Advertisement

Neurotoxicity Research

, Volume 13, Issue 1, pp 63–69 | Cite as

Antipsychotic-induced oxidative stress in Rat Brain

  • MÁrcio R. Martins
  • Fabrícia C. Petronilho
  • Karin M. Gomes
  • Felipe Dal-Pizzol
  • Emilio L. Streck
  • JoÃo Quevedo
Article

Abstract

Typical and atypical antipsychotic drugs have been shown to have different clinical and behavioral profiles. Haloperidol (HAL) is a typical neuroleptic that acts primarily as a D2 dopamine receptor antagonist. It has been proposed that reactive oxygen species play a causative role in neurotoxic effects induced by HAL. We evaluated oxidative damage in rat brain induced by chronic (28 days) HAL, clozapine (CLO), olanzapine (OLZ) or aripiprazole (ARI) administration. Adult male Wistar rats received daily injections of HAL (1.5 mg/kg), CLO (25 mg/kg), OLZ (2.5, 5 or 10 mg/kg) or ARI (2, 10 or 20 mg/kg); control animals received vehicle (Tween 1% solution). Thiobarbituric acid reactive substances (TBARS) and protein carbonylation were measured in the prefrontal cortex, hippocampus, striatum and cerebral cortex. The results showed that TBARS were increased in the striatum after HAL treatment. On the other hand, TBARS were diminished in the prefrontal cortex by OLZ and ARI. Our results also showed that all drugs tested in this work decreased TBARS levels in the cerebral cortex. In hippocampus, TBARS levels were not altered by any drug. Protein carbonyl content after HAL and CLO treatment was increased in the hippocampus. Moreover, OLZ and ARI did not alter protein carbonyl content when compared to control group. ARI chronic administration (20 mg/kg) also increased mitochondrial superoxide in the prefrontal cortex and striatum. ARI did not alter mitochondrial superoxide in the hippocampus and cerebral cortex. Moreover, HAL, OLZ and CLO did not cause significant alterations in mitochondrial superoxide in rat brain. Our findings demonstrate that OLZ and ARI do not induce oxidative damage in rat brain as observed after HAL and CLO treatment.

