Advertisement

Neurotoxicity Research

, Volume 13, Issue 3–4, pp 265–279 | Cite as

Quercetin, kaempferol and biapigenin fromhypericum perforatum are neuroprotective against excitotoxic insults

  • Bruno Silva
  • Paulo J. Oliveira
  • Alberto Dias
  • JOÃO O. MalvaEmail author
Article

Abstract

In the present study we investigated the effects of phenolic compounds present inHypericum perforatum against neuronal excitotoxicity and mitochondrial dysfunction. Quercetin, kaemp-ferol and biapigenin significantly reduced neuronal death caused by 100 μM kainate plus 100 μMN-methyl-D-aspartate. The observed neuroprotection was correlated with prevention of delayed calcium deregulation and with the maintenance of mitochondrial transmembrane electric potential. The three compounds were able to reduce mitochondrial lipid peroxidation and loss of mitochondrial transmembrane electric potential caused by oxidative stress induced by ADP plus iron. Moreover, biapigenin was also able to significantly affect mitochondrial bioenergetics and decrease the capacity of mitochondria to accumulate calcium. Taken together, the results suggest that the neuroprotective action induced by quercetin and kaempferol are mainly mediated by antioxidant effects, whereas biapigenin mainly affects mitochondrial bioenergetics and calcium uptake.

Keywords

Hypericum perforatum Excitotoxicity Neuroprotection Mitochondrial dysfunction Calcium homeostasis 

