159. McArthur JC, N Sacktor and O Selnes (1999) Human immunodeficiency virus-associated dementia.Semin. Neurol. 19, 129–150.PubMedCrossRefGoogle Scholar
  160. McGeer PL and EG McGeer (2002) Inflammatory processes in amyotrophic lateral sclerosis.Muscle Nerve 26, 459–470.PubMedCrossRefGoogle Scholar
  161. McManus CM, JS Liu, MT Hahn, LL Hua, CF Brosnan, JW Berman and SC Lee (2000) Differential induction of chemokines in human microglia by type I and II interferons.Glia 29, 273–280.PubMedCrossRefGoogle Scholar
  162. Meehan RA and JA Brush (2001) An overview of AIDS dementia complex.Am. J. Alzheimers Dis. Other Dement. 16, 225–229.CrossRefGoogle Scholar
  163. Melillo G, MC Bosco, T Musso and L Varesio (1996) Immunobiology of picolinic acid.Adv. Exp. Med. Biol. 398, 135–141.PubMedGoogle Scholar
  164. Mellor AL, J Sivakumar, P Chandler, K Smith, H Molina, D Mao and DH Munn (2001) Prevention of T cell-driven complement activation and inflammation by tryptophan catabolism during pregnancy.Nat. Immunol. 2, 64–68.PubMedCrossRefGoogle Scholar
  165. Mellor AL, B Baban, P Chandler, B Marshall, K Jhaver, A Hansen, PA Koni, M Iwashima and DH Munn (2003) Cutting edge: induced indoleamine 2,3 dioxygenase expression in dendritic cell subsets suppresses T cell clonal expansion.J. Immunol. 171, 1652–1655.PubMedGoogle Scholar
  166. Meucci O, A Fatatis, AA Simen and RJ Miller (2000) Expression of CX3CR1 chemokine receptors on neurons and their role in neuronal survival.Proc. Natl. Acad. Sci. USA 97, 8075–8080.PubMedCrossRefGoogle Scholar
  167. Miller RJ and O Meucci (1999) AIDS and the brain: is there a chemokine connection?Trends Neurosci. 22, 471–479.PubMedCrossRefGoogle Scholar
  168. Minagar A, P Shapshak, R Fujimura, R Ownby, M Heyes and C Eisdorfer (2002) The role of macrophage/microglia and astrocytes in the pathogenesis of three neurologic disorders: HIV-asso-ciated dementia, Alzheimer disease, and multiple sclerosis.J. Neurol. Sci. 202, 13.PubMedCrossRefGoogle Scholar
  169. Misztal M, T Frankiewicz, CG Parsons and W Danysz (1996a) Learning deficits induced by chronic intraventricular infusion of quinolinic acid—protection by MK-801 and memantine.Eur. J. Pharmacol. 296, 1–8.PubMedCrossRefGoogle Scholar
  170. Misztal M, J Skangiel-Kramska, G Niewiadomska and W Danysz (1996b) Subchronic intraventricular infusion of quinolinic acid produces working memory impairment — a model of progressive excitotoxicity.Neuropharmacology 35, 449–458.PubMedCrossRefGoogle Scholar
  171. Mizuno S (1998) [Quinolinic acid depolarizes the spinal motoneurons of newborn rats by activating NMDA receptors].Nippon Ika Daigaku. Zasshi. 65, 161–166.PubMedGoogle Scholar
  172. Moffett JR, T Els, MG Espey, SA Walter, WJ Streit and MA Namboodiri (1997) Quinolinate immunoreactivity in experimental rat brain tumors is present in macrophages but not in astrocytes.Exp. Neurol. 144, 287–301.PubMedCrossRefGoogle Scholar
  173. Moffett JR and MA Namboodiri (2003) Tryptophan and the immune response.Immunol. Cell Biol. 81, 247–265.PubMedCrossRefGoogle Scholar
  174. Monaghan DT and JA Beaton (1991) Quinolinate differentiates between forebrain and cerebellar NMDA receptors.Eur. J. Pharmacol. 194, 123–125.PubMedCrossRefGoogle Scholar
  175. Monaghan DT, RJ Bridges and CW Cotman (1989) The excitatory amino acid receptors: their classes, pharmacology and distinct properties in the function of the central nervous system.Annu. Rev. Pharmacol. Toxicol. 29, 365–402.PubMedCrossRefGoogle Scholar
