Advertisement

Neurotoxicity Research

, Volume 7, Issue 1–2, pp 69–76 | Cite as

Insoluble α-synuclein in alzheimer’s disease without lewy body formation

  • Melissa Broe
  • Claire E. Shepherd
  • David M. A. Mann
  • Elizabeth A. Milward
  • Wei -Ping Gai
  • Emma Thiel
  • Glenda M. HallidayEmail author
Article

Abstract

Insoluble α-synuclein plays a central role in Lewy body diseases, with considerable controversy as to whether it plays a similar role in Alzheimer’s disease (AD). We assessed the tissue location and solubility of cortical α-synuclein in AD (without Lewy body formation) compared with controls, using sequential extraction procedures and Western immunoblotting to quantify different α-synuclein species in their different solubility states. Controls had no insoluble cortical α-synuclein and a ratio of soluble :lipid-associated α-synuclein of 1.2 ± 0.1. Total α-synuclein protein was significantly increased in AD and concentrated within the lipidassociated fraction (soluble :lipid ratio 0.9 ± 0.05, soluble:insoluble 1.5 ± 0.1, lipid:insoluble 1.7 ± 0.1) which proved difficult to localize in paraffinembedded tissue. Tissues prepared without lipid extraction revealed α-synuclein-immunoreactivity in the amorphous components of mature cored AD plaques. This lipid-association of α-synuclein in mature AD plaques links this protein with other lipid changes thought to be important in disease pathogenesis.

