Promotion of cellular NAD+ anabolism: Therapeutic potential for oxidative stress in ageing and alzheimer’s disease
- 187 Downloads
- 21 Citations
Abstract
Oxidative imbalance is a prominent feature in Alzheimer’s disease and ageing. Increased levels of reactive oxygen species (ROS) can result in disordered cellular metabolism due to lipid peroxidation, protein-cross linking, DNA damage and the depletion of nicotinamide adenine dinucleotide (NAD+). NAD+ is a ubiquitous pyridine nucleotide that plays an essential role in important biological reactions, from ATP production and secondary messenger signalling, to transcriptional regulation and DNA repair. Chronic oxidative stress may be associated with NAD+ depletion and a subsequent decrease in metabolic regulation and cell viability. Hence, therapies targeted toward maintaining intracellular NAD+ pools may prove efficacious in the protection of age-dependent cellular damage, in general, and neurodegeneration in chronic central nervous system inflammatory diseases such as Alzheimer’s disease, in particular.
Keywords
NAD+ Alzheimer’s disease Inflammation Neurodegeneration Oxidative Stress DNA repairPreview
Unable to display preview. Download preview PDF.
References
- Alano CC, W Ying and RA Swanson (2004) Poly(ADP-ribose) polymerase-1-mediated cell death in astrocytes requires NAD+ depletion and mitochondrial permeability transition.J. Biol. Chem. 279, 18895–18902.PubMedCrossRefGoogle Scholar
- Alvarez-Gonzalez R, H Zentgraf, M Frey and H Mendoza-Alvarez (2006) Functional interactions of PARP-1 with p53, In:Poly(ADP-Ribosyl)ation (Burkle A, Ed.) (Springer-Landes Bioscience:New York, NY).Google Scholar
- Anderson RM, KJ Bitterman, JG Wood, O Medvedik, H Cohen, SS Lin, JK Manchester, JI Gordon and DA Sinclair (2002) Manipulation of a nuclear NADP salvage pathway delays ageing without altering steady-state NADP levels.J. Biol. Chem. 277, 18881–18890.PubMedCrossRefGoogle Scholar
- Arraki T, Y Sasaki and J Milbrandt (2004) Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration.Science 305, 1010–1013.CrossRefGoogle Scholar
- Bedalov A and JA Simon (2004) NAD to the rescue.Science 305, 954–955.PubMedCrossRefGoogle Scholar
- Behan WMH, M McDonald, LG Darlington and TW Stone (1999) Oxidative stress as a mechanism for quinolinic acidinduced hippocampal damage: protection by melatonin and deprenyl.Brit. J. Pharmacol. 128, 1754–1760.CrossRefGoogle Scholar
- Behl C, JB Davis, R Lesley and D Schubert (1994) Hydrogen peroxide mediates amyloid-β protein toxicity.Cell 77, 817–827.PubMedCrossRefGoogle Scholar
- Belenky P, KL Bogan and C Brenner (2007) NAD+ metabolism in health and disease.Trends Biochem. Sci. 32(1):12–19.PubMedCrossRefGoogle Scholar
- Beneke S, J Diefenbach and A Burkle (2004) Poly(ADPribosyl) ation inhibitors: promising drug candidates for a wide variety of pathophysiologic conditions.Int. J. Cancer 111, 813–818.PubMedCrossRefGoogle Scholar
- Berg JM, JL Tymoczko and L Stryer (2007)Biochemistry, 6th Edition (Freeman:New York, NY).Google Scholar
- Berger F, MH Ramirez-Hernandez and M Ziegler (2004) The new life of a centenarian: signalling functions of NAD(P).Trends Biochem. Sci. 29, 111–118.PubMedCrossRefGoogle Scholar
