Neurotoxicity Research

, Volume 6, Issue 4, pp 299–309 | Cite as

Ovariectomy combined with amyloid β1-42 impairs memory by decreasing acetylcholine release and α7nAChR Expression without induction of apoptosis in the hippocampus CA1 neurons of rats

  • Katsunori Iwasaki
  • Izzettin Hatip-Al-Khatib
  • Nobuaki Egashira
  • Yuki Akiyoshi
  • Takashi Arai
  • Kenichi Mishima
  • Yuki Takagaki
  • Keiichiro Inui
  • Michihiro Fujiwara


In this study, the effect of ovariectomy and amyloid P1-42 (Aβ1-42)on eight-armed radial maze performance, acetylcholine (ACh) release, α7nACh receptor (α7nAChR), glyceraldehyde 3-phosphate dehydrogenase (GAPDH) expression, and apoptosis of CA1 neurons in the dorsal hippocampus were investigated in rat. The results showed that the dorsal hippocampus of sham rats contains 136.7 ± 16.7 to 160.4 ± 21.1 fmol/μl ACh, and respective 201 ± 22.9 and 416.6 ± 66.3 expression of mRNA for α7nAChR and GAPDH. Ovariectomy alone, after 4 weeks, did not impair memory, and neither induced apoptosis nor changed the basal ACh release. On the other hand, Aβ1-42 (600 pmol/10 μl/body/day i.c.v. for 7 days) impaired memory, an effect characterized by increased error choices and reduced (50–59%) ACh release, but only with slight apoptosis. Moreover, ovariectomy combined with Aβ1-42 induced memory impairment characterized by decreased numbers of correct choices and increased numbers of errors. This effect was accompanied by a decrease of the basal ACh level (67%), α7nAChR mRNA expression (52%) and α7nAChR/GAPDH ratio (44%) without induction of apoptosis in the dorsal hippocampus. The high K+-evoked ACh release was not altered in ovariectomized rats, but was decreased by Aβ1-42 (43%) and ovariectomy + Aβ1-42 (80%). These results suggest that ovariectomy-induced hormonal deprivation after 4 weeks, when accompanied by Aβ1-42 accumulation in the dorsal hippocampus, could impair memory by decreasing ACh release and α7nAChR expression without inducing apoptosis in the CA1 field of the dorsal hippocampus.


