Neurotoxicity Research

, Volume 6, Issue 7–8, pp 543–553 | Cite as

Some aspects of thein vivo neuroprotective capacity of flavonoids: Bioavailability and structure-activity relationship

  • Felicia Rivera
  • Jessika Urbanavicius
  • Elena Gervaz
  • Andrea Morquio
  • Federico Dajas


On the basis of previous work showing that flavonoids structurally related to quercetin are neuroprotective for cells in culture, this work was directed towards determining if several flavonoids (quercetin, fisetin and catechin) could acutely and by an intraperitoneal (IP) route reach significant cerebral concentrations and either prevent or facilitate recovery from a brain lesion induced by focal ischemia in rats.

Aqueous and liposomal preparations of quercetin, fisetin and catechin were administered IP in a single dose and assessed in the brain by HPLC at 30 min, 1 h, 2 h and 4 h. Ischemic damage from focal middle cerebral artery occlusion was assessed spectrophotometrically with 2,3,5,-triphenylltetrazolium chloride (TTC). Infarct volume was assessed by an image analysis system following perfusion with TTC. The status of the cerebral tissue was evaluated by hematoxylin-eosin.

Flavonoids administered in aqueous preparations were undetected in the brain. Cerebral concentrations of catechin (10.5 ng/g), fisetin (8.23 ng/g) and quercetin (509 ng/g) were detected in the brain only after IP injection of the liposomal preparations. Spectrophotometric analysis of brain tissue with the TTC-technique showed that liposomal quercetin reduced ischemic damage and infarct volume after permanent occlusion of the middle cerebral artery (ischemic: 41.3 mm3 vs liposomal quercetin: 17 mm3). In liposomal quercetin-treated animals there was also recovery of the cytoarchitecture in ischemic areas of striatum and cortex. Although a liposomal preparation of fisetin had similar effects, catechin failed to protect brain tissue.

In conclusion, early administration of liposomal preparations of quercetin and structurally related flavonoids are beneficial and neuroprotective in experimental focal ischemia.