Keywords

Alzheimer’s disease Senile plaques α-Synuclein Protein solubility 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arai Y, M Yamazaki, O Mori, H Muramatsu, G Asano and Y Katayama (2001) α-Synuclein-positive structures in cases with sporadic Alzheimer’s disease: morphology and its relationship to tau aggregation.Brain Res. 888, 287–296.PubMedCrossRefGoogle Scholar
  2. Arima K, T Mizutani, MA Alim, H Tonozuka-Uehara, Y Izumiyama, S Hirai and K Ueda (2000) NACP/α-synuclein and tau constitute two distinctive subsets of filaments in the same neuronal inclusions in brains from a family of parkinsonism and dementia with Lewy bodies: double-immunolabeling fluorescence and electron microscopic studies.Acta Neuropathol. 100, 115–121.PubMedCrossRefGoogle Scholar
  3. Baba M, S Nakajo, PH Tu, T Tomita, K Nakaya, VMY Lee, JQ Trojanowski and T Iwatsubo (1998) Aggregation of α synuclein in Lewy bodies of sporadic Parkinson’s disease and dementia with Lewy bodies.Am. J. Pathol. 152, 879–884.PubMedGoogle Scholar
  4. Bajo M, BC Yoo, N Cairns, M Gratzer and G Lubec (2001) Neurofilament proteins NF-L, NF-M and NF-H in brain of patients with Down syndrome and Alzheimer’s disease.Amino Acids 21, 293–301.PubMedCrossRefGoogle Scholar
  5. Bayer TA, P Jakala, T Hartmann, L Havas, C McLean, JG Culvenor, QX Li, CL Masters, P Falkai and K Beyreuther (1999) α-Synuclein accumulates in Lewy bodies in Parkinson’s disease and dementia with Lewy bodies but not in Alzheimer’s disease β-amyloid plaque cores.Neurosci. Lett. 266, 213–216.PubMedCrossRefGoogle Scholar
  6. Campbell BCV, Q-X Li, JG Culvenor, P Jäkälä, R Cappai, K Beyreuther, CL Masters and CA McLean (2000) Accumulation of insoluble α-synuclein in dementia with Lewy bodies.Neurobiol. Dis. 7, 192–200.PubMedCrossRefGoogle Scholar
  7. Culvenor JG, CA McLean, S Cutt, BCV Campbell, F Maher, P Jäkälä, T Hartmann, K Beyreuther, CL Masters and Q-X Li (1999) Non-Aβ component of Alzheimer’s disease amyloid (NAC) revisited. NAC and α-synuclein are not associated with Aβ amyloid.Am. J. Pathol. 155, 1173–1181.PubMedGoogle Scholar
  8. Ditaranto K, TL Tekirian and A J Yang (2001) Lysosomal membrane damage in soluble Aβ-mediated cell death in Alzheimer’s disease.Neurobiol. Dis. 8, 19–31.PubMedCrossRefGoogle Scholar
  9. El-Agnaf OMA and GB Irvine (2000) Review: formation and properties of amyloid-like fibrils derived from ?-synuclein and related proteins.J. Struct. Biol. 130, 300–309.PubMedCrossRefGoogle Scholar
  10. Goedert M (2001) α-Synuclein and neurodegenerative diseases.Nat. Rev. Neurosci. 2, 492–501.PubMedCrossRefGoogle Scholar
  11. Iwai A, E Masliah, MP Sundsmo, R DeTeresa, M Mallory, DP Salmon and T Saitoh (1996) The synaptic protein NACP is abnormally expressed during the progression of Alzheimer’s disease.Brain Res. 720, 230–234.PubMedCrossRefGoogle Scholar
  12. Lee H-J, F Khoshaghideh, S Patel and S-J Lee (2004) Clearance of α-synuclein oligomeric intermediates via the lysosomal degradation pathway.J. Neurosci. 24, 1888–1896.PubMedCrossRefGoogle Scholar
  13. Lee HJ, C Choi and SJ Lee (2002) Membrane-bound α-synuclein has a high aggregation propensity and the ability to seed the aggregation of the cytosolic form.J. Biol. Chem. 277, 671–678.PubMedCrossRefGoogle Scholar
  14. Lippa CF, H Fujiwara, DMA Mann, B Gaisson, M Baba, ML Schmidt, LE Nee, B O’Connell, DA Pollen, P St George-Hyslop, B Ghetti, D Nochlin, TD Bird, NJ Cairns, VMY Lee, T Iwatsubo and JQ Trojanowski (1998) Lewy bodies contain altered α-synuclein in brains of many familial Alzheimer’s disease patients with mutations in presenilin and amyloid precursor protein genes.Am. J. Pathol. 153, 1365–1370.PubMedGoogle Scholar