  176. Monyer H, R Sprengel, R Schoepfer, A Herb, M Higuchi, H Lomeli, N Burnashev, B Sakmann and PH Seeburg (1992) Heteromeric NMDA receptors: molecular and functional distinction of subtypes.Science 256, 1217–1221.PubMedCrossRefGoogle Scholar
  177. Morari M, S Sbrenna, M Marti, F Caliari, C Bianchi and L Beani (1998) NMDA and non-NMDA ionotropic glutamate receptors modulate striatal acetylcholine release via pre- and postsynaptic mechanisms.J. Neurochem. 71, 2006–2017.PubMedGoogle Scholar
  178. Moroni F (1999) Tryptophan metabolism and brain function: focus on kynurenine and other indole metabolites [In Process Citation].Eur. J. Pharmacol. 375, 87–100.PubMedCrossRefGoogle Scholar
  179. Moroni F, A Cozzi, F Peruginelli, R Carpenedo and DE Pellegrini-Giampietro (1999) Neuroprotective effects of kynurenine-3-hydroxylase inhibitors in models of brain ischemia.Adv. Exp. Med. Biol. 467, 199–206.PubMedGoogle Scholar
  180. Munn DH, M Zhou, JT Attwood, I Bondarev, SJ Conway, B Marshall, C Brown and A Mellor (1998) Prevention of allogeneic fetal rejection by tryptophan catabolism.Science 281, 1191–1193.PubMedCrossRefGoogle Scholar
  181. Musso T, GL Gusella, A Brooks, DL Longo and L Varesio (1994) Interleukin-4 inhibits indoleamine 2,3-dioxygenase expression in human monocytes.Blood 83, 1408–1411.PubMedGoogle Scholar
  182. Nakao N, EM Grasbon-Frodl, H Widner and P Brundin (1996) Antioxidant treatment protects striatal neurons against excitotoxic insults.Neuroscience 73, 185–200.PubMedCrossRefGoogle Scholar
  183. Navia BA, ES Cho, CK Petito and RW Price (1986) The AIDS dementia complex: II.Neuropathology Ann. Neurol. 19, 525–535.Google Scholar
  184. Neurauter G, B Wirleitner, A Laich, H Schennach, G Weiss and D Fuchs (2003a) Atorvastatin suppresses interferon-gamma-induced neopterin formation and tryptophan degradation in human peripheral blood mononuclear cells and in monocytic cell lines.Clin. Exp. Immunol. 131, 264–267.PubMedCrossRefGoogle Scholar
  185. Neurauter G, R Zangerle, B Widner, G Quirchmair, M Sarcletti and D Fuchs (2003b) Effective antiretroviral therapy reduces degradation of tryptophan in patients with HIV-1 infection.Adv. Exp. Med. Biol. 527, 317–323.PubMedGoogle Scholar
  186. Nottet HS, EM Flanagan, CR Flanagan, HA Gelbard, HE Gendelman and JF Reinhard Jr (1996) The regulation of quinolinic acid in human immunodeficiency virus-infected monocytes.J. Neurovirol. 2, 111–117.PubMedCrossRefGoogle Scholar
  187. Nunnari G, L Nigro, F Palermo, D Leto, RJ Pomerantz and B Cacopardo (2003) Reduction of serum melatonin levels in HIV-1-infected individuals’ parallel disease progression: correlation with serum i.e.-12 levels.Infection 31, 379–382.PubMedGoogle Scholar
  188. Oh JW, LM Schwiebert and EN Benveniste (1999) Cytokine regulation of CC and CXC chemokine expression by human astrocytes.J. Neurovirol. 5, 82–94.PubMedCrossRefGoogle Scholar
  189. Okuno E and R Schwarcz (1985) Purification of quinolinic acid phosphoribosyltransferase from rat liver and brain.Biochim. Biophys.Acta 841, 112–119.PubMedGoogle Scholar
  190. Orlando LR, SA Alsdorf, JB Penney Jr and AB Young (2001) The role of group I and group II metabotropic glutamate receptors in modulation of striatal NMDA and quinolinic acid toxicity.Exp. Neurol. 167, 196–204.PubMedCrossRefGoogle Scholar