Quercetin Fisetin Catechin Neuroprotection Permanent focal ischemia 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agullo G, L Gamet-Payrastre, S Manenti, C Viala C Rémésy H Chap and B Payrastre (1997) Relationship between flavonoid structure and inhibition of phosphatidylinositol 3-kinase: a com parison with tyrosine kinase and protein kinase C inhibition.Biochem. Pharmacol. 53, 1649–1657.PubMedCrossRefGoogle Scholar
  2. Aherne SA and NM O’Brien (1999) Protection by the flavonoids myricetin, quercetin, and rutin against hydrogen peroxideinduced DNA damage in Caco-2 and Hep G2 cells.Nutr. Cancer 34, 160–66.PubMedCrossRefGoogle Scholar
  3. Ahlemeyer B, V Junker, R Huhne and J Kriegelstein (2001) Neuroprotective effects of NV-31, a bilobalide-derived compound: evidence for an antioxidative mechanism.Brain Res. 890, 338–342.PubMedCrossRefGoogle Scholar
  4. Aoki Y, M Tamura and Y Itoh (2001) Cerebroprotective action of a Na+/Ca2+ channel blocker NS-7. I. Effect on the cerebral infarction and edema at the acute stage of permanent middle cerebral artery occlusion in rats.Brain Res. 890, 162–169.PubMedCrossRefGoogle Scholar
  5. Azuma K, K Ippoushi, H Ito, H Higashio and J Terao (2002) Combination of lipids and emulsifiers enhances the absorption of orally administered quercetin in rats.J. Agr. Food Chemical. 50, 1706–1712.CrossRefGoogle Scholar
  6. Bastianetto S and R Quirino (2002) Natural extracts as possible protective agents of brain aging.Neurobiol. Aging 23, 891–897.PubMedCrossRefGoogle Scholar
  7. Belayev L, OF Alonso, R Busto, W Zhao and MD Ginsberg (1996) Middle cerebral artery occlusion in the rat by intraluminal suture: neurological and pathological evaluation of an improved model.Stroke 27, 1616–1622.PubMedGoogle Scholar
  8. Belayev L, L Yitao, Z Weizhao, R Busto and MD Ginsberg (2001) Human albumin therapy of acute ischemic stroke.Stroke 32, 553–565.PubMedGoogle Scholar
  9. Bertorelli R, M Adami, E Di Santo and P Ghezzi (1998) MK 801 and dexamethasone reduce both tumor necrosis factor levels and infarct volume after focal cerebral ischemia in the rat brain.Neurosci. Lett. 246, 41–44.PubMedCrossRefGoogle Scholar
  10. Cao X.H. and JW Phillis (1994) ?-Phenyl-ter-butyl-nitrone reduces cortical infarct and edema in rats subjected to focal ischemia.Brain Res. 644, 267–272.PubMedCrossRefGoogle Scholar
  11. Chan P, JT Cheng, JC Tsai, GS Lien, FC Chen, PF Kao, JC Liu, YJ Chen and MH Hsieh (2002) Effect of catechin on the activity and gene expression of superoxide dismutase in cultured rat brain astrocytes.Neurosci. Lett. 16, 281–284.CrossRefGoogle Scholar
  12. Chang WS, YJ Lee, FJ Lu and HC Chiang (1993) Inhibitory effects of flavonoids on xanthine oxidase.Anticancer Res. 6A, 2165–2170.Google Scholar
  13. Cho EJ, T Yokozawa, DY Rhyu, SC Kim, N Shibahara and JC Park (2003) Study on the inhibitory effects of Korean medicinal plants and their main compounds on the 1,1-diphenyl 2-picrylhydrazyl radical.Phytomedicine 10, 544–551.PubMedCrossRefGoogle Scholar
  14. Chung SY, MF Wang, JY Lin, HM Liu and FC Cheng (2003) Effect of one week treatment with Ginkgo biloba extract (Egb761) on ischemia-induced infarct volume in gerbils.Am. J. Chin. Med. 31, 533–542.PubMedCrossRefGoogle Scholar
  15. Clark WM, LG Rinker, NS Lessov, SL Lowery and MJ Cipolla (2001) Efficacy of antioxidant therapies in transient focal ischemia in mice.Stroke 32, 1000–1004.PubMedGoogle Scholar