- Berger SJ, DC Sudar and NA Berger (1986) Metabolic consequences of DNA damage: DNA damage induces alterations in glucose metabolism by activation of Poly(ADP-Ribose) polymerase.Biochem. Biophys. Res. Commun. 134, 227–232.PubMedCrossRefGoogle Scholar
- Blanc EM, M Toborek, RJ Mark, B Hennig and MP Mattson (1997) Amyloid-β-peptide induces cell monolayer albumin permeability, impairs glucose transport, and induces apoptosis in vascular endothelial cells.J. Neurochem. 68, 1870–1881.PubMedGoogle Scholar
- Bouchard VJ, M Rouleau and GG Poirier (2003) PARP-1, a determinant of cell survival in response to DNA damage.Exp. Hematology 31, 446–454.CrossRefGoogle Scholar
- Bordone L, D Cohen, A Robinson, MC Motta, E van Veen, A Czopik, AD Steele, H Crowe, S Marmor, J Luo, W Gu and L Guarente (2007) SIRT1 transgenic mice show phenotypes resembling calorie restriction.Aging Cell 6(6) 759–767. Sep 17, 20078 [Epub ahead of print].PubMedCrossRefGoogle Scholar
- Brunet A, LB Sweeney, JF Sturgill, KF Chua, PL Greer, Y Lin, H Tran, SE Ross, R Mostoslavsky, HY Cohen, LS Hu, HL Cheng, MP Jedrychowski, SP Gygi, DA Sinclair, FW Alt and ME Greenberg (2004) Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase.Science 303, 2011–2015.PubMedCrossRefGoogle Scholar
- Butterfield DA (1997) β-Amyloid associated free radical oxidative stress and neurotoxicity implications for Alzheimer’s disease.Chem. Res. Toxicol. 10, 495–506.PubMedCrossRefGoogle Scholar
- Cherny RA, CS Atwood, ME Xilinas, D Gray, W Jones, C McLean, K Barnham, I Volitakis, F Fraser and Y Kim (2001) Treatment with a copper-zinc chelator markedly and rapidly inhibits β-amyloid accumulation in Alzheimer’s disease transgenic mice.Neuron 30, 665–676.PubMedCrossRefGoogle Scholar
- Citron M (2004) Strategies for disease modification in Alzheimer’s disease.Nat. Rev. Neurosci. 5, 677–685.PubMedCrossRefGoogle Scholar
- Culmsee C, Z Zhu, QS Yu, SL Chan, S Camandola, Z Guo, NH Greig and MP Mattson (2001) A synthetic inhibitor of p53 protects neurons against death induced by ischemic and excitotoxic insults, and amyloid-β-peptide.J. Neurochem. 77, 220–228.PubMedGoogle Scholar
- de la Monte SM, YK Sohn, N Ganju and JR Wands (1998) p53- and CD95-associated apoptosis in neurodegenerative diseases.Lab. Invest. 78, 401–411.PubMedGoogle Scholar
- de Murcia JM, C Niedergang, C Trucco, M Ricoul, B Dutrillaux, M Mark, FJ Oliver, M Masson, A Dierich, M LeMeur, C Walztinger, P Chambon and G De Murcia (1997) Requirement of poly(ADP-ribose) polymerase in recovery from DNA damage in mice and in cells.Proc. Natl. Acad. Sci. USA 94, 7303–7307.PubMedCrossRefGoogle Scholar
- di Lisa F and M Ziegler (2001) Pathophysiological relevance of mitochondria in NAD+ metabolism.FEBS Lett. 492, 4–8.PubMedCrossRefGoogle Scholar
- Doraiswamy PM and AE Finefrock (2004) Metals in our minds: therapeutic implications for neurodegenerative disorders.Lancet Neurol. 3, 431–434.PubMedCrossRefGoogle Scholar
- Doxsey S (2001) Reevaluating centrosome function.Nat. Rev. Molec. Cell. Biol. 2, 688–689.CrossRefGoogle Scholar