Abbreviations

BHT

butylhydroxytoluene

BSA

bovine serum albumin

CsA

cyclosporin A

FCCP

carbonyl cyanidep-(trifluoromethoxy) phenylhydrazone

KA

kainic acid

MAP-2

microtubulle associated protein

m

Mitochondrial transmembrane potential

NMDA

N-methyl-D-aspartate

PI

propidium iodide

ROS

reactive oxygen species

TPP+

tetraphenylphosphonium cation

TBARS

thiobarbituric acid-reactive species.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abreu Rm, DJ Santos and AJ Moreno (2000) Effects of carvedilol and its analog BM-910228 on mitochondrial function and oxidative stress.J. Pharmacol. Exp. Ther. 295, 1022–1030.PubMedGoogle Scholar
  2. Angeloni C, JP Spencer, E Leoncini, PL Biagi and S Hrelia (2007) Role of quercetin and its in vivo metabolites in protecting H9c2 cells against oxidative stress.Biochimie 89, 73–82.PubMedCrossRefGoogle Scholar
  3. Bano D, KW Young, CJ Guerin, R Lefeuvre, NJ Rothwell, L Naldini, R Rizzuto, E Carafoli and P Nicotera (2005) Cleavage of the plasma membrane Na+/Ca2+ exchanger in excitotoxicity.Cell 120, 275–285.PubMedCrossRefGoogle Scholar
  4. Bouchier-Hayes L, L Lartigue and DD Newmeyer (2005) Mitochondria: pharmacological manipulation of cell death.J. Clin. Invest. 115, 2640–2647.PubMedCrossRefGoogle Scholar
  5. Brookes PS, Y Yoon, JL Robotham, MW Anders and SS Sheu (2004) Calcium, ATP, and ROS: a mitochondrial love-hate triangle.Am. J. Physiol. Cell. Physiol. 287, C817-C833.PubMedCrossRefGoogle Scholar
  6. Carafoli E, L Santella, D Branca and M Brini (2001) Generation, control, and processing of cellular calcium signals.Crit. Rev. Biochem. Mol. Biol. 36, 107–260.PubMedCrossRefGoogle Scholar
  7. Chen HS and SA Lipton (2006) The chemical biology of clinically tolerated NMDA receptor antagonists.J. Neurochem. 97, 1611–1626.PubMedCrossRefGoogle Scholar
  8. Cotelle N (2001) Role of flavonoids in oxidative stress.Curr. Top. Med. Chem. 1, 569–590.PubMedCrossRefGoogle Scholar
  9. Dahout-Gonzalez C, C Ramus, EP Dassa, AC Dianoux and G Brandolin (2005) Conformation-dependent swinging of the matrix loop m2 of the mitochondrial Saccharomyces cerevisiae ADP/ATP carrier.Biochemistry 44, 16310–16320.PubMedCrossRefGoogle Scholar
  10. Dajas F, F Rivera-Megret, F Blasina, F Arredondo, JA Abin- Carriquiry, G Costa, C Echeverry, L Lafon, H Heizen, M Ferreira and A Morquio (2003) Neuroprotection by flavonoids.Braz. J. Med. Biol. Res. 36, 1613–1620.PubMedCrossRefGoogle Scholar
  11. De Paola R, C Muia, E Mazzon, T Genovese, C Crisafulli, M Menegazzi, AP Caputi, H Suzuki and S Cuzzocrea (2005) Effects of Hypericum perforatum extract in a rat model of ischemia and reperfusion injury.Shock 24, 255–263.PubMedCrossRefGoogle Scholar
  12. Dias ACP, FA Tomas-Barberan, M Fernandes-Ferreira and F Ferreres (1998) Unusual flavonoids produced by callus of Hypericum perforatum.Phytochemistry 48, 1165–1168.CrossRefGoogle Scholar
  13. Dorta DJ, AA Pigoso, FE Mingatto, T Rodrigues, IM Prado, AF Helena, SA Uyemura, AC Santos and C Curti (2005) The interaction of flavonoids with mitochondria: effects on energetic processes.Chem. Biol. Interact. 152, 67–78.PubMedCrossRefGoogle Scholar
  14. Dubinsky JM, N Brustovetsky and R LaFrance (2004) Protective roles of CNS mitochondria.J. Bioenerg. Biomembr. 36, 299–302.PubMedCrossRefGoogle Scholar
  15. Duchen MR (2004) Mitochondria in health and disease: perspectives on a new mitochondrial biology.Mol. Aspects Med. 25, 365–451.PubMedGoogle Scholar
  16. Estabrook RW (1967) Mitochondrial respiratory control and the polarographic measurement of ADP:O ratios.Meth. Enzymol. 10, 41–47.CrossRefGoogle Scholar
  17. Ferreira FM, CM Palmeira, MJ Matos, R Seica and MS Santos (1999) Decreased susceptibility to lipid peroxidation of Goto-Kakizaki rats: relationship to mitochondrial antioxidant capacity.Life Sci. 65, 1013–1025.PubMedCrossRefGoogle Scholar
  18. Filipe P, V Lanca, JN Silva, P Morliere, R Santus and A Fernandes (2001) Flavonoids and urate antioxidant interplay in plasma oxidative stress.Mol. Cell. Biochem. 221, 79–87.PubMedCrossRefGoogle Scholar
  19. Halestrap AP (2006) Calcium, mitochondria and reperfusion injury: a pore way to die.Biochem. Soc. Trans. 34, 232–237.PubMedCrossRefGoogle Scholar
  20. Isaev NK, NA Andreeva, EV Stel’mashuk and DB Zorov (2005) Role of mitochondria in the mechanisms of glutamate toxicity.Biochemistry (Mosc.) 70, 611–618.CrossRefGoogle Scholar
  21. Ishige K, D Schubert and Y Sagara (2001) Flavonoids protect neuronal cells from oxidative stress by three distinct mechanisms.Free Radic. Biol. Med. 30, 433–446.PubMedCrossRefGoogle Scholar