  16. Clemens JA and JA Panetta (1994) Neuroprotection by antioxidants in models of global and focal ischemia.Ann. NYAcad. Sci. 38, 7250–7256.Google Scholar
  17. Corbett D and S Nurse (1998) The problem of assessing effective neuroprotection in experimental cerebral ischemia.Prog. Neurobiol. 54, 531–548.PubMedCrossRefGoogle Scholar
  18. Dajas F, F Rivera, F Blasina, F Arredondo, JA Abín-Carriquiry, G Costa, C Echeverry, L Lafón, H Heinzen, M Ferreira and A Morquio (2003a) Neuroprotection by flavonoids.Braz. J. Med. Biol. Res. 36, 1613–1620.PubMedCrossRefGoogle Scholar
  19. Dajas F, F Rivera, F Blasina, F Arredondo, C Echeverry, L Lafon, A Morquio and H Heizen (2003b) Cell culture protection andin vivo neuroprotective capacity of flavonoids.Neurotoxicity Res. 5, 425–432.CrossRefGoogle Scholar
  20. Davies CA, SA Loddick, RP Stroemer, J Hunt and NJ Rothwell (1998) An integrated analysis of the progression of cell responses induced by permanent focal middle cerebral artery occlusion in the rat.Exp. Neurol. 154, 199–212.PubMedCrossRefGoogle Scholar
  21. Denizot F and R Lang (1986) Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and realibility.J. Immunol. Methods 89, 271–277.PubMedCrossRefGoogle Scholar
  22. Emmert DH and JT Kirchner (1999) The role of vitamin E in the prevention of heart disease.Arch. Fam. Med. 8, 537–542.PubMedCrossRefGoogle Scholar
  23. Erden Inal M, A Kahraman and T Koken (2001) Beneficial effects of quercetin on oxidative stress induced by ultraviolet A.Clin. Exp. Dermatol. 26, 536–539.CrossRefGoogle Scholar
  24. Esposito E, D Rotilio, V Di Matteo, C Di Giulio, M Cacchio and S Algeri (2002) A review of specific dietary antioxidants and the effects on biochemical mechanisms related to neurodegenerative processes.Neurobiol. Aging 23, 719–735.PubMedCrossRefGoogle Scholar
  25. Ferriola PC, V Cody and E Middleton (1989) Protein kinase C inhibition by plant flavonoids. Kinetic mechanisms and structureactivity relationships.Biochem. Pharmacol. 38, 1617–1624.PubMedCrossRefGoogle Scholar
  26. Fiorani M, R De Sanctis, P Menghinello, B Cellini and M Dacha (2001) Quercetin prevents glutathione depletion induced by dehydroascorbic acid in rabbit red blood cells.Free Radical Res. 34, 639–648.CrossRefGoogle Scholar
  27. Gregoriadis G (1995) Engineering liposomes for drug delivery: progress and problems.Trends Biotechnology 13, 527–537.CrossRefGoogle Scholar
  28. Gupta R, M Singh and A Sharma (2003) Neuroprotective effect of antioxidants on ischaemia and reperfusion-induced cerebral injury.Pharmacol. Res. 48, 209–215.PubMedCrossRefGoogle Scholar
  29. Hertog MGL (1996) Epidemiological evidence on potential health properties of flavonoids.Proc. Nutr. Soc. 55, 385–397.PubMedCrossRefGoogle Scholar
  30. Huh PW, L Belayev, W Zhao, JA Clemens, JA Panetta, R Busto and MD Ginsberg (2000) Neuroprotection by LY341122, a novel inhibitor of lipid peroxidation, against focal ischemic brain damage in rats.Eur. J. Pharmacol. 389, 79–88.PubMedCrossRefGoogle Scholar
  31. Huk I, V Brovkovych, VJ Nanobash, G Weigel, C Neumayer, L Partyka, S Patton and T Malinski (1998) Bioflavonoid quercetin scavenges superoxide and increases nitric oxide concentration in ischaemia-reperfusion injury: an experimental study.Br. J. Surgery 85, 1080–1085.CrossRefGoogle Scholar
  32. Hussain RF, AM Nouri and RT Oliver (1993) A new approach for measurement of cytotoxicity using colorimetric assay.J. Immunol. Methods 160, 89–96.PubMedCrossRefGoogle Scholar