  191. Owe-Young R, GJ Guillemin, M Mukhtar, RJ Pomerantz, M Stins, KS Kim, PJ Armati and BJ Brew (2003) Kynurenine pathway metabolism in human blood-brain barrier endothelial cells. June 15-19, 2003; Amarillo, TX, USA. Vth Intl. Conf. Cerebral Vascular Biology.Google Scholar
  192. Park JS, MC Bateman and MP Goldberg (1996) Rapid alterations in dendrite morphology during sublethal hypoxia or glutamate receptor activation.Neurobiol. Dis. 3, 215–227.PubMedCrossRefGoogle Scholar
  193. Patel CA, M Mukhtar and RJ Pomerantz (2000) Human immunodeficiency virus type 1 Vpr induces apoptosis in human neuronal cells.J. Virol. 74, 9717–9726.PubMedCrossRefGoogle Scholar
  194. Patel YC, JL Lui, A Warszynska, G Kent, DN Papachristou and SC Patel (1995) Differential stimulation of somatostatin but not neuropeptide Y gene expression in cultured cortical neurons.J. Neurochem. 65, 998–1006.PubMedCrossRefGoogle Scholar
  195. Pemberton LA, S J Kerr and B J Brew (1997a) HIV-1 gp 120 does not induce quinolinic acid production by macrophages.J. Neurovirol. 3, 86–87.PubMedCrossRefGoogle Scholar
  196. Pemberton LA, SJ Kerr, G Smythe and BJ Brew (1997b) Quinolinic acid production by macrophages stimulated with IFN-gamma, TNF-alpha, and IFN-alpha.J. Interferon. Cytokine Res. 17, 589–595.PubMedCrossRefGoogle Scholar
  197. Perkins MN and TW Stone (1983) Pharmacology and regional variations of quinolinic acid-evoked excitations in the rat central nervous system.J. Pharmacol. Exp. Ther. 226, 551–557.PubMedGoogle Scholar
  198. Peters S and DW Choi (1987) Quinolinate is a weak excitant of cortical neurons in cell culture.Brain Res. 420, 1–10.PubMedCrossRefGoogle Scholar
  199. Peterson PK, S Hu, J Salak-Johnson, YW Molitor and CC Chao (1997) Differential production of and migratory response to beta chemokines by human microglia and astrocytes.J. Infect. Dis. 175, 478–481.PubMedGoogle Scholar
  200. Pittaluga A, R Pattarini, M Feligioni and M Raiteri (2001) N-methyl-D-aspartate receptors mediating hippocampal noradrena-line and striatal dopamine release display differential sensitivity to quinolinic acid, the HIV-1 envelope protein gp120, external pH and protein kinase C inhibition.J. Neurochem. 76, 139–148.PubMedCrossRefGoogle Scholar
  201. Platenik J, Stopka P, Vejrazka M, Stipek S (2001) Quinolinic acidiron(ii) complexes: slow autoxidation, but enhanced hydroxyl radical production in the fenton reaction.Free Radic. Res. 34, 445–59.PubMedCrossRefGoogle Scholar
  202. Popovich PG, JF Reinhard Jr, EM Flanagan and BT Stokes (1994) Elevation of the neurotoxin quinolinic acid occurs following spinal cord trauma.Brain Res. 633, 348–352.PubMedCrossRefGoogle Scholar
  203. Portegies P, RH Enting, J de Gans, PR Algra, MM Derix, JM Lange and J Goudsmit (1993) Presentation and course of AIDS dementia complex: 10 years of follow-up in Amsterdam, The Netherlands.AIDS 7, 669–675.PubMedCrossRefGoogle Scholar
  204. Portera-Cailliau C, DL Price and LJ Martin (1997) Non-NMDA and NMDA receptor-mediated excitotoxic neuronal deaths in adult brain are morphologically distinct: further evidence for an apoptosis-necrosis continuum.J. Comp. Neurol. 378, 88–104.PubMedCrossRefGoogle Scholar
  205. Power C and RT Johnson (1995) HIV-1 associated dementia: clinical features and pathogenesis. Can.J. Neurol. Sci. 22, 92–100.Google Scholar
  206. Price RW, JJ Sidtis and BJ Brew (1991) AIDS dementia complex and HIV-1 infection: a view from the clinic.Brain Pathol. 1, 155–162.PubMedCrossRefGoogle Scholar