Ovariectomy Amyloid β1-42 Acetylcholine Hippocampus CA1 Memory Apoptosis α7nAChR 



Amyloid beta1-42 peptide




alpha7 nicotinic acetylcholine receptor


Alzheimer’s disease


Correct choice


Dorsal hippocampus


Error choices


Glyceraldehyde 3-phosphate dehydrogenase


Intracerebroventricular infusion




Eight-arm radial maze task


Reverse transcription-polymerase chain reaction

TUNEL test

Terminal deoxynucleotidyl transferase (TdT)-mediated fluorescein-deoxyuridinetriphosphate (dUTP) nick-end labeling.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ammassari-Teule M, S Middei, E Passino and L Restivo (2002) Enhanced procedural learning following beta-amyloid protein (1-42) infusion in the rat.Neuroreport 13, 1679–1682.PubMedCrossRefGoogle Scholar
  2. Bimonte HA and VH Denenberg (1999) Estradiol facilitates performance as working memory load increases.Psychoneuro-endocrinology 24, 161–173.CrossRefGoogle Scholar
  3. Blurton-Jones M and MH Tuszynski (2002) Estrogen receptor-beta colocalizes extensively with parvalbumin-labeled inhibitory neurons in the cortex, amygdala, basal forebrain, and hippocampal formation of intact and ovariectomized adult rats.J. Comp. Neurol. 452, 276–287.PubMedCrossRefGoogle Scholar
  4. Day JR, NJ Laping, M Lampert-Etchells, SA Brown, JP O’Callaghan, TH McNeill and CE Finch (1993) Gonadal steroids regulate the expression of glial fibrillary acidic protein in the adult male rat hippocampus.Neuroscience 55, 435–443.PubMedCrossRefGoogle Scholar
  5. Dineley KT, M Westerman, D Bui, K Bell, KH Ashe and JD Sweatt (2001) Beta-amyloid activates the mitogen-activated protein kinase cascade via hippocampal alpha7 nicotinic acetylcholine receptors:In vitro andin vivo mechanisms related to Alzheimer’s disease.J. Neurosci. 21, 4125–4133.PubMedGoogle Scholar
  6. Farr SA, WA Banks and JE Morley (2000) Estradiol potentiates acetylcholine and glutamate-mediated post-trial memory processing in the hippocampus.Brain Res. 864, 263–269.PubMedCrossRefGoogle Scholar
  7. Fukuta T, A Nitta, A Itoh, S Furukawa and T Nabeshima (2001) Difference in toxicity of beta-amyloid peptide with aging in relation to nerve growth factor content in rat brain.J. Neural Transm. 108, 221–230.PubMedCrossRefGoogle Scholar
  8. Gibbs RB, A Hashash and DA Johnson (1997) Effects of estrogen on potassium-stimulated acetylcholine release in the hippocampus and overlying cortex of adult rats.Brain Res. 749, 143–146.PubMedCrossRefGoogle Scholar
  9. Gold PE (2003) Acetylcholine modulation of neural systems involved in learning and memory.Neurobiol. Learn. Memory 80, 194–210.CrossRefGoogle Scholar
  10. Harkany T, S O’Mahony, J Keijser, JP Kelly, C Konya, ZA Borostyankoi, TJ Gorcs, M Zarandi, B Penke, BE Leonard and PG Luiten (2001) Beta-amyloid(1-42)-induced cholinergic lesions in rat nucleus basalis bidirectionally modulate serotoner-gic innervation of the basal forebrain and cerebral cortex.Neurobiol. Dis. 8, 667–678.PubMedCrossRefGoogle Scholar
  11. Heikkinen T, J Puolivali, L Liu, A Rissanen and H Tanila (2002) Effects of ovariectomy and estrogen treatment on learning and hippocampal neurotransmitters in mice.Horm. Behav. 41, 22–32.PubMedCrossRefGoogle Scholar
  12. Hoshi M, A Takashima, M Murayama, K Yasutake, N Yoshida, K Ishiguro, T Hoshino and K Imahori (1997) Nontoxic amyloid beta peptide 1-42 suppresses acetylcholine synthesis. Possible role in cholinergic dysfunction in Alzheimer’s disease.J. Biol. Chem. 272, 2038–2041.PubMedCrossRefGoogle Scholar
  13. Hsiao K, P Chapman, S Nilsen, C Eckman, Y Harigaya, S Younkin, F Yang and G Cole (1996) Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice.Science 274, 99–102.PubMedCrossRefGoogle Scholar
  14. Ikeda E, K Shiba, H Mori, A Ichikawa, H Sumiya, I Kuji and N Tonami (2000) Reduction of vesicular acetylcholine transporter in beta-amyloid protein-infused rats with memory impairment.Nucl. Med. Commun. 21, 933–937.PubMedCrossRefGoogle Scholar
