Advertisement

Neurotoxicity Research

, Volume 1, Issue 1, pp 27–39 | Cite as

The neurotoxicity of glutamate, dopamine, iron and reactive oxygen species: Functional interrelationships in health and disease: A review — discussion

  • John Smythies
Article

Abstract

The fact that glutamate, dopamine, iron and reactive oxygen species are potentially individually highly neurotoxic molecules is well known. The purpose of this review is to examine the less well known complex ways in which their normal biological, as well as their neurotoxic activity, are interconnected in relation to fundamental neuronal functions. These functions include synaptic plasticity (formation and removal of synapses), endocytosis-based recycling of receptors for neurotransmitters and neuromodulators, the role of the redox balance between reactive oxygen species and antioxidants in synaptic function, and the possible role of iron-catecholamine complexes in antioxidant protection and intraneuronal iron transport. These systems are closely involved in several diseases of the nervous system including Parkinson’s disease, schizophrenia and Alzheimer’s disease. In all these oxidative stress and a failure of antioxidant defenses are involved. In the former two the neurotoxicity of catecholaminergic o-quinones is important. In the latter excessive oxidation of neuronal membranes and excessive endocytosis and receptor recycling may be an important factor.

Keywords

Dopamine Endocytosis Glutamate Iron o-quinones Parkinson’s disease ROS Schizophrenia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdalla, D.S.P., Monteiro, H.P., Oliveira, J.A.C. and Bechara, E.J.H. (1986) Activities of superoxide dismutase and glutathione peroxidase in schizophrenic and manic depressive patients.Clin. Chem. 32, 805–807.PubMedGoogle Scholar
  2. Antun, F.T., Burnett, G.B., Cooper, A.J., Daly, R.J., Smythies, J.R. and Zealley, A.K. (1971) The effects of L-methionine (without MAOI) in schizophrenia.J. Psychiatr. Res. 8, 63–71.PubMedCrossRefGoogle Scholar
  3. Beaudet, A., Stroh, X, Choi-Jackson, A., Sarrett, J., Mazella, J., Vincent, J.-P. and Kreinkamp, H.-L. (1998) Internalization of somatostatin via SST5: confocal and electron microscope studies.Abst. Soc. Neurosci. 24, 592.Google Scholar
  4. Ben-Shacher, D., Eschel, G., Riederer, P. and Youdim, M.B. (1992) Role of iron and iron chelation in dopaminergic-induced neurodegeneration: implications for Parkinson’s disease.Ann. Neurol. 32, S105-S110.CrossRefGoogle Scholar
  5. Ben-Shachar, D., Zuk, R. and Glinka, Y. (1995) Dopamine neurotoxicity: inhibition of mitochondrial respiration.J. Neurochem.,64, 718–723.PubMedGoogle Scholar
  6. Berman, S.B. and Hastings, T.G. (1997) Inhibition of glutamate transport in synaptosomes by dopamine oxidation and reactive oxygen species.J. Neurochem. 69, 1185–1195.PubMedGoogle Scholar
  7. Blake, D.R., Winyard, P., Lunec, J., Williams, A., Good, P.A., Crewes, S.J., Gutteridge, J.M.C., Rowley, D., Halliwell, B., Cornish, A. and Hider, R.C. (1985) Cellular and ocular toxicity induced by desferrioxamine.Quart. J. Med. 56, 345–355.PubMedGoogle Scholar
  8. Boudin, H., Schonbrunn, A., Vincent, J.P. and Beaudet, A. (1998) Regulation of the distribution and expression of somatostatin SST2A receptors by somatostatin in rat brain.Abst. Soc. Neurosci. 24, 591.Google Scholar
  9. Bradbury, M.W.B. (1997) Transport of iron in the blood-brain-cerebrospinal fluid system.J. Neurochem. 69, 443–454.PubMedGoogle Scholar