  207. Priestley T, P Laughton, J Myers, B Le Bourdelles, J Kerby and PJ Whiting (1995) Pharmacological properties of recombinant human N-methyl-D-aspartate receptors comprising NR1a/NR2A and NR1a/NR2B subunit assemblies expressed in permanently transfected mouse fibroblast cells.Mol. Pharmacol. 48, 841–848.PubMedGoogle Scholar
  208. Pulliam L, BG Herndier, NM Tang and S McGrath (1991) Human immunodeficiency virus-infected macrophages produce soluble factors that cause histological and neurochemical alterations in cultured human brains.J. Clin. Invest. 87, 503–512.PubMedCrossRefGoogle Scholar
  209. Pulliam L, I Irwin, L Kusdra, H Rempel, WD Flitter and WA Garland (2001) CPI-1189 attenuates effects of suspected neurotoxins associated with AIDS dementia: a possible role for ERK activation.Brain Res. 893, 95–103.PubMedCrossRefGoogle Scholar
  210. Rausch DM, MP Heyes, EA Murray and LE Eiden (1995) Zidovudine treatment prolongs survival and decreases virus load in the central nervous system of rhesus macaques infected perinatally with simian immunodeficiency virus.J. Infect. Dis. 172, 59–69.PubMedGoogle Scholar
  211. Rezaie P, G Trillo-Pazos, IP Everall and DK Male (2002) Expression of beta-chemokines and chemokine receptors in human fetal astrocyte and microglial co-cultures: potential role of chemokines in the developing CNS.Glia 37, 64–75.PubMedCrossRefGoogle Scholar
  212. Rigby M, B Le Bourdelles, RP Heavens, S Kelly, D Smith, A Butler, R Hammans, R Hills, JH Xuereb, RG Hillet al. (1996) The messenger RNAs for the N-methyl-D-aspartate receptor subunits show region-specific expression of different subunit composition in the human brain.Neuroscience 73, 429–447.PubMedCrossRefGoogle Scholar
  213. Rios C and A Santamaria (1991) Quinolinic acid is a potent lipid peroxidant in rat brain homogenates.Neurochem. Res. 16, 1139–1143.PubMedCrossRefGoogle Scholar
  214. Rottenberg DA, JJ Sidtis, SC Strother, KA Schaper, JR Anderson, MJ Nelson and RW Price (1996) Abnormal cerebral glucose metabolism in HIV-1 seropositive subjects with and without dementia.J. Nucl. Med. 37, 1133–1141.PubMedGoogle Scholar
  215. Sabri F, K Titanji, A De Milito and F Chiodi (2003) Astrocyte activation and apoptosis: their roles in the neuropathology of HIV infection.Brain Pathol. 13, 84–94.PubMedGoogle Scholar
  216. Saito K, JS Crowley, SP Markey and MP Heyes (1993a) A mechanism for increased quinolinic acid formation following acute systemic immune stimulation.J. Biol. Chem. 268, 15496–15503.PubMedGoogle Scholar
  217. Saito K, TS Nowak, SP Markey and MP Heyes (1993b) Mechanism of delayed increases in kynurenine pathway metabolism in damaged brain regions following transient cerebral ischemia.J. Neurochem. 60, 180–192.PubMedCrossRefGoogle Scholar
  218. Sanders VJ, CA Pittman, MG White, G Wang, CA Wiley and CL Achim (1998) Chemokines and receptors in HIV encephalitis.AIDS 12, 1021–1026.PubMedCrossRefGoogle Scholar
  219. Santamaria A and C Rios (1993) MK-801, an N-methyl-D-aspartate receptor antagonist, blocks quinolinic acid-induced lipid peroxidation in rat corpus striatum.Neurosci. Lett. 159, 51–54.PubMedCrossRefGoogle Scholar
  220. Santamaria A, S Galvan-Arzate, V Lisy, SF Ali, HM Duhart, L Osorio-Rico, C Rios and F St’astny (2001a) Quinolinic acid induces oxidative stress in rat brain synaptosomes.Neuroreport 12, 871–874.PubMedCrossRefGoogle Scholar