Keywords

Oxidative stress Haloperidol Clozapine Olanzapine Aripiprazole 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdul-Monim Z, GP Reynolds and JC Neill (2006) The effect of atypical and classical antipsychotics on sub-chronic PCP-induced cognitive deficits in a reversal-learning paradigm.Behav. Brain Res. 169, 263–273.PubMedCrossRefGoogle Scholar
  2. Angelucci F, L Aloe, SH Gruber, M Fiore and AA Mathe (2000) Chronic antipsychotic treatment selectively alters nerve growth factor and neuropeptide Y immunoreactivity and the distribution of choline acetyl transferase in rat brain regions.Int. J. Neuropsychopharmacol. 3, 13–25.PubMedCrossRefGoogle Scholar
  3. Arnaiz SL, MF Coronel and A Boveris (1999) Nitric oxide, superoxide and hydrogen peroxide production in brain mitochondria after haloperidol treatment.Nitric Oxide 3, 235–243.PubMedCrossRefGoogle Scholar
  4. Assis LC, G Scaini, PB Di-Pietro, AA Castro, CM Comim, EL Streck and J Quevedo (2007) Effect of antipsychotics on creatine kinase activity in rat brain.Basic Clin. Pharmacol. Toxicol. 101, 315–319. DOI:10.1111/j. 1742-7843.2007.00128.x.PubMedCrossRefGoogle Scholar
  5. Beuzen JN, N Taylor, K Wesnes and A Wood (1999) A comparison of the effects of olanzapine, haloperidol and placebo on cognitive and psychomotor functions in healthy elderly volunteers.J. Psychopharmacol. 13, 152–158.PubMedCrossRefGoogle Scholar
  6. Bilder RM, RS Goldman, J Volavka, P Czobor, M Hoptman, B Sheitman, JP Lindenmayer, L Citrome, J McEvoy, M Kunz, M Chakos, TB Cooper, TL Horowitz and JA Lieberman (2002) Neurocognitive effects of clozapine, olanzapine, risperidone, and haloperidol in patients with chronic schizophrenia or schizoaffective disorder.Am. J. Psychiatry 159, 1018–1028.PubMedCrossRefGoogle Scholar
  7. Buckley PF (2001) Broad therapeutic uses of atypical antipsychotic medications.Biol. Psychiatry 50, 912–924.PubMedCrossRefGoogle Scholar
  8. Cadet JL and JB Lohr (1989) Possible involvement of free radicals in neuroleptic-induced movement disorders. Evidence from treatment of tardive dyskinesia with vitamin E.Ann. NYAcad. Sci. 570, 176–185.CrossRefGoogle Scholar
  9. Carlson CD, PA Cavazzoni, PH Berg, H Wei, CM Beasley and JM Kane (2003) An integrated analysis of acute treatmentemergent extrapyramidal syndrome in patients with schizophrenia during olanzapine clinical trials: comparisons with placebo, haloperidol, risperidone, or clozapine.J. Clin. Psychiatry 64, 898–906.PubMedCrossRefGoogle Scholar
  10. Dal-Pizzol F, F Kamt, MMR Vianna, N Schroder, J Quevedo, MS Benfato, JC Moreira and R Walz (2000) Lipid peroxida tion in hippocampus early and late after status epilepticus induced by pilocarpine or kainic acid in Wistar rats.Neurosci.Lett. 291, 179–182.PubMedCrossRefGoogle Scholar
  11. Dal-Pizzol F, F Klamt, MS Benfato, EA Bernard and JC Moreira (2001) Retinol supplementation induces oxidative stress and modulates antioxidant enzyme activities in rat Sertoli cells.Free Radic. Res. 34, 395–404.PubMedCrossRefGoogle Scholar
  12. De Grey AD (2005) Reactive oxygen species production in the mitochondrial matrix: implications for the mechanism of mitochondrial mutation accumulation.Rejuvenation Res. 8, 13–17.PubMedCrossRefGoogle Scholar
  13. Desco M, JD Gispert, S Reig, J Sanz, J Pascau, F Sarramea, C Benito, A Santos, T Palomo and V Molina (2003) Cerebral metabolic patterns in chronic and recent-onset schizophrenia.Psychiatry Res. 122, 125–135.PubMedCrossRefGoogle Scholar
  14. Deutch AY, B Moghaddam, RB Innis, JH Krystal, GK Aghajanian, BS Bunney and DS Charney (1991) Mechanisms of action of atypical antipsychotic drugs: Implications for novel therapeutic strategies for schizophrenia.Schizophr. Res. 4, 121–156.PubMedCrossRefGoogle Scholar
  15. Dixon LB, AF Lehman and J Levine (1995) Conventional antipsychotic medications for schizophrenia.Schizophr. Bull. 21, 567–577.PubMedGoogle Scholar