  15. Isgor C and DR Sengelaub (2003) Effects of neonatal gonadal steroids on adult CA3 pyramidal neuron dendritic morphology and spatial memory in rats.J. Neurobiol. 55, 179–190.PubMedCrossRefGoogle Scholar
  16. Itoh A, A Nitta, M Nadai, K Nishimura, M Hirose, T Hasegawa and T Nadeshima (1996) Dysfunction of cholinergic and dopaminer-gic neuronal systems in beta-amyloid protein-infused rats.J. Neurochem. 66, 1113–1117.PubMedCrossRefGoogle Scholar
  17. Iwasaki K, Y Kitamura, Y Ohgami, K Mishima and M Fujiwara (1996) The impairment of spatial cognition and changes in brain amino acid, monoamine and acetylcholine in rats with transient cerebral ischemia.Brain Res. 709, 163–172.PubMedCrossRefGoogle Scholar
  18. Iwasaki K, EH Chung, N Egashira, I Hatip-Al-Khatib, K Mishima, T Egawa, K Irie and M Fujiwara (2004) Non-NMDA mechanism in the inhibition of cellular apoptosis and memory impairment induced by repeated ischemia in rats.Brain Res. 995, 131–139.PubMedCrossRefGoogle Scholar
  19. Klintsova A, WB Levy and NL Desmond (1995) Astrocytic volume fluctuates in the hippocampal CA1 region across the estrous cycle.Brain Res. 690, 269–274.PubMedCrossRefGoogle Scholar
  20. Lambert MP, AK Barlow, BA Chromy, C Edwards, R Freed, M Liosatos, TE Morgan, I Rozovsky, B Trommer, KL Viola, P Wals, C Zhang, CE Finch, GA Krafft and WL Klein (1998) Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins.Proc. Natl. Acad. Sci. USA 95, 6448–6453.PubMedCrossRefGoogle Scholar
  21. Liu L, T Tapiola, SK Herukka, M Heikkila and H Tanila (2003) Abeta levels in serum, CSF and brain, and cognitive deficits in APP+ PS1 transgenic mice.Neuroreport 14, 163–166.PubMedCrossRefGoogle Scholar
  22. Liu Q, H Kawai and DK Berg (2001) Beta-Amyloid peptide blocks the response of alpha 7-containing nicotinic receptors on hip-pocampal neurons.Proc. Natl. Acad. Sci. USA 98, 4734–4739.PubMedCrossRefGoogle Scholar
  23. Markowska AL and AV Savonenko (2002) Effectiveness of estrogen replacement in restoration of cognitive function after long-term estrogen withdrawal in aging rats.J. Neurosci. 22, 10985–10995.PubMedGoogle Scholar
  24. Moien-Afshari F, E Kenyon, JC Choy, B Battistini, BM McManus and I Laher (2003) Long-term effects of ovariectomy and estrogen replacement treatment on endothelial function in mature rats.Maturitas 45, 213–223.PubMedCrossRefGoogle Scholar
  25. Nakamura S, N Murayama, T Noshita, H Annoura and T Ohno (2001) Progressive brain dysfunction following intracere- broventricular infusion of beta(1-42)-amyloid peptide.Brain Res. 912, 128–136.PubMedCrossRefGoogle Scholar
  26. Paxinos G and C Watson (1998)The Rat Brain Stereotaxic Coordinates, 4th Ed. (Academic Press: New York, USA).Google Scholar
  27. Petanceska SS, V Nagy, D Frail and S Gandy (2000) Ovariectomy and 17beta-estradiol modulate the levels of Alzheimer’s amyloid beta peptides in brain.Neurology 54, 2212–2217.PubMedGoogle Scholar
  28. Puolivali J, J Wang, T Heikkinen, M Heikkila, T Tapiola, T van Groen and H Tanila (2002) Hippocampal A beta1-42 levels correlate with spatial memory deficit in APP and PS1 double trans-genic mice.Neurobiol. Dis. 9, 339–347.PubMedCrossRefGoogle Scholar
  29. Rapp PR, JH Morrison and JA Roberts (2003) Cyclic estrogen replacement improves cognitive function in aged ovariectomized rhesus monkeys.J. Neurosci. 23, 5708–5714.PubMedGoogle Scholar
  30. Sato T, T Teramoto, K Tanaka, Y Ohnishi, M Irifune and T Nishikawa (2003) Effects of ovariectomy and calcium deficiency on learning and memory of eight-arm radial maze in middle-aged female rats.Behav. Brain Res. 142, 207–216.PubMedCrossRefGoogle Scholar
  31. Shughrue PJ and I Merchenthaler (2003) Estrogen prevents the loss of CA1 hippocampal neurons in gerbils after ischemic injury.Neuroscience 116, 851–861.PubMedCrossRefGoogle Scholar