- Erdélyi K, E Bakondi, P Gergely, C Szabó and L Virág (2005) Pathophysiologic role of oxidative stress-induced poly(ADPribose) polymerase-1 activation: focus on cell death and transcriptional regulation.Cell. Mol. Life Sci. 62(7-8), 751–759.PubMedCrossRefGoogle Scholar
- Evans DA, H Funkenstein and MS Albert (1989) Prevalence of Alzheimer’s disease in a community population of older persons.JAMA 262, 2551–2556.PubMedCrossRefGoogle Scholar
- Ferri CP, M Prince, C Brayne, C Brodaty, L Fratiglioni, M Ganguli, K Hall, K Hasegawa, H Hendrie and Y Huang (2006) Global prevalence of dementia: a Delphi consensus study.Lancet 366, 2112–2117.CrossRefGoogle Scholar
- Finkbeiner S and AM Cuero (2006) Disease modifying pathways in neurodegeneration.J. Neurosci. 26, 10349–10357.PubMedCrossRefGoogle Scholar
- Floyd RA and K Hensley (2002) Oxidative stress in brain ageing: implications for therapeutics of neurodegenerative diseases.Neurobiol. Ageing 23, 795–807.CrossRefGoogle Scholar
- Furukawa A, S Tada-Oikawa and S Kawanishi (2007) H2O2 accelerates cellular senescence by accumulation of acetylated p53 via decrease in the function of SIRT1 by NAD+ depletion.Cell. Physiol. Biochem. 20, 45–54.PubMedGoogle Scholar
- Gibson GE, V Haroutunian, H Zhang, LC Park, Q Shi, M Lesser, RC Mohs, RK Sheu and JP Blass (2000) Mitochondrial damage in Alzheimer’s disease varies with apolipoprotein E genotype.Ann. Neurol. 48, 1594–1601.CrossRefGoogle Scholar
- Glenner GG and CW Wong (1984) Alzheimer’s disease: initial report of the purification and characterisation of a novel cerebrovascular amyloid protein.Biochem. Biophys. Res. Commun. 120, 885–890.PubMedCrossRefGoogle Scholar
- Grant RS and V Kapoor (1998) Murine glial cells regenerate NAD, after peroxide-induced depletion, using either nicotinic acid, nicotinamide, or quinolinic acid as substrates.J. Neurochem. 70, 1759–1763.PubMedGoogle Scholar
- Gravey RW, JM Talent, Y Kang and CC Conrad (1999) Reactive oxygen species: the unavoidable environmental insult?Mutat. Res. 428, 17–22.Google Scholar
- Grozinger CM and SL Schreiber (2002) Deacetylase enzymes: biological functions and the use of small-molecule inhibitors.Chem. Biol. 9, 3–16.PubMedCrossRefGoogle Scholar
- Guillemin GJ and BJ Brew (2002) Implications of the kynurenine pathway and quinolinic acid in Alzheimer’s disease.Red. Rep. 7, 199–206.CrossRefGoogle Scholar
- Guillemin GJ, GA Smythe, LA Veas, O Takikawa and BJ Brew (2003) Aβ1–42 induces production of quinolinic acid by human macrophages and microglia.Neuroreport 14, 2311–2315.PubMedCrossRefGoogle Scholar
- Guillemin GJ, BJ Brew, CE Noona, O Takikawa and KM Cullen (2005) Indoleamine, 2,3 dioxygenase and quinolinic acid immunoreactivity in the Alzheimer’s disease hippocampus.Neuropath. Appl. Neurobiol. 31, 395–404.CrossRefGoogle Scholar
- Guillemin GJ, BJ Brew, CE Noonan, TG Knight and KM Cullen (2007) Mass spectrometric detection of quinolinic acid in micro dissected Alzheimer disease plaques.Int. Congr. Series [Epub ahead of print]Google Scholar
- Halliwell B (1992) Oxygen radicals as key mediators in neurological disease: fact or fiction?Ann. Neurol. 32, S10-S15.PubMedCrossRefGoogle Scholar