  10. Bretscher, M.S. and Aguado-Velasco, C. (1998) Membrane traffic during cell locomotion.Curr. Op. Cell Biol. 10, 537–541.PubMedCrossRefGoogle Scholar
  11. Breuer, W., Epsztejn, S. and Cabantchik, Z.L. (1995) Iron acquired from transferrin by K562 cells is delivered into a cytoplasmic pool of chelatable iron (II).J. Biol. Chem. 270, 24, 209–24, 215.Google Scholar
  12. Breuer, W., Greenberg, E. and Cabantchik, Z.I. (1997) Newly delivered transferrin iron and oxidative cell injury.FEBS Lett. 403, 213–219.PubMedCrossRefGoogle Scholar
  13. Buckman, T.D., Kling, A.S., Eiduson, S., Sutphin, M.S. and Steinberg, A. (1987) Glutathione peroxidase and CT scan abnormalities in schizophrenia.Biol. Psychiatr. 22, 1349–1356.CrossRefGoogle Scholar
  14. Buckman, T.D., Kling, A., Sutphin, M.S., Steinberg, A. and Eiduson, S. (1990) Platelet glutathione peroxidase and monoamine oxidase activity in schizophrenics with CT scan abnormalities: relation to psychosocial variables.Psychiat. Res. 31, 1–14.CrossRefGoogle Scholar
  15. Cadet, J.L. and Kahler, L.A. (1994) Free radical mechanisms in schizophrenia and tardive dyskinesia.Neurosci. Biobehav. Rev. 18, 457–467.PubMedCrossRefGoogle Scholar
  16. Cammack, J., Ghasemzadeh, B. and Adams, R.N. (1991) The pharmacological profile of glutamate-evoked ascorbic acid efflux measured byin vivo electrochemistry.Brain Res. 565, 17–22.PubMedCrossRefGoogle Scholar
  17. Cao, T.T., Mays, R.W. and von Zastrow, M. (1998) Regulated endocytosis of G-protein-coupled receptors by a biochemically and functionally distinct subpopulation of clathrin-coated pits.J. Biol. Chan. 273, 24,592–24,602.Google Scholar
  18. Carlsson, A., Waters, N. and Hansson, L.O. (1994) Neurotransmitter aberrations in schizophrenia: new findings. In: R. Fog, J. Gerlach and R. Hemmingsen (Eds.),Schizophrenia. An Integrated View. (Copenhagen, Munksgard).Google Scholar
  19. Carstam, R., Brinck, C, Hindemith-Augustsson, A., Rorsman, H. and Rosengren, E. (1991) The neuromelanin of the human substantia nigra.Biochim. Biophys. Acta 1097, 152–160.PubMedGoogle Scholar
  20. Castellani, R., Smith, M.A., Richey, P.L. and Perry, G. (1996) Glycoxidation and oxidative stress in Parkinson’s disease and diffuse Lewy body disease.Brain Res. 737, 195–200.PubMedCrossRefGoogle Scholar
  21. Cataldo, A.M., Barnett, J.L., Pieroni, C. and Nixon, R.A. (1997) Increased neuronal endocytosis and protease delivery to early endosomes in sporadic Alzheimer’s disease: neuro-pathologic evidence of increased beta-amyloidgenesis.J. Neurosci. 17, 6142–6151.PubMedGoogle Scholar
  22. Cheng, F.-C, Kuo, J.-S., Chia, L.-G. and Dryhurst, G. (1996) Elevated 5-S-cysteinyldopamine/homovanillic acid ratio and reduced homovanillic acid in cerebrospinal fluid: possible markers for and potential insights into the patho-biology of Parkinson’s disease.J. Neur. Transmission. 103, 433–446.CrossRefGoogle Scholar
  23. Chiueh, C.C. and Rauhala, P. (1998) Free radicals and MPTP-induced selective destruction of substantia nigra compacta neurons.Adv. Pharmacol. 42, 796–800.PubMedCrossRefGoogle Scholar
  24. Coscia, C.J., Ignatova, E.G. and Belcheva, M.M. (1998) Receptor endocytosis is required for opioid stimulation of mitogen-activated protein (MAP) kinase.Abst. Soc. Neurosci. 24, 2054.Google Scholar
  25. Coulanges, V., Andre, P., Ziegler, O., Buchheit, L. and Vidon, D.J.-M. (1997) Utilization of iron-catecholamine complexes involving ferric reductase activity.Infect. Immun. 65, 2778–2785.PubMedGoogle Scholar