  33. Inanami O, Y Watanabe, B Syuto, M Nakano, M Tsuji and M Kuwabara (1998) Oral administration of (-)catechin protects against ischemia-reperfusion-induced neuronal death in the gerbil.Free Radical Res. 29, 359–365.CrossRefGoogle Scholar
  34. Ishige K, D Schbert and Y Sagara (2001) Flavonoids protect neuronal cells from oxidative stress by three distinct mechanisms.Free Radical Biol. Med. 30, 433–446.CrossRefGoogle Scholar
  35. Kannno A, Y Terada, K Tsuzaki, Y Matsumoto and R Ueoka (1999) Therapeutic effects of hybrid liposomes on mice model of lung carcinoma.Drug Delivery System 14, 37–42.Google Scholar
  36. Kinouchi H, CJ Epstein, T Mizui, E Carlson, SF Chen and PH Chan (1991) Attenuation of focal cerebral ischemic injury in transgenic mice overexpressing Cu/Zn superoxide dismutase.Proc. Natl. Acad. Sci. USA 88, 11158–11162.PubMedCrossRefGoogle Scholar
  37. Kolominsky-Rabas PL C Sarti, PU Heuschmann, C Graf, S Siemonsen, B Neundoerfer, A Katalinic, KG Gassmann and TR von Strockert (1998) A prospective community-based study of stroke in Germany. The Erlangen Stroke Project (Es Pro) incidence and case fatality at 1, 3 and 12 months.Stroke 29, 2501–2506.PubMedGoogle Scholar
  38. Legos J, JA Erhardt, R White, S Lenhard, S Chandra, A Parsons, R Tuma and F Barone (2001) SB 239063, a novel p38 inhibitor, attenuates early neuronal injury following ischemia.Brain Res. 892, 70–77.PubMedCrossRefGoogle Scholar
  39. Leppala J, J Virtamon, R Fogelholm, D Albanes and O Heinonen (1999) Different risk factors for different stroke subtypes: association of blood pressure, colesterol and antioxidants.Stroke 30, 2535–2540.PubMedGoogle Scholar
  40. Lipton P (1999) Ischemic cell death in brain neurons.Physiol. Rev. 79, 1431–1568.PubMedGoogle Scholar
  41. Liu TH, JS Beckman, BA Freeman, EL Hogan and CY Hsu (1989) Polyethylene glycol-conjugated superoxide dismutase and catalase reduce ischemic brain injury.Am. J. Physiol. 256, H589-H593.PubMedGoogle Scholar
  42. Mandel S, L Reznichenko, T Amit and MB Youdim (2003) Green tea polyphenol (-)-epigallocatechin-3-gallate protects rat PC 12 cells from apoptosis induced by serum withdrawal independent of P13-Akt pathway.Neurotoxicity Res. 5, 419–424.CrossRefGoogle Scholar
  43. Margaill I, S Parmentier, J Callebert, M Allix, R Boulu and M Plotkine (1996). Short therapeutic window for MK801 in transient focal cerebral ischemia in normotensive rats.J. Cereb. Blood Flow Metab. 16, 107–113.PubMedCrossRefGoogle Scholar
  44. Miura T, S Muraoka and Y Fujimoto (2003) Inactivation of creatine kinase induced by quercetin with horseradish peroxidase and hydrogen peroxide pro-oxidative and anti-oxidative actions of quercetin.Food Chem. Toxicol. 41, 759–765.PubMedCrossRefGoogle Scholar
  45. Nagao A, M Seki and H Kobayashi (1999) Inhibition of xanthine oxidase by flavonoids.Biosci. Biotechnol. Biochem. 63, 1787–1790.PubMedCrossRefGoogle Scholar
  46. Nagata H, S Takekoshi, T Honma and K Watanabe (1999) Antioxidative action of flavonoids, quercetin and catechin, mediated by the activation of glutathione peroxidase.Tokai J. Exp. Clin. Med. 24, 1–11.PubMedGoogle Scholar
  47. Naidu PS, A Singh and SK Kulkarni (2003) Quercetin, a bioflavonoid, attenuates haloperidol-induced orofacial dyskinesia.Neuropharmacology 44, 1100–1106.PubMedCrossRefGoogle Scholar
  48. Naidu PS, A Singh, and SK Kulkarni (2004) Reversal of reserpineinduced orofacial dyskinesia and cognitive dysfunction by quercetin.Pharmacology 70, 59–67.PubMedCrossRefGoogle Scholar