- Harris ME, K Hensley and DA Butterfield (1995) Direct evidence of oxidative injury produced by Alzheimer’s β-amyloid peptide (1–40) in cultured hippocampal neurons.Exp. Neurol. 131, 193–200.PubMedCrossRefGoogle Scholar
- Heyes MP (1993) Metabolism and neuropathologic significance of quinolinic acid and kynureninic acid.Biochem. Soc. Transm. 21, 83–89.Google Scholar
- Horwood N and DC Davies (1994) Immunolabelling of hippocampal microvessel glucose transporter protein is reduced in Alzheimer’s disease.Virchows Arch. 425, 69–71.PubMedCrossRefGoogle Scholar
- Howitz KT, KJ Bitterman and HY Cohen (2003) Small molecule activators of sirtuins extendSaccaromyces cerevisiae lifespan.Nature 425, 191–196.PubMedCrossRefGoogle Scholar
- Huang X, CS Atwood and MA Hartshorn (1999) The Aβ peptide of Alzheimer’s disease directly produces hydrogen peroxide through metal ion reduction.Biochemistry 38, 7609–7616.PubMedCrossRefGoogle Scholar
- Jagtap P and C Szabo (2005) Poly(ADP-ribose) polymerase and the therapeutic effects of its inhibitors.Nat. Rev. Drug Dicov. 4, 421–440.CrossRefGoogle Scholar
- Jayasena T, RS Grant, N Keerthisinghe, I Solaja and GA Smythe (2007) Membrane permeability of redox active metal chelators: an important element in reducing hydroxyl radical induced NAD+ depletion in neuronal cells.Neurosci. Res. 57, 454–461.PubMedCrossRefGoogle Scholar
- Kerr SJ, PF Armati and BJ Brew (1995) Neurocytotoxicity of quinolinic acid in human brain cultures.J. Neurovirol. 1, 249–253.CrossRefGoogle Scholar
- Kerr SJ, PJ Armati, GJ Guillemin and BJ Brew (1998) Chronic exposure of human neurons to quinolinic acid results in neuronal changes consistent with AIDS dementia complex.AIDS 12, 355–363.PubMedCrossRefGoogle Scholar
- Kim HS, CH Park, SH Cha, J Lee, S Lee, Y Kim, JC Rah, SJ Jeong and YH Suh (2000) Carboxyl-terminal fragment of Alzheimer’s APP destabilises calcium homeostasis and renders neuronal cells vulnerable to excitotoxicity.FASEB J. 14, 1508–1517.PubMedCrossRefGoogle Scholar
- Kontos HA (1989) Oxygen radicals in CNS damage.Chemico- Biol. Int. 533, 315–320.Google Scholar
- Lee HC (2001) Physiologic functions of cyclic ADP-ribose and NAADP as calcium messengers.Ann. Rev. Pharmacol. Toxicol. 41, 317–345.CrossRefGoogle Scholar
- Lin SJ and L Guarente (2003) Nicotinamide adenine dinucleotide, a metabolic regulator of transcription, longevity and disease.Curr. Opin. Cell. Biol. 15, 241–246.PubMedCrossRefGoogle Scholar
- Lin T and MS Yang (2007) Benzo[a]pyrene induced necrosis in the HepG2 cells via PARP-1 activation and NAD+ depletion.Toxicology doi:10.1016/j.tox.2007.12.020 Dec 31. 8 Feb. 2008 [Epub ahead of print]Google Scholar
- Liu G, W Huang, R Moir CR Vanderburg, B Lai, Z Peng, RE Tanzi, JT Rogers and X Huang (2006) Metal exposure and Alzheimer’s pathogenesis.J. Struct. Biol. 155, 45–51.PubMedCrossRefGoogle Scholar
- Love S, R Barber and GK Wilcock (1999) Increased poly(ADPribosyl) ation of nuclear proteins in Alzheimer’s disease.Brain 122, 247–253.PubMedCrossRefGoogle Scholar
- Luo J, A Niokolaev, S Imai, D Chen, F Su, A Shiloh, L Guarante and W Gu (2001) Negative control of p53 by Sir2α promotes cell Ssurvival under stress.Cell 107, 137–148.PubMedCrossRefGoogle Scholar