  26. Cuenod, M., Do, K.Q., Lauer, C.J. and Hulsboer, F. (1997) Could a glutathione model integrate both dopamine and glutamate hypothesis of schizophrenia?Biol. Psychiat. 42, 287S.CrossRefGoogle Scholar
  27. Dumartin, B., Caille, I., Gonon, F. and Bloch, B. (1998) Internalization of Dl dopamine receptor in striatal neuronsin vivo as evidence of activation by dopamine agonists.J. Neurosci. 18, 1650–1661.PubMedGoogle Scholar
  28. Ferguson, S.S.G., Barak, L.S., Zhang, J., Laporte, S., Delia Rocco, G. and Caron, M.G. (1998) Formation, trafficking and dissociation of the /32- adrenergic receptor/ /3-arrestin endocytic complex.Abst. Soc. Neurosci. 24, 598.Google Scholar
  29. Fuxe, K., Jansson, A., Tinner, B., Razanin, H., Wang, F.-H., Schött, PA., Agnati, L.F. and ögren, S.O. (1998) Internalization of exogenous ventricular galinin (1-29) into discrete nerve cell populations of the dorsal hippocampus of the rat.Abst. Soc. Neurosci. 24, 2052.Google Scholar
  30. Gai, W.P., Geffen, L.B., Denoroy, L. and Blessing, W.W. (1993) Loss of CI and C3 epinephrine-synthesizing neurons in the medulla oblongata in Parkinson’s disease.Ann. Neurol. 33, 357–367.PubMedCrossRefGoogle Scholar
  31. Gozlan, H. and Ben-Ari, Y. (1995) NMDA receptor redox sites: are they targets for selective neuronal protection?TI Pharm. Sci. 16, 368–374CrossRefGoogle Scholar
  32. Grimes, M.L., Zhou, J., Beattie, E.C., Yuen, E.C., Hall, D.E., Valletta, J.S., Topp, K.S., LaVail, J.H., Bunnett, N.W. and Mobley, W.C. (1996) Endocytosis of activated TrkA: evidence that nerve growth factor induces formation of signalling endosomes.J. Neurosci. 16, 7950–7964.PubMedGoogle Scholar
  33. Grof, S. (1963) Clinical and experimental study of central effects of adrenochrome.J. Neuropsychiatr. 5, 33–50.Google Scholar
  34. Griinewald, R.A. (1993) Ascorbic acid in the brain.Brain Research Reviews 18, 123–133.CrossRefGoogle Scholar
  35. Hevroni, D., Rattner, A., Bundman, M., Lederfein, D., Gabarah, A., Mangelus, M., Silverman, M.A., Kedah, H., Noar, C, Kornuc, M., Hanoch, T, Seger, R., Theill, L.E., Nederi, E., Richter-Levin, G. and Cutri, Y. (1998) Hippo-campal plasticity involves extensive gene induction and multiple cellular mechanisms.J. Mol. Neurosci. 10, 76–98.CrossRefGoogle Scholar
  36. Hipkiss, A.R., Preston, J.E., Himswoth, D.T.M., Worthington, V.C. and Abbot, N.J. (1997) Protective effects of carnosine against malondialdehyde-induced toxicity towards rat brain endothelial cells.Neurosci. Lett. 238, 135–138.PubMedCrossRefGoogle Scholar
  37. Hipkiss, A.R. (1998) Carnosine, a protective, anti-ageing peptide?Intern. J. Biochem. Cell Biol. 30, 863–868.CrossRefGoogle Scholar
  38. Hirasawa, A., Awaji, T, Sugawara, X, Tsujimoto, A. and Tsijumoto, G. (1998) Differential mechanism for the cell surface sorting and agonist-promoted internalization of the alpha lB-adenoceptor.Brit. J. Pharmacol. 124, 55–62.CrossRefGoogle Scholar
  39. Hoffer, A., Osmond, H. and Smythies, J.R. (1954) Schizophrenia. A new approach. Part II.J. Ment. Sci. 100, 29–45.PubMedGoogle Scholar
  40. Itoh, K., Weis, S., Mehraein, P. and Muller-Hocker, J. (1996) Cytochrome c oxidase deficits of the human substantia nigra in normal aging.Neurobiol. Aging 17, 843–841.PubMedCrossRefGoogle Scholar
  41. Jacobs, A. (1977) Low molecular weight intracellular iron transport compounds.Blood 50, 433–439.PubMedGoogle Scholar
  42. Jahn, R. (1998) Synaptic transmission: two players team up for a new tune.Curr. Biol. 8, R856-R858.PubMedCrossRefGoogle Scholar