  16. Draper HH and M Hadley (1990) Malondialdehyde determination as index of lipid peroxidation.Meth. Enzymol. 186, 421–431.PubMedCrossRefGoogle Scholar
  17. Farde L, FA Wiesel, AL Nordstrom and G Sedvall (1989) D1 and D2-receptor occupancy during treatment with conventional and atypical neuroleptics.Psychopharmacology 99, Suppl. S28-S31.PubMedCrossRefGoogle Scholar
  18. Gentile S (2007) Extrapyramidal adverse events associated with atypical antipsychotic treatment of bipolar disorder. J.Clin. Psychopharmacol. 27, 35–45.CrossRefGoogle Scholar
  19. Halliwell B (1992) Reactive oxygen species and the central nervous system.J. Neurochem. 59, 1609–1623.PubMedCrossRefGoogle Scholar
  20. Jordan S, V Koprivica, R Chen, K Tottori, T Kikuchi and CA Altar (2002) The antipsychotic aripiprazole is a potent, partial agonist at the human 5-HT1a receptor.Eur. J. Pharmacol. 441, 137–140.PubMedCrossRefGoogle Scholar
  21. Kapur S and G Remington (2001) Atypical antipsychotics: new directions and new challenges in the treatment of schizophrenia.Annu. Rev. Med. 52, 503–517.PubMedCrossRefGoogle Scholar
  22. Kern RS, MF Green, BA Cornblatt, JR Owen, RD McQuade, WH Carson, M Ali and R Marcus (2006) The neurocognitive effects of aripiprazole: an open-label comparison with olanzapine.Psychopharmacology (Berl.) 187, 312–320.CrossRefGoogle Scholar
  23. Levine RL, D Garland and CN Oliver (1990) Determination of carbonyl content in oxidatively modified proteins.Meth. Enzymol. 186, 464–478.PubMedCrossRefGoogle Scholar
  24. Lohr JB, JL Cadet, MA Lohr, L Larson, E Wasli, L Wade, R Hylton, C Vidoni, DV Jeste and RJ Wyatt (1988) Vitamin E in the treatment of tardive dyskinesia: the possible involvement of free radical mechanisms.Schizophr. Bull. 14, 291–296.PubMedGoogle Scholar
  25. Lohr JB, R Kuczenski, HS Bracha, M Moir and DV Jeste (1990) Increased indices of free radical activity in the cerebrospinal fluid of patients with tardive dyskinesia.Biol. Psychiatry 28, 535–539.PubMedCrossRefGoogle Scholar
  26. Lowry OH, NJ Rosebrough, AL Farr and RJ Randall (1951) Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193, 265–267.PubMedGoogle Scholar
  27. Mahadik SP, H Laev, A Korenovsky and SE Karpiak (1988) Haloperidol alters rat CNS cholinergic system: enzymatic and morphological analyses.Biol. Psychiatry 24, 199–217.PubMedCrossRefGoogle Scholar
  28. Mahadik SP and S Mukherjee (1996) Free radical pathology and antioxidant defense in schizophrenia: a review.Schizophr. Res. 19, 1–17.PubMedCrossRefGoogle Scholar
  29. Mahadik SP, S Mukherjee, R Scheffer, EE Correnti and JS Mahadik (1996) Elevated plasma lipid peroxides at the onset of non-affective psychosis.Biol. Psychiatry 43, 674–679.CrossRefGoogle Scholar
  30. Marchbanks RM, M Ryan and IN Day (2003) A mitochondrial DNA sequence variant associated with schizophrenia and oxidative stress.Schizophr. Res. 65, 33–38.PubMedCrossRefGoogle Scholar
  31. McQuade RD, KD Burris, S Jordan,et al. (2002) Aripiprazole: a dopamine-serotonin system stabilizer.Int. J. Neuropsychopharmacol. 5, S176. (Abstr.)Google Scholar
  32. Munakata K, K Iwamoto and M Bundo (2005) Mitochondrial DNA 3243A>G mutation and increased expression of LARS2 gene in the brains of patients with bipolar disorder and schizophrenia.Biol. Psychiatry 57, 525–532.PubMedCrossRefGoogle Scholar
  33. Parikh V, MM Khan and SP Mahadik (2003) Differential effects of antipsychotics on expression of antioxidant enzymes and membrane lipid peroxidation in rat brain.J. Psychiatr. Res. 37, 43–51.PubMedCrossRefGoogle Scholar
  34. Parikh V, AV Terry and MM Khan (2004) Modulation of nerve growth factor and choline acetyltransferase expression in rat hippocampus after chronic exposure to haloperidol, risperidone, and olanzapine.Psychopharmacology (Berl.) 172, 365–374.CrossRefGoogle Scholar