  49. Nardi GM, R Felippi, S DalBo, JM Siqueira-Jr, DC Arruda, F Delle Monache, AK Timbola, MG Pizzolatti, K Ckless and RM Ribeiro-do-valle (2003) Anti-inflammatory and antioxidant effects of Croton celtidifolius bark.Phytomedicine 10, 176–84.PubMedCrossRefGoogle Scholar
  50. Nicotera P and S Lipton (1999) Excitotoxins in neuronal apoptosis and necrosis.J. Cereb. Blood Flow Metab. 19, 583–591.PubMedCrossRefGoogle Scholar
  51. Park CK, AD Mendelow, DI Graham, J McCulloch and GM Teasdale (1988) Correlation of triphenyltetrazolium chloride perfusion staining with conventional neurohistology in the detection of early brain ischemia.Neuropathol. Appl. Neurobiol. 14, 289–298.PubMedCrossRefGoogle Scholar
  52. Park JB (1999) Flavonoids are potential inhibitors of glucose uptake in U937 cells.Biochem. Biophys. Res. Comm. 260, 568–574.PubMedCrossRefGoogle Scholar
  53. Picq M, M Dubois, Y Munari-Silem, AF Prigent and H Pacheco (1989) Flavonoid modulation of protein kinase C activation.Life Sci. 44, 1563–1571.PubMedCrossRefGoogle Scholar
  54. Prajda N, RL Singhai, YA Yeh, E Olah, KY Look and G Weber (1995) Linkage of reduction in 1-phosphatidylinositol 4-kinase activity and inositol 1,4,5-biphosphate concentration in human ovarian carcinoma cells treated with quercetin.Life Sci. 56, 1587–1593.PubMedCrossRefGoogle Scholar
  55. Preston E and J Webster (2000) Spectrophotometric measurement of experimental brain injury.J. Neurosci. Methods 94, 187–192.PubMedCrossRefGoogle Scholar
  56. Ratty AK and NP Das (1988) Effects of flavonoids on nonenzymatic lipid peroxidation: structure-activity relationship.Biochem. Med. Metab. Biol. 39, 69–79.PubMedCrossRefGoogle Scholar
  57. Rice-Evans C (2001) Flavonoid antioxidants.Curr. Med. Chem. 8, 797–807.PubMedGoogle Scholar
  58. Sakas DE, RM Crowell and NT Zervas (1994) Effects of lecithinemulsified perfluorochemical compounds in ischemic brain injury. Artif. Cells Blood Substit. Immobil. Biotechnol.22, 83–89.PubMedCrossRefGoogle Scholar
  59. Sanderson J, W Lauchlan and G Williamson (1999) Quercetin inhibits hydrogen peroxide-induced oxidation of the rat lens.Free. Radic. Biol. Med. 26, 639–645.PubMedCrossRefGoogle Scholar
  60. Sanhueza J, J Valdes, R Campos, A Garrido and A Valenzuela (1992) Changes in the xanthine dehydrogenase/xanthine oxidase ratio in the rat kidney subjected to ischemia-reperfusion stress: preventive effect of some flavonoids.Res. Commun. Chem. Pathol. Pharmacol. 78, 211–218.PubMedGoogle Scholar
  61. Shichinohe H, S Kuroda, T Abumiya, J Ikeda, T Kobayashi, T Yoshimoto and Y Iwasaki (2004) FK506 reduces infarct volume due to permanent focal cerebral ischemia by maintaining BAD turnover and inhibiting cytochrome c release.Brain Res. 19, 51–59.CrossRefGoogle Scholar
  62. Singh A, PS Naidu and SK Kulkarni (2003) Reversal of aging and chronic ethanol-induced cognitive dysfunction by quercetin, a bioflavonoid.Free Radic. Res. 37, 1245–1252.PubMedCrossRefGoogle Scholar
  63. Soliman KF and EA Mazzio (1998)In vitro attenuation of nitric oxide production in C6 astrocyte cell cultures by various dietary compounds.Proc. Soc. Exp. Biol. Med. 218, 390–397.PubMedGoogle Scholar
  64. Steinberg G, N Panahian, M Perez-Pinzon, G Sun, M Modi and J Sepinwal (1995) Narrow temporal therapeutic window for NMDA antagonist protection against focal cerebral ischemia.Neurobiol. Dis. 2, 109–118.PubMedCrossRefGoogle Scholar