  221. Santamaria A, ME Jimenez-Capdeville, A Camacho, E Rodriguez-Martinez, A Flores and S Galvan-Arzate (2001b)In vivo hydroxyl radical formation after quinolinic acid infusion into rat corpus striatum.Neuroreport 12, 2693–2696.PubMedCrossRefGoogle Scholar
  222. Santamaria A, A Flores-Escartin, JC Martinez, L Osorio, S Galvan-Arzate, JP Chaverri, PD Maldonado, ON Medina-Campos, ME Jimenez-Capdeville, J Manjarrezet al. (2003a) Copper blocks quinolinic acid neurotoxicity in rats: contribution of antioxidant systems.Free Radic. Biol. Med. 35, 418–427.PubMedCrossRefGoogle Scholar
  223. Santamaria A, R Salvatierra-Sanchez, B Vazquez-Roman, D Santiago-Lopez, J Villeda-Hernandez, S Galvan-Arzate, ME Jimenez-Capdeville and SF Ali (2003b) Protective effects of the antioxidant seleium on quinolinic acid-induced neurotoxicity in rats:in vitro andin vivo studies.J. Neurochem. 86, 479–488.PubMedCrossRefGoogle Scholar
  224. Sardar AM, C Czudek and GP Reynolds (1996) Dopamine deficits in the brain: the neurochemical basis of parkinsonian symptoms in AIDS.Neuroreport 7, 910–912.PubMedCrossRefGoogle Scholar
  225. Schmidt W, G Wolf, J Calka and HH Schmidt (1995) Evidence for bidirectional changes in nitric oxide synthase activity in the rat striatum after excitotoxically (quinolinic acid) induced degeneration.Neuroscience 67, 345–356.PubMedCrossRefGoogle Scholar
  226. Schuitemaker H (1994) IL4 and IL 10 as potent inhibitors of HIV 1 replication in macrophagesin vitro: a role for cytokines in thein vivo virus host range?Res. Immunol. 145, 588–592; discussion 592–594.PubMedCrossRefGoogle Scholar
  227. Schurr A and BM Rigor (1993) Quinolinate potentiates the neurotoxicity of excitatory amino acids in hypoxic neuronal tissuein vitro. Brain Res. 617, 76–80.CrossRefGoogle Scholar
  228. Schwarcz R and C Kohler (1983) Differential vulnerability of central neurons of the rat to quinolinic acid.Neurosci. Lett. 38, 85–90.PubMedCrossRefGoogle Scholar
  229. Schwarcz R, WO Whetsell Jr and RM Mangano (1983) Quinolinic acid: an endogenous metabolite that produces axon-sparing lesions in rat brain.Science 219, 316–318.PubMedCrossRefGoogle Scholar
  230. Sei S, K Saito, SK Stewart, JS Crowley, P Brouwers, DE Kleiner, DA Katz, PA Pizzo and MP Heyes (1995) Increased human immunodeficiency virus (HIV) type 1 DNA content and quinolinic acid concentration in brain tissues from patients with HIV encephalopathy.J. Infect. Dis. 172, 638–647.PubMedGoogle Scholar
  231. Sei S, SK Stewart, M Farley, BU Mueller, JR Lane, ML Robb, P Brouwers and PA Pizzo (1996) Evaluation of human immunodeficiency virus (HIV) type 1 RNA levels in cerebrospinal fluid and viral resistance to zidovudine in children with HIV encephalopathy.J. Infect. Dis. 174, 1200–1206.PubMedGoogle Scholar
  232. Shapshak P, NC Sun, L Resnick, JT Thornthwaite, P Schiller, M Yoshioka, A Svenningsson, WW Tourtellotte and DT Imagawa (1991) HIV-1 propagates in human neuroblastoma cells.J. Acquir. Immune Defic. Syndr. 4, 228–237.PubMedGoogle Scholar
  233. Shaskan EG, B J Brew, M Rosenblum, RM Thompson and RW Price (1992) Increased neopterin levels in brains of patients with human immunodeficiency virus type 1 infection.J. Neurochem. 59, 1541–1546.PubMedCrossRefGoogle Scholar
  234. Sheng WS, S Hu, CC Hegg, SA Thayer and PK Peterson (2000) Activation of human microglial cells by HIV-1 gp41 and Tat proteins.Clin. Immunol. 96, 243–251.PubMedCrossRefGoogle Scholar