  22. Jovanovic SV and MG Simic (2000) Antioxidants in nutrition.Ann. NY Acad. Sci. 899, 326–334.PubMedCrossRefGoogle Scholar
  23. Kamo N, M Muratsugu, R Hongoh and Y Kobatake (1979) Membrane potential of mitochondria measured with an electrode sensitive to tetraphenyl phosphonium and relationship between proton electrochemical potential and phosphorylation potential in steady state.J. Membr. Biol. 49, 105–121.PubMedCrossRefGoogle Scholar
  24. Kiedrowski L and E Costa (1995) Glutamate-induced destabilization of intracellular calcium concentration homeostasis in cultured cerebellar granule cells: role of mitochondria in calcium buffering.Mol. Pharmacol. 47, 140–147.PubMedGoogle Scholar
  25. Kristian T and BK Siesjo (1998) Calcium in ischemic cell death.Stroke 29, 705–718.PubMedGoogle Scholar
  26. Kushnareva YE, SE Wiley, MW Ward, AY Andreyev and AN Murphy (2005) Excitotoxic injury to mitochondria isolated from cultured neurons.J. Biol. Chem. 280, 28894–28902.PubMedCrossRefGoogle Scholar
  27. Lafon-Cazal M, S Pietri, M Culcasi and J Bockaert (1993) NMDA-dependent superoxide production and neurotoxicity.Nature 364, 535–537.PubMedCrossRefGoogle Scholar
  28. Lipton SA and PA Rosenberg (1994) Excitatory amino acids as a final common pathway for neurologic disorders.N. Engl. J. Med. 330, 613–622.PubMedCrossRefGoogle Scholar
  29. Mattson MP and G Kroemer (2003) Mitochondria in cell death: novel targets for neuroprotection and cardioprotection.Trends Mol. Med. 9, 196–205.PubMedCrossRefGoogle Scholar
  30. Montal M (1998) Mitochondria, glutamate neurotoxicity and the death cascade.Biochim. Biophys. Acta 1366, 113–126.PubMedCrossRefGoogle Scholar
  31. Montero M, CD Lobaton, E Hernandez-Sanmiguel, J Santodomingo, L Vay, A Moreno and J Alvarez (2004) Direct activation of the mitochondrial calcium uniporter by natural plant flavonoids.Biochem. J. 384, 19–24.PubMedCrossRefGoogle Scholar
  32. Moreira PI, MS Santos, A Moreno, AC Rego and C Oliveira (2002) Effect of amyloid-β peptide on permeability transition pore: a comparative study.J. Neurosci. Res. 69, 257–267.PubMedCrossRefGoogle Scholar
  33. Moreira PI, MS Santos, C Sena, R Seica and CR Oliveira (2005) Insulin protects against amyloid-β peptide toxicity in brain mitochondria of diabetic rats.Neurobiol. Dis. 18, 628–637.PubMedCrossRefGoogle Scholar
  34. Nicholls DG (2002) Mitochondrial function and dysfunction in the cell: its relevance to aging and aging-related disease. Int.J. Biochem. Cell. Biol. 34, 1372–1381.CrossRefGoogle Scholar
  35. Nicholls D.G (2004) Mitochondrial dysfunction and glutamate excitotoxicity studied in primary neuronal cultures.Curr. Mol. Med. 4, 149–177.PubMedCrossRefGoogle Scholar
  36. Nicholls DG and SL Budd (1998) Mitochondria and neuronal glutamate excitotoxicity.Biochim. Biophys. Acta 1366, 97–112.PubMedCrossRefGoogle Scholar
  37. Nicholls DG and MW Ward (2000) Mitochondrial membrane potential and neuronal glutamate excitotoxicity: mortality and millivolts.Trends Neurosci. 23, 166–174.PubMedCrossRefGoogle Scholar
  38. Oliveira PJ, R Seica, MP Coxito, AP Rolo, CM Palmeira, MS Santos and AJ Moreno (2003) Enhanced permeability transition explains the reduced calcium uptake in cardiac mitochondria from streptozotocin-induced diabetic rats.FEBS Lett. 554, 511–514.PubMedCrossRefGoogle Scholar
  39. Oliveira PJ, JA Bjork, MS Santos, RL Leino, MK Froberg, AJ Moreno and KB Wallace (2004) Carvedilol-mediated antioxidant protection against doxorubicin-induced cardiac mitochondrial toxicity.Toxicol. Appl. Pharmacol. 200, 159–168.PubMedCrossRefGoogle Scholar
  40. Ozgova S, J Hermanek and I Gut (2003) Different antioxidant effects of polyphenols on lipid peroxidation and hydroxyl radicals in the NADPH-, Fe-ascorbate- and Fe-microsomal systems.Biochem. Pharmacol. 66, 1127–1137.PubMedCrossRefGoogle Scholar
  41. Peng IW and SM Kuo (2003) Flavonoid structure affects the inhibition of lipid peroxidation in Caco-2 intestinal cells at physiological concentrations.J. Nutr. 133, 2184–2187.PubMedGoogle Scholar
  42. Peng TI and JT Greenamyre (1998) Privileged access to mitochondria of calcium influx through N-methyl-D-aspartate receptors.Mol. Pharmacol. 53, 974–980.PubMedGoogle Scholar
  43. Rego AC, MW Ward and DG Nicholls (2001) Mitochondria control AMPA/kainate receptor-induced cytoplasmic calcium deregulation in rat cerebellar granule cells.J. Neurosci. 21, 1893–1901.PubMedGoogle Scholar