- Maccioni RB, JP Munoz and L Barbeito (2001) The molecular basis of Alzheimer’s disease and other neurodegenerative disorders.Arch. Med. Res. 32, 367–381.PubMedCrossRefGoogle Scholar
- Malanga M and F Althaus (2005) The role of poly(ADPribose) in the DNA damage signaling network.Biochem. Cell. Biol. 83(3), 354–364.PubMedCrossRefGoogle Scholar
- Malanga M, J Pleschke, HE Kleczkowska and FR Althaus (1998) Poly(ADP-ribose) binds to specific domains of p53 and alters its DNA binding functions.J. Biol. Chem. 273, 11839–11848.PubMedCrossRefGoogle Scholar
- Maldonado PD, ME Chanez-Cardenas, D Barrera, J Villeda-Hernández, A Santamaría and J Pedraza-Chaverrí (2007) Poly(ADP-ribose) polymerase-1 is involved in the neuronal death induced by quinolinic acid in rats.Neurosci. Lett. 425, 28–33.PubMedCrossRefGoogle Scholar
- Martin RN, CW Chan, G Veurink, S Laws, K Croft and AM Dharmarajan (1999) β-Amyloid and oxidative stress in the pathogenesis of Alzheimer’s disease, In:Antioxidants in Human Health and Disease (Basu TK, NJ Temple and ML Garg, Eds.) (CABI Publishing:Oxford, UK).Google Scholar
- Masters CL, G Simms, NA Weinman, G Multhaup, BL McDonald and K Beyreuther (1985) Amyloid plaque core protein in Alzheimer’s disease and Down syndrome.Proc. Natl. Acad. Sci. USA 82, 4245–4249.PubMedCrossRefGoogle Scholar
- Mates JM (2000) Effects of antioxidant enzymes in molecular control of reactive oxygen species toxicology.Toxicol. 153, 83–104.CrossRefGoogle Scholar
- Mattson MP (2004) Pathway towards and away from Alzheimer’s disease.Nature 430, 630–639.CrossRefGoogle Scholar
- Meyer RG, ML Meyer-Ficca, EL Jacobsen and MK Jacobsen (2006) Enzymes in poly(ADP-Ribose) metabolism, In:Poly(ADP-Ribosyl)ation (Burkle A, Ed.) (Springer-Landes Bioscience:New York, NY).Google Scholar
- Miquel MG (1992) The rate of DNA damage and ageing, In:Free Radicals in Ageing (Emerit I,and C Button, Eds.) (Birhauser Verlag:Basel, Switzerland).Google Scholar
- Miranda S, C Opaza, LF Arrendo, FJ Muñoz, F Ruiz, F Leighton and NC Inestrosa (2000) The role of oxidative stress in the toxicity induced by amyloid-β-peptide in Alzheimer’s disease.Prog. Neurobiol. 62, 633–648.PubMedCrossRefGoogle Scholar
- Miwa M, M Kanai, M Uchida, K Uchida and S Hanai (2006) Roles of poly(ADP-ribose) metabolism in the regulation of centrosome duplication and in the maintenance of neuronal integrity, In:Poly(ADP-Ribosyl)ation (Burkle A, Ed.) (Springer-Landes Bioscience:New York, NY).Google Scholar
- Motta MC, N Divecha, M Lemieux, C Kamel, D Chen, W Gu, Y Bultsma, M McBurney and L Guarente (2004) Mammalian SIRT1 represses forkhead transcription factors.Cell 116, 551–563.PubMedCrossRefGoogle Scholar
- Nunomura A, G Perry, MA Papolla, R Wade, K Hirai, S Chiba and MA Smith (1999) RNA oxidation is a prominent feature of vulnerable neurons in Alzheimer’s disease.J. Neurosci. 19, 1959–1964.PubMedGoogle Scholar
- Oddo S, A Caccamo, LM Tran, MP Lambert, CG Glabe, WL Klein and FM LaFerla (2006) Temporal profile of amyloid-β (Aβ) oligomerization in anin vivo model of Alzheimer disease: a link between Aβ and tau pathology.J. Biol. Chem. 281, 1599–1604.PubMedCrossRefGoogle Scholar