  235. Sidtis JJ, C Gatsonis, RW Price, EJ Singer, AC Collier, DD Richman, MS Hirsch, FW Schaerf, MA Fischl, K Kieburtzet al. (1993) Zidovudine treatment of the AIDS dementia complex: results of a placebo-controlled trial. AIDS Clinical Trials Group.Ann. Neurol. 33, 343–349.PubMedCrossRefGoogle Scholar
  236. Smith DG, GJ Guillemin, L Pemberton, S Kerr, A Nath, GA Smythe and BJ Brew (2001) Quinolinic acid is produced by macrophages stimulated by platelet activating factor, Nef and Tat.J. Neurovirol. 7, 56–60.PubMedCrossRefGoogle Scholar
  237. Smith MO, MP Heyes and AA Lackner (1995) Early intrathecal events in rhesus macaques (Macaca mulatta) infected with pathogenic or nonpathogenic molecular clones of simian immunodeficiency virus.Lab. Invest. 72, 547–558.PubMedGoogle Scholar
  238. Speth C, B Joebstl, M Barcova and MP Dierich (2000) HIV-1 envelope protein gp41 modulates expression of i.e.-10 and chemokine receptors on monocytes, astrocytes and neurones.AIDS 14, 629–636.PubMedCrossRefGoogle Scholar
  239. Spreux-Varoquaux O, G Bensimon, L Lacomblez, F Salachas, PF Pradat, N Le Forestier, A Marouan, M Dib and V Meininger (2002) Glutamate levels in cerebrospinal fluid in amyotrophic lateral sclerosis: a reappraisal using a new HPLC method with coulometric detection in a large cohort of patients.J. Neurol. Sci. 193, 73–78.PubMedCrossRefGoogle Scholar
  240. Stipek S, F Stastny, J Platenik, J Crkovska and T Zima (1997) The effect of quinolinate on rat brain lipid peroxidation is dependent on iron.Neurochem. Int. 30, 233–237.PubMedCrossRefGoogle Scholar
  241. Stone TW (1993a) Neuropharmacology of quinolinic and kynurenic acids.Pharmacol. Rev. 45, 309–379.PubMedGoogle Scholar
  242. Stone TW (1993b) Subtypes of NMDA receptors.Gen. Pharmacol. 24, 825–832.PubMedGoogle Scholar
  243. Stone TW (2001) Endogenous neurotoxins from tryptophan.Toxicon. 39, 61–73.PubMedCrossRefGoogle Scholar
  244. Stone TW and JI Addae (2002) The pharmacological manipulation of glutamate receptors and neuroprotection.Eur. J. Pharmacol. 447, 285–296.PubMedCrossRefGoogle Scholar
  245. Stone TW and NR Burton (1988) NMDA receptors and ligands in the vertebrate CNS.Prog. Neurobiol. 30, 333–368.PubMedCrossRefGoogle Scholar
  246. Stone TW and LG Darlington (2002) Endogenous kynurenines as targets for drug discovery and development.Nat. Rev. Drug Discov. 1, 609–620.PubMedCrossRefGoogle Scholar
  247. Stone TW and MN Perkins (1981) Quinolinic acid: a potent endogenous excitant at amino acid receptors in CNS.Eur. J. Pharmacol. 72, 411–412.PubMedCrossRefGoogle Scholar
  248. Sweetman PM, OH Saab, JT Wroblewski, CH Price, EW Karbon and JW Ferkany (1993) The envelope glycoprotein of HIV-1 alters NMDA receptor function.Eur. J. Neurosci. 5, 276–283.CrossRefGoogle Scholar
  249. Takahashi K, SL Wesselingh, DE Griffin, JC Mcarthur, RT Johnson and JD Glass (1996) Localization of HIV-1 in human brain using polymerase chain reactionin situ hybridization and immunocytochemistry.Ann. Neurol. 39, 705–711.PubMedCrossRefGoogle Scholar
  250. Takikawa O, R Yoshida, R Kido and O Hayaishi (1986) Tryptophan degredation in mice initiated by indoleamine 2,3-dioxygenase.J. Biol. Chem. 261, 3648–3653.PubMedGoogle Scholar
  251. Tavares RG, CI TascaI, CE Santos, M Wajner, DO Souza and CS Dutra-Filho (2000) Quinolinic acid inhibits glutamate uptake into synaptic vesicles from rat brain.Neuroreport 11, 249–253.PubMedCrossRefGoogle Scholar