  43. Jans, D.A. and Hassan, G. (1998) Nuclear targeting by growth factors, cytokines, and their receptors: a role in signaling?Bioessays 20, 400–411.PubMedCrossRefGoogle Scholar
  44. Jenner, P. and Olanow, C.W. (1998) Understanding cell death in Parkinson’s disease.Ann. Neurol. 44S1, S77-S84.Google Scholar
  45. Jordan, B., Cvejic, S. and Devi, L. (1998) Kappa opioid receptor regulation by endocytosis and dimerization.Abst. Soc. Neurosci. 24, 1095.Google Scholar
  46. Kang, M.Y., Tsuchiya, M., Packer, L. and Manabe, M. (1998)In vitro study on the antioxidant potential of various drugs used in the preoperative period.Acta Anaesthesiologica Scandinavica 42, 4–12.PubMedCrossRefGoogle Scholar
  47. Koenig, J.A. and Edwardson, J.M. (1997) Endocytosis and recycling of G protein-coupled receptors.TI Pharmacol. Sci. 18, 276–287.Google Scholar
  48. Liang, C.T. and Sacktor, B. (1978) The stimulation by catecholamines of guanylate cyclase activity in a cell-free system.J. Cyclic Nucleotide Res. 4, 97–111.PubMedGoogle Scholar
  49. Lieb, K, Andrae, J., Reisert, I. and Pilgrim, C. (1995) Neurotoxicity of dopamine and protective effects of the NMDA receptor antagonist AP-5 differ between male and female dopaminergic neurons.Exp. Neurol. 134, 222–229.PubMedCrossRefGoogle Scholar
  50. Liu, J. and Mori, A. (1993) Monoamine metabolism provides an antioxidant defense in the brain against oxidant- and free radical-induced damage.Arch. Biochem. Biophys. 302, 118–127.PubMedCrossRefGoogle Scholar
  51. Liu, M.-T., Roche, K.W., Wenthold, R.J. and Kirchgessner, A. (1998) Reflex-evoked internalization of metabotropic gluta-mate receptors and expression of pCREB imimmoreactivity in enteric neurons.Abst. Soc. Neurosci. 24, 1273.Google Scholar
  52. Mahadik, S.P. and Mukherjee, S. (1996) Free radical pathology and antioxidant defense in schizophrenia: a review.Schiz. Res. 19, 1–17.CrossRefGoogle Scholar
  53. Mahadik, S.P., Mukherjee, S., Scheaffer, R., Correnti, E.E. and Mahadik, J.S. (1998) Elevated plasma lipid peroxides at the onset of nonaffective psychosis.Biol. Psychiat. 43, 674–679.PubMedCrossRefGoogle Scholar
  54. Marder, K., Logroscino, G., Tang, M.X., Graziano, J., Cote, L., Louis, E., Alfano, B., Mejia, H., Slavkovich, V. and Mayeux, R. (1998) Systemic iron metabolism and mortality from Parkinson’s disease.Neurology 50, 1138–1140.PubMedGoogle Scholar
  55. Mattammal, M.B., Strong, R., Lakshmi, V.M., Chung, H.D. and Stephenson, A.H. (1995) Prostaglandin H synthase-mediated metabolism of dopamine: implication for Parkinson’s disease.J. Neurochem. 64, 1645–1654.PubMedGoogle Scholar
  56. McCreadie, R.G., MacDonald, E., Wiles, D., Campbell, G. and Paterson, J.R. (1995) The Nithsdale Schizophrenia Surveys. XIV. Plasma lipid peroxide and serum vitamin E levels in patients with and without tardive dyskinesia, and in normal subjects.Brit. J. Psychiat. 167, 610–617.PubMedCrossRefGoogle Scholar
  57. Melamed, Y., Sirota, P., Dicker, D.R. and Fishman, P. (1998) Superoxide anion production by neutrophils derived from peripheral blood of schizophrenic patients.Psychiatr. Res. 77, 29–34.CrossRefGoogle Scholar
  58. Merad-Boudia, M., Nicole, A., Santiard-Baron, D., Saille, C. and Ceballos-Picot, I. (1998) Mitochondrial impairment as an early event in the process of apotosis induced by glutathione depletion in neuronal cells: relevance to Parkinson’s disease.Biochem. Pharmacol. 56, 645–655.PubMedCrossRefGoogle Scholar