  15. Marui W, E Iseki, K Ueda and K Kosaka (2000) Occurrence of human α-synuclein immunoreactive neurons with neurofibrillary tangle formation in the limbic areas of patients with Alzheimer’s disease.J. Neurol. Sci. 174, 81–84.PubMedCrossRefGoogle Scholar
  16. Masliah E, A Iwai, M Mallory, K Uéda and T Saitoh (1996) Altered presynaptic protein NACP is associated with plaque formation and neurodegeneration in Alzheimer’s disease.Am. J. Pathol. 148, 201–210.PubMedGoogle Scholar
  17. Masliah E, E Rockenstein, I Veinbergs, Y Sagara, M Mallory, M Hashimoto and L Mucke (2001) β-Amyloid peptides enhance α-synuclein accumulation and neuronal deficits in a transgenic model linking Alzheimer’s disease and Parkinson’s disease.Proc. Natl. Acad. Sci. USA 98, 12245–12250.PubMedCrossRefGoogle Scholar
  18. Michikawa M, J-S Gong, Q-W Fan, N Sawamura and K Yanagisawa (2001) A novel action of Alzheimer’s amyloid β-protein (Aβ): oligomeric Aβ promotes lipid release.J. Neurosci. 15, 7226–7235.Google Scholar
  19. Mori T, D Paris, T Town, AM Rojiani, DL Sparks, A Delledonne, F Crawford, LI Abdullah, JA Humphrey, DW Dickson and MJ Mullan (2001) Cholesterol accumulates in senile plaques of Alzheimer disease patients and in transgenic APPsw mice.J. Neuropathol. Exp. Neurol. 60, 778–785.PubMedGoogle Scholar
  20. Mukaetova-Ladinska EB, F Garcia-Siera, J Hurt, HJ Gertz, J Xuereb, R Hills, C Brayne, FA Huppert, ES Paykel, M McGee, R Jakes, WG Honer, CR Harrington and CM Wischik (2000a) Staging of cytoskeletal and β-amyloid changes in human isocortex reveals biphasic synaptic protein response during progression of Alzheimer’s disease.Am. J. Pathol. 157, 623–636.PubMedGoogle Scholar
  21. Mukaetova-Ladinska EB, J Hurt, R Jakes, J Xuereb, WG Honer and CM Wischik (2000b) α-Synuclein inclusions in Alzheimer and Lewy body diseases.J. Neuropathol. Exp. Neurol. 59, 408–417.PubMedGoogle Scholar
  22. Paik S, J-H Lee, D-H Kim, C-S Chang and Y-S Kim (1998) Selfoligomerization of NACP, the precursor protein of the non-amyloid β/A4 protein (Aβ) component of Alzheimer’s disease amyloid, observed in the presence of a C-terminal Aβ fragment (residues 25-35).FEBS Lett. 421, 73–76.PubMedCrossRefGoogle Scholar
  23. Perrin RJ, WS Woods, DF Clayton and JM George (2001) Exposure to long chain polysaturated fatty acids trigger rapid multimerization of synucleins.J. Biol. Chem. 276, 41958–41962.PubMedCrossRefGoogle Scholar
  24. Refolo LM, MA Pappolla, J LaFrancois, B Malester, SD Schmidt, T Thomas-Bryant, GS Tint, R Wang, M Mercken, SS Petanceska and KE Duff (2001) A cholesterol-lowering drug reduces β-amyloid pathology in a transgenic mouse model of Alzheimer’s disease.Neurobiol. Dis. 8, 890–899.PubMedCrossRefGoogle Scholar
  25. Rekas A, CG Adda, JA Aquilina, KJ Barnham, M Sunde, D Galatis, NA Williamson, CL Masters, RF Anders, CV Robinson, R appai and JA Carver (2004) Interaction of the molecular chaperone αB-crystallin with α-synuclein: effects on amyloid fibril formation and chaperone activity.J. Mol. Biol. 340, 1167–1183.PubMedCrossRefGoogle Scholar
  26. Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy.Physiol. Rev. 81, 741–766.PubMedGoogle Scholar
  27. Sharon R, I Bar-Josef, MP Frosch, DM Walsh, JA Hamilton and DJ Selkoe (2003) The formation of highly soluble oligomers of α-synuclein is regulated by fatty acids and enhanced in Parkinson’s disease.Neuron 37, 583–595.PubMedCrossRefGoogle Scholar
  28. Sharon R, MS Goldberg, I Bar-Josef, RA Betensky, J Shen and DJ Selkoe (2001) α-Synuclein occurs in lipid-rich high molecular weight complexes, binds fatty acids, and shows homology to fatty acid-binding proteins.Proc. Natl. Acad. Sci. USA 98, 9110–9115.PubMedCrossRefGoogle Scholar