  35. Peet M, J Laugharne and N Rangarajan (1993) Tardive dyskinesia, lipid peroxidation, and sustained amelioration with vitamin E treatment.Int. Clin. Psychopharmacol. 8, 151–153.PubMedCrossRefGoogle Scholar
  36. Poderoso JJ, MC Carreras and C Lisdero (1996) Nitric oxide inhibits electron transfer and increases superoxide radical production in rat heart mitochondria and submitochondrial particles.Arch. Biochem. Biophys. 328, 85–92.PubMedCrossRefGoogle Scholar
  37. Polydoro M, N Schröder and MN Lima, F Caldana, DC Laranja, E Bromberg, R Roesler, J Quevedo, JC Moreira and F Dal-Pizzol (2004) Haloperidol- and clozapine-induced oxidative stress in the rat brain.Pharmacol. Biochem. Behav. 78, 751–756.PubMedCrossRefGoogle Scholar
  38. Reddy R and JK Yao (1996) Free radical pathology in schizophrenia: a review.Prostaglandins Leukot. Essent. Fatty Acids 55, 33–43.PubMedCrossRefGoogle Scholar
  39. Reinke A, MR Martins, MS Lima, JC Moreira, F Dal-Pizzol and J Quevedo (2004) Haloperidol and clozapine, but not olanzapine, induces oxidative stress in rat brain.Neurosci. Lett. 372, 157–160.PubMedCrossRefGoogle Scholar
  40. Rosengarten H and D Quartermain (2002) The effect of chronic treatment with typical and atypical antipsychotics on working memory and jaw movements in three- and eighteenmonth-old rats.Prog. Neuropsychopharmacol. Biol. Psychiatry 26, 1047–1054.PubMedCrossRefGoogle Scholar
  41. Seeman P, T Lee, M Chau-Wong and K Wong (1976) Antipsychotic drug doses and neuroleptic/dopamine receptors.Nature 261, 717–719.PubMedCrossRefGoogle Scholar
  42. Sharma T and D Mockler (1998) The cognitive efficacy of atypical antipsychotics in schizophrenia.J. Clin. Psychopharmacol. 18, 12–19.CrossRefGoogle Scholar
  43. Streck EL, GT Rezin, LM Barbosa, LC Assis, E Grandi and J Quevedo (2007) Effect of antipsychotics on succinate dehydrogenase and cytochrome oxidase activities in rat brain.Naunyn Schmiedebergs Arch. Pharmacol. 376(1-2), 127–133. DOI:10.1007/s00210-007-0178-2PubMedCrossRefGoogle Scholar
  44. Terry AV, WD Hill, V Parikh, DR Evans, JL Waller and SP Mahadik (2002) Differential effects of chronic haloperidol and olanzapine exposure on brain cholinergic markers and spatial learning in rats.Psychopharmacology 164, 360–368.PubMedCrossRefGoogle Scholar
  45. Terry AV, WD Hill, V Parikh, JL Waller, DR Evans and SP Mahadik (2003) Differential effects of haloperidol, risperidone and clozapine exposure on cholinergic markers and spatial learning performance in rats.Neuropsychopharmacology 28, 300–309.PubMedCrossRefGoogle Scholar
  46. Terry AV and SP Mahadik (2007) Time-dependent cognitive deficits associated with first and second generation antipsychotics: cholinergic dysregulation as a potential mechanism.J. Pharmacol. Exp. Ther. 320, 961–968.PubMedCrossRefGoogle Scholar
  47. Tollefson GD, CM Beasley Jr, RN Tamura, PV Tran and JH Potvin (1997) Blind, controlled, long-term study of the comparative incidence of treatment-emergent tardive dyskinesia with olanzapine or haloperidol.Am. J. Psychiatry 154, 1248–1254.PubMedGoogle Scholar
  48. Velligan DI, J Newcomer, J Pultz, J Csernansky, AL Hoff, R Mahurin and AL Miller (2002) Does cognitive function improve with quetiapine in comparison to haloperidol?Schizophr. Res. 53, 239–248.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • MÁrcio R. Martins
    • 1
  • Fabrícia C. Petronilho
    • 2
  • Karin M. Gomes
    • 1
  • Felipe Dal-Pizzol
    • 2
  • Emilio L. Streck
    • 2
  • JoÃo Quevedo
    • 1
  1. 1.Laboratório de Neurociências, Programa de Pós-graduaÇão em Ciências da SaúdeUniversidade do Extremo Sul CatarinenseCriciúmaBrazil
  2. 2.Laboratório de Fisiopatologia Experimental, Programa de Pós-graduação em Ciências da SaúdeUniversidade do Extremo Sul CatarinenseCriciúmaBrazil

Personalised recommendations