  32. Simpkins JW, PS Green, KE Gridley, M Singh, NC de Fiebre and G Rajakumar (1997) Role of estrogen replacement therapy in memory enhancement and the prevention of neuronal loss associated with Alzheimer’s disease.Am. J. Med 103, 19S-25S.PubMedCrossRefGoogle Scholar
  33. Stephan A, S Laroche and S Davis (2003) Learning deficits and dysfunctional synaptic plasticity induced by aggregated amyloid deposits in the dentate gyrus are rescued by chronic treatment with indomethacin.Eur. J. Neurosci. 17, 1921–1927.PubMedCrossRefGoogle Scholar
  34. Stomati M, F Bernardi, S Luisi, S Puccetti, E Casarosa, M Liut, B Quirici, M Pieri, AD Genazzani, M Luisi and AR Genazzani (2002) Conjugated equine estrogens, estrone sulphate and estra- diol valerate oral administration in ovariectomized rats: effects on central and peripheral allopregnanolone and beta-endorphin.Maturitas 43, 195–206.PubMedCrossRefGoogle Scholar
  35. von Linstow RE, B Platt and G Riedel (2002) No spatial working memory deficit in beta-amyloid-exposed rats. A longitudinal study. Prog. Neuropsychopharmacol.Biol. Psychiatry 26, 955–970.Google Scholar
  36. Wang HW, JF Pasternak, H Kuo, H Ristic, MP Lambert, B Chromy, KL Viola, WL Klein, WB Stine, GA Krafft and BL Trommer (2002) Soluble oligomers of beta amyloid (1-42) inhibit long-term potentiation but not long-term depression in rat dentate gyrus.Brain Res. 924, 133–140.PubMedCrossRefGoogle Scholar
  37. Waynforth HB and PA Flecknell (2001)Experimental and Surgical Techniques in the Rat, 2nd Ed. (Academic Press: California, USA).Google Scholar
  38. Wilson IA, J Puolivali, T Heikkinen and P Riekkinen Jr (1999) Estrogen and NMDA receptor antagonism: effects upon reference and working memory.Eur. J. Pharmacol. 381, 93–99.PubMedCrossRefGoogle Scholar
  39. Winkler J, DJ Connor, SA Frautschy, C Behl, JJ Waite, GM Cole and LJ Thal (1994) Lack of long-term effects after beta-amyloid protein injections in rat brain.Neurobiol. Aging 15, 601–607.PubMedCrossRefGoogle Scholar
  40. Woolley CS and BS McEwen (1992) Estradiol mediates fluctuation in hippocampal synapse density during the estrous cycle in the adult rat.Neuroscience 12, 2549–2554.PubMedGoogle Scholar
  41. Yamada K, T Tanaka, LB Zou, K Senzaki, K Yano, T Osada, O Ana, X Ren, T Kameyama and T Nabeshima (1999) Long-term deprivation of oestrogens by ovariectomy potentiates beta-amyloid-induced working memory deficits in rats.Br. J. Pharmacol. 128, 419–427.PubMedCrossRefGoogle Scholar
  42. Yan JJ, DH Kim, YS Moon, JS Jung, EM Ahn, NI Baek and DK Song (2004) Protection against beta-amyloid peptide-induced memory impairment with long-term administration of extract ofAngelica gigas ordecursinol in mice.Prog. Neuropsychopharm-acol. Biol. Psychiatry 28, 25–30.CrossRefGoogle Scholar
  43. Zerbinatti CV, DF Wozniak, J Cirrito, JA Cam, H Osaka, KR Bales, M Zhuo, SM Paul, DM Holtzman and G Bu (2004) Increased soluble amyloid-beta peptide and memory deficits in amyloid model mice overexpressing the low-density lipoprotein receptor-related protein.Proc. Natl. Acad. Sci. USA 101, 1075–1080.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2004

Authors and Affiliations

  • Katsunori Iwasaki
    • 1
    • 3
  • Izzettin Hatip-Al-Khatib
    • 2
    • 3
  • Nobuaki Egashira
    • 1
  • Yuki Akiyoshi
    • 1
  • Takashi Arai
    • 1
  • Kenichi Mishima
    • 1
  • Yuki Takagaki
    • 1
  • Keiichiro Inui
    • 1
  • Michihiro Fujiwara
    • 1
    • 3
  1. 1.Department of Neuropharmacology, Faculty of Pharmaceutical SciencesFukuoka UniversityJonan-KuJapan
  2. 2.Department of Pharmacology, Division of Internal Medicine, Faculty of MedicinePamukkale UniversityDenizliTurkey
  3. 3.Advanced Material InstituteFukuoka UniversityFukuokaJapan

Personalised recommendations