  252. Tavares RG, CI Tasca, CE Santos, LB Alves, LO Porciuncula, T Emanuelli and DO Souza (2002) Quinolinic acid stimulates synaptosomal glutamate release and inhibits glutamate uptake into astrocytes.Neurochem. Int. 40, 621–627.PubMedCrossRefGoogle Scholar
  253. Thomas SR, D Mohr and R Stocker (1994) Nitric oxide inhibits indoleamine 2,3-dioxygenase activity in interferon-γ primed mononuclear phagocytes.J. Biol. Chem. 269, 14457–14464.PubMedGoogle Scholar
  254. Thompson KA, JC McArthur and SL Wesselingh (2001) Correlation between neurological progression and astrocyte apoptosis in HIV-associated dementia.Ann. Neurol. 49, 745–752.PubMedCrossRefGoogle Scholar
  255. Turchan J, CB Pocernich, C Gairola, A Chauhan, G Schifitto, DA Butterfield, S Buch, O Narayan, A Sinai, J Geigeret al. (2003) Oxidative stress in HIV demented patients and protectionex vivo with novel antioxidants.Neurology 60, 307–314.PubMedGoogle Scholar
  256. Tyor WR, JD Glass, JW Griffin, PS Becker, JC McArthur, L Bezman and DE Griffin (1992) Cytokine expression in the brain during the acquired immunodeficiency syndrome.Ann. Neurol. 31, 349–360.PubMedCrossRefGoogle Scholar
  257. Urushitani M, T Nakamizo, R Inoue, H Sawada, T Kihara, K Honda, A Akaike and S Shimohama (2001) N-methyl-D-aspartate receptor-mediated mitochondrial Ca(2+) overload in acute excitotoxic motor neuron death: a mechanism distinct from chronic neurotoxicity after Ca(2+) influx.J. Neurosci. Res. 63, 377–387.PubMedCrossRefGoogle Scholar
  258. Uyttenhove C, L Pilotte, I Theate, V Stroobant, D Colau, N Parmentier, T Boon and BJ Van Den Eynde (2003) Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase.Nat. Med. 9, 1269–1274.PubMedCrossRefGoogle Scholar
  259. Valle M, RW Price, A Nilsson, M Heyes and D Verotta (2004) CSF quinolinic acid levels are determined by local HIV infection: cross-sectional analysis and modelling of dynamics following antiretroviral therapy.Brain 127, 1047–1060.PubMedCrossRefGoogle Scholar
  260. van der Meer P, AM Ulrich, F Gonzalez-Scarano and E Lavi (2000) Immunohistochemical analysis of CCR2, CCR3, CCR5, and CXCR4 in the human brain: potential mechanisms for HIV dementia.Exp. Mol. Pathol. 69, 192–201.PubMedCrossRefGoogle Scholar
  261. Vogelgesang SA, MP Heyes, SG West, AM Salazar, PP Sfikakis, RN Lipnick, GL Klipple and GC Tsokos (1996) Quinolinic acid in patients with systemic lupus erythematosus and neuropsychiatric manifestations.J. Rheumatol. 23, 850–855.PubMedGoogle Scholar
  262. Weed MR, RD Hienz, JV Brady, RJ Adams, JL Mankowski, JE Clements and MC Zink (2003) Central nervous system correlates of behavioral deficits following simian immunodeficiency virus infection.J. Neurovirol. 9, 452–464.PubMedCrossRefGoogle Scholar
  263. Wesselingh SL and KA Thompson (2001) Immunopathogenesis of HIV-associated dementia.Curr. Opin. Neurol. 14, 375–379.PubMedCrossRefGoogle Scholar
  264. Wesselingh SL, C Power, JD Glass, WR Tyor, JC McArthur, JM Farber, JW Griffin and DE Griffin (1993) Intracerebral cytokine messenger RNA expression in acquired immunodeficiency syndrome dementia.Ann. Neurol. 33, 576–582.PubMedCrossRefGoogle Scholar
  265. Wesselingh SL, J Glass, JC McArthur, JW Griffin and DE Griffin (1994) Cytokine dysregulation in HIV-associated neurological disease.Adv. Neuroimmunol. 4, 199–206.PubMedCrossRefGoogle Scholar