  44. Rego AC, NM Monteiro, AP Silva, J Gil, JO Malva and CR Oliveira (2003) Mitochondrial apoptotic cell death and moderate superoxide generation upon selective activation of non-desensitizing AMPA receptors in hippocampal cultures.J. Neurochem. 86, 792–804.PubMedCrossRefGoogle Scholar
  45. Reynolds IJ and TG Hastings (1995) Glutamate induces the production of reactive oxygen species in cultured forebrain neurons following NMDA receptor activation.J. Neurosci. 15, 3318–3327.PubMedGoogle Scholar
  46. Rice-Evans C (2001) Flavonoid antioxidants.Curr. Med. Chem. 8, 797–807.PubMedGoogle Scholar
  47. Samhan-Arias AK, FJ Martín-Romero and C Gutiérrez-Merino (2004) Kaempferol blocks oxidative stress in cerebellar granule cells and reveals a key role for reactive oxygen species production at the plasma membrane in the commitment to apoptosis.Free. Radic. Biol. Med. 37, 48–61.PubMedCrossRefGoogle Scholar
  48. Santos AC, SA Uyemura, JL Lopes, JN Bazon, FE Mingatto and C Curti (1998) Effect of naturally occurring flavonoids on lipid peroxidation and membrane permeability transition in mitochondria.Free Radic. Biol. Med. 24, 1455–1461.PubMedCrossRefGoogle Scholar
  49. Saris NE and E Carafoli (2005) A historical review of cellular calcium handling, with emphasis on mitochondria.Biochemistry (Mosc.) 70, 187–194.CrossRefGoogle Scholar
  50. Schroeter H, JP Spencer, C Rice-Evans and RJ Williams (2001) Flavonoids protect neurons from oxidized low-density-lipoprotein- induced apoptosis involving c-Jun N-terminal kinase (JNK), c-Jun and caspase-3.Biochem. J. 358, 547–557.PubMedCrossRefGoogle Scholar
  51. Silva AP, JO Malva, AF Ambrosio, AJ Salgado, AP Carvalho and CM Carvalho (2001) Role of kainate receptor activation and desensitization on the [Ca2+]i changes in cultured rat hippocampal neurons.J. Neurosci. Res. 65, 378–386.PubMedCrossRefGoogle Scholar
  52. Silva BA, ACP Dias, F Ferreres, JO Malva and CR Oliveira (2004) Neuroprotective effect ofH. perforatum extracts on β-amyloid-induced neurotoxicity.Neurotox. Res. 6, 119–130.PubMedCrossRefGoogle Scholar
  53. Silva BA, F Ferreres, JO Malva and ACP Dias (2005) Phytochemical and antioxidant characterization ofHypericum perforatum alcoholic extracts.Food Chem. 90, 157–167.CrossRefGoogle Scholar
  54. Simonyi A, Q Wang, RL Miller, M Yusof, PB Shelat, AY Sun and GY Sun (2005) Polyphenols in cerebral ischemia: novel targets for neuroprotection.Mol. Neurobiol. 31, 135–147.PubMedCrossRefGoogle Scholar
  55. Stout AK, HM Raphael, BI Kanterewicz, E Klann and IJ Reynolds (1998) Glutamate-induced neuron death requires mitochondrial calcium uptake.Nat. Neurosci. 1, 366–373.PubMedCrossRefGoogle Scholar
  56. Vander Heiden MG and CB Thompson (1999) Bcl-2 proteins: regulators of apoptosis or of mitochondrial homeostasis?Nat. Cell Biol. 1, E209-E216.PubMedCrossRefGoogle Scholar
  57. Vergun O, AI Sobolevsky, MV Yelshansky, J Keelan, BI Khodorov and MR Duchen (2001) Exploration of the role of reactive oxygen species in glutamate neurotoxicity in rat hippocampal neurones in culture.J. Physiol. 531, 147–163.PubMedCrossRefGoogle Scholar
  58. Vieira HL, D Haouzi, C El Hamel, E Jacotot, AS Belzacq, C Brenner and G Kroemer (2000) Permeabilization of the mitochondrial inner membrane during apoptosis: impact of the adenine nucleotide translocator.Cell Death Differ. 7, 1146–1154.PubMedCrossRefGoogle Scholar
  59. Wang CN, CW Chi, YL Lin, CF Chen and YJ Shiao (2001) The neuroprotective effects of phytoestrogens on amyloid-β protein- induced toxicity are mediated by abrogating the activation of caspase cascade in rat cortical neurons.J. Biol. Chem. 276, 5287–5295.PubMedCrossRefGoogle Scholar
  60. Weber JT (2004) Calcium homeostasis following traumatic neuronal injury.Curr. Neurovasc. Res. 1, 151–171.PubMedCrossRefGoogle Scholar
  61. Won SJ, DY Kim and BJ Gwag (2002) Cellular and molecular pathways of ischemic neuronal death.J. Biochem. Mol. Biol. 35, 67–86.PubMedGoogle Scholar
  62. Zhao B (2005) Natural antioxidants for neurodegenerative diseases.Mol. Neurobiol. 31, 283–293.PubMedCrossRefGoogle Scholar
  63. Zheng J and VD Ramirez (2000) Inhibition of mitochondrial proton F0F1-ATPase/ATP synthase by polyphenolic phytochemicals.Br. J. Pharmacol. 130, 1115–1123.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Bruno Silva
    • 1
    • 3
  • Paulo J. Oliveira
    • 1
  • Alberto Dias
    • 3
  • JOÃO O. Malva
    • 1
    • 2
    Email author
  1. 1.Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
  2. 2.Institute of Biochemistry, Faculty of MedicineUniversity of CoimbraCoimbraPortugal
  3. 3.Department of BiologyUniversity of MinhoBragaPortugal

Personalised recommendations