  29. Sparks DL (1996) Intraneuronal β-amyloid immunoreactivity in the CNS.Neurobiol. Aging 17, 291–299.PubMedCrossRefGoogle Scholar
  30. Sparks DL, SW Scheff, JC Hunsaker, H Liu, T Landers and DR Gross (1994) Inducation of Alzheimer-like β-amyloid immunoreactivity in the brains of rabbits with dietary cholesterol.Exp. Neurol. 126, 88–94.PubMedCrossRefGoogle Scholar
  31. Stirling JW and PS Graff (1995) Antigen unmasking for immunoelectron microscopy: labeling is improved by treating with sodium ethoxide or sodium metaperiodate, then heating on retrieval medium.J. Histochem. Cytochem. 43, 115–123.PubMedGoogle Scholar
  32. Takeda A, M Hashimoto, M Mallory, M Sundsumo, L Hansen and E Masliah (2000) C-terminal α-synuclein immunoreactivity in structures other than Lewy bodies in neurodegenerative disorders.Acta Neuropathol. 99, 296–304.PubMedCrossRefGoogle Scholar
  33. Takeda A, M Mallory, M Sundsmo, W Honer, L Hansen and E Masliah (1998) Abnormal accumulation of NACP/α-synuclein in neurodegenerative disorders.Am. J. Pathol. 152, 367–372.PubMedGoogle Scholar
  34. Terai K, A Iwai, S Kawabata, Y Tasaki, T Watanabe, K Miyata and T Yamaguchi (2001) β-Amyloid deposits in transgenic mice expressing human β-amyloid precursor protein have the same characteristics as those in Alzheimer’s disease.Neuroscience 104, 299–310.PubMedCrossRefGoogle Scholar
  35. The National Institute on Aging and Reagan Institute Working Group on Diagnostic Criteria for the Neuropathological Assessment of Alzheimer’s Disease (1997) Consensus recommendations for the postmortem diagnosis of Alzheimer’s disease.Neurobiol. Aging 18 Suppl. 4, S1-S2.CrossRefGoogle Scholar
  36. Ueda K, H Fukushima, E Maslaih, Y Xia, A Iwai, M Yoshimoto, DAC Otero, J Kondo, Y Ihara and T Saitoh (1993) Molecular cloning of cDNA encoding an unrecognised component of amyloid in Alzheimer’s disease patients.Proc. Natl. Acad. Sci. USA 90, 11282–11286.PubMedCrossRefGoogle Scholar
  37. Uversky VN, EM Cooper, KS Bower, J Li and AL Fink (2002a) Accelerated α-synuclein fibrillation in crowded milieu.FEBS Lett. 515, 99–103.PubMedCrossRefGoogle Scholar
  38. Uversky VN, J Li, P Souillac, IS Millett, S Doniach, R Jakes, M Goedert and AL Fink (2002b) Biophysical properties of the synucleins and their propensities to fibrillate: inhibition of α-synuclein assembly by β- and γ-synucleins.J. Biol. Chem. 277, 11970–11978.PubMedCrossRefGoogle Scholar
  39. Wirths O, S Weickert, K Majtenyi, L Havas, PJ Kahle, M Okochi, C Haass, G Multhaup, K Beyreuther and TA Bayer (2000) Lewy body variant of Alzheimer’s disease: α-synuclein in dystrophic neurites of Aβ plaques.Neuroreport 11, 3737–3741.PubMedCrossRefGoogle Scholar
  40. Yang AJ, D Chandswangbhuvana, L Margol and CG Glabe (1998) Loss of endosomal/lysosomal membrane permeability is an early event in amyloid Aβ1-42 pathogenesis.J. Neurosci. Res. 52, 691–698.PubMedCrossRefGoogle Scholar
  41. Yip CM, EA Elton, AA Darabie, MR Morrison and J McLaurin (2001) Cholesterol, a modulator of membrane-associated Aβ fibrillogenesis and neurotoxicity.J. Mol. Biol. 311, 723–734.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Melissa Broe
    • 1
  • Claire E. Shepherd
    • 1
  • David M. A. Mann
    • 2
  • Elizabeth A. Milward
    • 1
  • Wei -Ping Gai
    • 3
  • Emma Thiel
    • 1
  • Glenda M. Halliday
    • 1
    Email author
  1. 1.Prince of Wales Medical Research InstituteUniversity of New South WalesSydneyAustralia
  2. 2.Clinical Neurosciences Research GroupUniversity of Manchester, Greater Manchester Neurosciences Centre, Hope HospitalSalfordUK
  3. 3.Department of Human PhysiologyFlinders University Medical SchoolBedford ParkAustralia

Personalised recommendations