  266. Whetsell WO Jr and R Schwarcz (1983) The organotypic tissue culture model of corticostriatal system used for examining amino acid neurotoxicity and its antagonism: studies on kainic acid, quinolinic acid and (-) 2-amino-7-phosphonoheptanoic acid.J. Neural Transm. Suppl.19, 53–63.PubMedGoogle Scholar
  267. Whetsell WO Jr and R Schwarcz (1989) Prolonged exposure to submicromolar concentrations of quinolinic acid causes excitotoxic damage in organotypic cultures of rat corticostriatal system.Neurosci. Lett. 97, 271–275.PubMedCrossRefGoogle Scholar
  268. Wiley CA, RD Schrier, JA Nelson, PW Lampert and MBA Oldstone (1986) Cellular localization of human immunodeficiency virus infection within the brains of acquired immune deficiency syndrome patients.Proc. Natl. Acad. Sci. USA 83, 7089–7093.PubMedCrossRefGoogle Scholar
  269. Wiley CA, E Masliah, M Morey, C Lemere, R DeTeresa, M Grafe, L Hansen and R Terry (1991) Neocortical damage during HIV infection.Ann. Neurol. 29, 651–657.PubMedCrossRefGoogle Scholar
  270. Williams KC and WF Hickey (2002) Central nervous system damage, monocytes and macrophages, and neurological disorders in AIDS.Annu. Rev. Neurosci. 25, 537–562.PubMedCrossRefGoogle Scholar
  271. Wirsching BA, RJ Beninger, K Jhamandas, RJ Boegman and M Bialik (1989) Kynurenic acid protects against the neurochemical and behavioural effects of unilateral quinolinic acid injections into the nucleus basalis of rats.Behav. Neurosci. 103, 90–97.PubMedCrossRefGoogle Scholar
  272. Wojtowicz WM, M Farzan, JL Joyal, K Carter, GJ Babcock, DI Israel, J Sodroski and T Mirzabekov (2002) Stimulation of enveloped virus infection by beta-amyloid fibrils.J. Biol. Chem. 277, 35019–35024.PubMedCrossRefGoogle Scholar
  273. Xiong H, L McCabe, D Skifter, DT Monaghan and HE Gendelman (2003) Activation ofNR1a/NR2B receptors by monocyte-derived macrophage secretory products: implications for human immunodeficiency virus type one-associated dementia.Neurosci. Lett. 341, 246–250.PubMedCrossRefGoogle Scholar
  274. Xu Y, J Kulkosky, E Acheampong, G Nunnari, J Sullivan and RJ Pomerantz (2004) HIV-1-mediated apoptosis of neuronal cells: Proximal molecular mechanisms of HIV-1-induced encephalopathy.Proc. Natl. Acad. Sci. USA 101, 7070–7075.PubMedCrossRefGoogle Scholar
  275. Zhang H, C Andrekopoulos, J Joseph, K Chandran, H Karoui, JP Crow and B Kalyanaraman (2003) Bicarbonate-dependent peroxidase activity of human Cu,Zn-superoxide dismutase induces covalent aggregation of protein: intermediacy of tryptophanderived oxidation products.J. Biol. Chem. 278, 24078–24089.PubMedCrossRefGoogle Scholar
  276. Zhang L, T He, Y Huang, Z Chen, Y Guo, S Wu, KJ Kunstman, RC Brown, JP Phair, AU Neumannet al. (1998) Chemokine coreceptor usage by diverse primary isolates of human immunodeficiency virus type 1.J. Virol. 72, 9307–9312.PubMedGoogle Scholar
  277. Zink MC, JL Mankowski, K Fox and P Tarwater (2000) MCP-1 expression in CSF predicts the development of SIV encephalitis.J. Neurovirol. 6, 440.Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Gilles J. Guillemin
    • 1
    • 2
  • Stephen J. Kerr
    • 1
    • 4
    • 5
  • Bruce J. Brew
    • 1
    • 3
  1. 1.Centre for ImmunologySt Vincent’s HospitalSydneyAustralia
  2. 2.School of MedicineUniversity of New South WalesAustralia
  3. 3.Departments of Neurology and HIV MedicineSt Vincent’s HospitalSydneyAustralia
  4. 4.National Centre in HIV Epidemiology and Clinical ResearchSydneyAustralia
  5. 5.The HIV-Netherlands-Australia-Thailand Research CollaborationBangkokThailand

Personalised recommendations