- Ogino K and DH Wang (2007) Biomarkers of oxidative/ nitrosative stress: an approach to disease prevention.Acta Med. Okayama 61, 181–189.PubMedGoogle Scholar
- Ozcankaya R and N Delibas (2002) Malondialdehyde, super-oxide dismutase, melatonin, iron, copper, and zinc blood concentrations in patients with Alzheimer’s disease: crosssectional study.Croat. Med. J. 43, 28–32.PubMedGoogle Scholar
- Pacher P and C Szabó (2007) Role of poly(ADP-ribose) polymerase 1 (PARP-1) in cardiovascular diseases: the therapeutic potential of PARP inhibitors.Cardiovasc. Drug Rev. 25 (3), 235–260.PubMedCrossRefGoogle Scholar
- Pallàs M, E Verdaguer, M Tajes, J Gutierrez-Cuesta and A Camins (2008) Modulation of sirtuins: new targets for antiageing.Recent Patents CNS Drug Discov. 3(1), 61–69.CrossRefGoogle Scholar
- Parihar MS and GJ Brewer (2007) Mitoenergetic failure in Alzheimer disease.Am. J. Cell. Physiol. 292, 8–23.CrossRefGoogle Scholar
- Parker J (Eds) (2004)The Encyclopedic Atlas of the Human Body (The Five Mile Pres:Vic. Australia).Google Scholar
- Pillai JB, A Isbatan, SI Imai and MP Gupta (2005) Poly(ADP-ribose) polymerase-1-dependent cardiac myocyte cell death during heart failure is mediated by NAD+ depletion and reduced Sirt2α deacetylase activity.J. Biol. Chem. 280, 43121–43130.PubMedCrossRefGoogle Scholar
- Porcu M and A Chiarugi (2005) The emerging therapeutic potential of sirtuin-interacting drugs: from cell death to lifespan extension.Trends Pharmacol. Sci. 26, 94–103.PubMedCrossRefGoogle Scholar
- Rafaeloff-Phail R, L Ding, L Conner, WK Yeh, D McClure, H Guo, K Emerson and H Brooks (2004) Biochemical regulation of mammalian AMP-activated protein kinase activity by NAD and NADH.J. Biol. Chem. 17, 52934–52939.CrossRefGoogle Scholar
- Raff MC, AV Whitemore and JT Finn (2002) Axonal selfdestruction and neurodegeneration.Science 296, 868–871.PubMedCrossRefGoogle Scholar
- Regland B, W Lehman, I Abedini, K Blennow, M Jonsson, I Karlsson, M Sjögren, A Wallin, ME Xilinas and CG Gottfries (2001) Treatment of Alzheimer’s disease with clioquinol.Dement. Geriatr. Cogn. Disord. 12, 408–414.PubMedCrossRefGoogle Scholar
- Retz W, W Gsell, L Munch, M Rosler and P Riederer (1998) Free radicals in Alzheimer’s disease.J. Neural Transm. Suppl.54, 221–236.Google Scholar
- Rios C and A Santamaria (1991) Quinolinic acid is a potent lipid peroxidant in rat brain homogenates.Neurochem. Res. 16, 1139–1143.PubMedCrossRefGoogle Scholar
- Ruscetti T, BE Lehnert, J Halbrook, HH Trong, MF Hoekstra, DJ Chen and SR Peterson (1998) Stimulation of the DNA-dependent protein kinase by poly(ADP-ribose) polymerase.J. Biol. Chem. 273, 14461–14467.PubMedCrossRefGoogle Scholar
- Santamaria A, D Santamaria, M Diaz-Munoz, V Espinoza-González and C Ríos (1997) Effects ofN-omega-nitro-Larginine and L-arginine on quinolinic acid induced lipid peroxidation.Toxicol. Lett. 93, 117–124.PubMedCrossRefGoogle Scholar
- Sauve AA, C Wolberger, VL Schramm and JD Boeke (2006) The biochemistry of sirtuins.Annu. Rev. Biochem. 75, 435–465.PubMedCrossRefGoogle Scholar