  65. Suzuki S, M Furushiro, M Takahashi, M Sakai and S Kudo (1999) Oral administration of soybean lecithin transphosphatidylated phosphatidylase (SB-tPS) reduces ischemic damage in the gerbil hippocampus.Jpn. J. Pharmacol. 8, 1237–1239.Google Scholar
  66. Swanson RA, MT Morton, G Tsao-Wu, RA Savalos, C Davidson and FC Sharp (1990) A semiautomated method of measurement of brain infarct volume.J. Cereb. Blood Flow Metab. 10, 290–293.PubMedGoogle Scholar
  67. Sydserff SG, AJ Cross and AR Green (1995) The neuroprotective effect of chlormethiazole on ischaemic neuronal damage following permanent middle cerebral artery ischaemia in the rat.Neurodegeneration 4, 323–328.PubMedCrossRefGoogle Scholar
  68. Terao J, M Piskula and Q Yao (1994) Protective effect of epicatechin, epicatechin gallate, and quercetin lipid peroxidation in phospholipid bilayers.Arch. Biochem. Biophys. 308, 278–284.PubMedCrossRefGoogle Scholar
  69. Ueoka R, Y Matsumoto, A Kanno, K Tsuzaki and H Ichihara (2000) Marked therapeutic effects of dimyristoylphosphatidylcholine liposomes on carcinoma mice modelin vivo.Biol. Pharm. Bull. 23, 1262–1263.PubMedGoogle Scholar
  70. Varming T, J Drejer, A Frandsen and A Schousboe (1996) Characterization of a chemical anoxia model in cerebellar granule neurons using sodium azide.J. Neurosci. Res. 44, 40–46.PubMedCrossRefGoogle Scholar
  71. Welton AF, LD Tobias and C Fiedler-Nagy (1986) Effect of flavonoids on arachidonic acid metabolism.Prog. Clin. Biol. Res. 213, 231–242.PubMedGoogle Scholar
  72. Wen TC, M Rogido, P Gressens and A Sola (2004) A reproducible experimental model of focal cerebral ischemia in the neonatal rat.Brain Res. Brain Res. Protoc. 13, 76–83.PubMedCrossRefGoogle Scholar
  73. Williams AJ, JR Dave, JB Phillips, Y Lin, T Mcaber and FC Tortella (2000) Neuroprotective efficacy and therapeutic window of the high-affinity N-methyl-D-aspartate antagonist conantokin-G:in vitro (primary cerebellar neurons) andin vivo (rat model of transient focal brain ischemia) studies.J. Pharmacol. Exp. Ther. 294, 378–386.PubMedGoogle Scholar
  74. Youdim KA, MS Dobbie, G Kuhnle, AR Protegente, NJ Abbott and C Rice-Evans (2003) Interaction between flavonoids and the blood-brain barrier:in vitro studies.J. Neurochem. 85, 180–192.PubMedCrossRefGoogle Scholar
  75. Yu Z, AJ Bruce-Keller, Y Goodman and MP Mattson (1998) Uric acid protects neurons against excitotoxic and metabolic insults in cell culture, and against focal ischemic brain injuryin vivo.J. Neurosci. Res. 53, 613–625.PubMedCrossRefGoogle Scholar
  76. Yulug B, U Kilic, E Kilic and M Bahr (2004) Rifampicin attenuates brain damage in focal ischemia.Brain Res. 16, 76–80.CrossRefGoogle Scholar
  77. Zausinger S, E Hungerhuber, A Baethmann, H Reulen and R Schmid-Elsaesser (2000) Neurological imparirment in rats after transient middle cerebral artery occlusion: a comparative study under various treatment paradigms.Brain Res. 863, 94–105.PubMedCrossRefGoogle Scholar
  78. Zhang DL, YT Zhang, JJ Yin and BL Zhao (2004) Oral administration of Crataegus flavonoids protects against ischemia/reperfusion brain damage in gerbils.J. Neurochem. 90, 211–219.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2004

Authors and Affiliations

  • Felicia Rivera
    • 1
  • Jessika Urbanavicius
    • 1
  • Elena Gervaz
    • 2
  • Andrea Morquio
    • 1
  • Federico Dajas
    • 1
  1. 1.Department of NeurochemistryInstituto de Investigaciones BiológicasClemente EstableMontevideoUruguay
  2. 2.Department of Pathology, Faculty of MedicineUniversidad de la RepúblicaMontevideoUruguay

Personalised recommendations