- Serra JA, RO Dominguez, ES de Lustig, EM Guareschi, AL Famulari, EL Bartolome and ER Marschoff (2001) Parkinson’s disease is associated with oxidative stress: comparison of peripheral antioxidant profiles in living Parkinson’s, Alzheimer’s and vascular dementia patients.J. Neural Transm. 108, 1135–1148.PubMedCrossRefGoogle Scholar
- Skoog I, L Nilsoon and B Palmertz (1993) A population based study of dementia in 85 year-olds.N. Engl. J. Med. 328, 153–158.PubMedCrossRefGoogle Scholar
- Smith MA, PL Harris, LM Sayre and G Perry (1997) Iron accumulation in Alzheimer’s disease is a source of redox generated free radicals.Proc. Natl. Acad. Sci. USA 94, 9866–9868.PubMedCrossRefGoogle Scholar
- Stone TW (2001) Endogenous neurotoxins from tryptophan.Toxicon 39, 67–73.CrossRefGoogle Scholar
- Suh YH and F Checler (2002) Amyloid precusor protein, presenilins, and ±-synuclein: molecular pathogenesis and pharmacological applications in Alzheimer’s disease.Pharmacol. Rev. 54, 469–525.PubMedCrossRefGoogle Scholar
- Tjernberg LO, DJ Callaway, A Tjernberg, S Hahne, C Lilliehook, L Terenius, J Thyberg and C Nordstedt (1999) A molecular model of Alzheimer’ amyloid-² peptide fibril formation.J. Biol. Chem. 274, 12619–12625.PubMedCrossRefGoogle Scholar
- van der Veer E, C Ho, C O’Neil, N Barbosa, R Scott, S Cregan and JG Pickering (2007) Extension of human cell lifespan by nicotinamide phosphoribosyltransferase.Am. Soc. Biochem. Mol. Biol. [Epub].Google Scholar
- Varadarajan S (2000) Alzheimer’s amyloid ²-peptide associated free radical oxidative stress and neurotoxicity.J. Struct. Biol. 130, 184–208.PubMedCrossRefGoogle Scholar
- Vaziri H, SK Dessain, E Ng Eaton, SI Imai, RA Frye, TK Pandita, L Guarente and RA Weinberg (2001) hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase.Cell 107, 149–159.PubMedCrossRefGoogle Scholar
- Wang H, M Shimoji, SW Yu, TM Dawson and VL Dawson (2003) Apoptosis inducing factor and PARP mediated injury in the MPTP mouse model of Parkinson’s disease.Ann. NY Acad. Sci. 991, 132–139.PubMedCrossRefGoogle Scholar
- Whitacre CM, H Hashimoto, ML Tsai, S Chatterjee, SJ Berger and NA Berger (1995) Involvement of NAD+ poly(ADP-ribose) metabolism in p53 regulation and its consequences.Cancer Res. 55, 3697–3701.PubMedGoogle Scholar
- Wolozin B and N Golts (2002) Iron and Parkinson’s disease.Neuroscientist 8, 22–32.PubMedCrossRefGoogle Scholar
- Yang T and AA Sauve (2005) NAD+ metabolism and sirtuins: metabolic regulation of protein deacetylation in stress and toxicity.AAPS J. 8, E632-E643.CrossRefGoogle Scholar
- Yeung F, JE Hoberg, CS Ramsey, MD Keller, DR Jones, RA Frye and MW Mayo (2004) Modulation of NF-κB-dependent transcription and cell survival by the SIRT1 deacetylase.EMBO J. 23, 2369–2380.PubMedCrossRefGoogle Scholar
- Ying W (2007) NAD+ and NADH in neuronal death.J. Neuroimmune. Pharmacol. 2, 270–275.PubMedCrossRefGoogle Scholar
- Younkin SG (1995) Evidence that A²42 is the real culprit in Alzheimer’s disease.Ann. Neurol. 37, 287–288.PubMedCrossRefGoogle Scholar
- Zhang J, VL Dawson, TM Dawson and SH Snyder (1994) Nitric oxide activation of poly(ADP-ribsoe) synthetase in neurotoxicity.Science 263, 687–689.PubMedCrossRefGoogle Scholar
- Zhu X, HG Lee and G Casadesus (2005) Oxidative imbalance in Alzheimer’s disease.Mol. Neurobiol. 31, 205–217.PubMedCrossRefGoogle Scholar