  59. Michel, P.P. and Hefti, F. (1990) Toxicity of 6-hydroxydopamine and dopamine for dopaminergic neurons in culture.J. Neurosci. Res. 26, 428–435.PubMedCrossRefGoogle Scholar
  60. Milby, K.H., Mefford, I.N., Chey, W. and Adams, R.N. (1981)In vitro andin vivo depolarization coupled efflux of ascorbic acid in rat brain preparations.Br. Res. Bull. 7, 237–242.CrossRefGoogle Scholar
  61. Moos, T. and Morgan, E.H. (1998) Evidence for low molecular weight non-transferrin-bound iron in rat brain and cerebrospinal fluid.J. Neurosci. Res. 54, 486–494.PubMedCrossRefGoogle Scholar
  62. Mukherjee, S., Ghosh, R.N. and Maxfield, F.R. (1997) Endocytosis.Physiol. Rev. 77, 759–803.PubMedGoogle Scholar
  63. Murakami, A., Tatsuno, T., Kimura, X, Noguchi, H. and Nakamura, M. (1993) Regulation of nerve growth factor secretion in L-M cells by catechol derivatives.Neurosci. Res. 17, 71–75.PubMedCrossRefGoogle Scholar
  64. Muthane, U., Yasha, T.C. and Shankar, S.K. (1998) Low numbers and no loss of melanized nigral neurons with increasing age in normal human brains in India.Ann. Neurol. 43, 283–287.PubMedCrossRefGoogle Scholar
  65. Nakamura, K, Wang, W. and Kang, U.J. (1997) The role of glutathione in dopaminergic neuronal survival.J. Neurochem. 69, 1850–1858.PubMedGoogle Scholar
  66. Neve, R.L., Coopersmith, R., McPhie, D.L., Santeufemio, C, Pratt, K.G., Murphy, C.J. and Lynn, S.D. (1998) The neuronal growth-associated protein GAP-43 interacts with rabaptin-5 and participates in endocytosis.J. Neurosci. 18, 7757–7767.PubMedGoogle Scholar
  67. O’Brien, P.J. (1998) Personal communication.Google Scholar
  68. Odh, G., Carstam, R., Paulson, J., Wittbjer, A., Rosengren, E. and Rorsman, H. (1994) Neuromelanin of the human substantia nigra: a mixed type melanin.J. Neurochem. 62, 2030–2036.PubMedCrossRefGoogle Scholar
  69. Ohmori, T., Abekawa, T. and Koyama, T. (1996) The role of glutamate in behavioral and neurotoxic effects of metham-phetamine.Neurochem. Int. 29, 301–307.PubMedCrossRefGoogle Scholar
  70. Ollinger, K. and Brunk, U.T. (1995) Cellular injury induced by oxidative stress is mediated through lysosomal damage.Free Rad. Biol. Med. 19, 565–574.PubMedCrossRefGoogle Scholar
  71. Pearce, R.K.B., Owen, A., Daniel, S., Jenner, P. and Marsden, CD. (1997) Alterations in the distribution of glutathione in the substantia nigra in Parkinson’s disease.J. Neural Trans. 104, 661–677.CrossRefGoogle Scholar
  72. Pierce, R.C., Rowlett, J.K., Rebec, G.V. and Bardo, M.T. (1995) Ascorbate potentiates amphetamine-induced conditioned place preference and forebrain dopamine release in rats.Brain Res. 688, 21–26.PubMedCrossRefGoogle Scholar
  73. Qian, Z.M., Tang, PL. and Wang, Q. (1997) Iron crosses the endosomal membrane by a carrier-mediated process.Pro. Biophys. Mol. Biol. 67, 1–15.CrossRefGoogle Scholar
  74. Rebec, G.V. and Pierce, R.C. (1994) A vitamin as neuromodulator: ascorbate release into the extracellular fluid of the brain regulates dopaminergic and glutamatergic transmission.Prog. Neurobiol. 43, 537–565.PubMedCrossRefGoogle Scholar
  75. Reddy, R.D. and Yao, J.K. (1996) Free radical pathology in schizphrenia: a review.Prost. Leuk. Ess. Fatty Acids 55, 33–43.CrossRefGoogle Scholar
  76. Reddy, R., Sahebarao, M.P, Mukherjee, S. and Murthy, J.N. (1991) Enzymes of the antioxidant defense system in chronic schizophrenic patients.Biol. Psychiatr. 30, 409–412.CrossRefGoogle Scholar
  77. Rouze, N.C. and Schwartz, E.A. (1998) Continuous and transient vesicle cycling at a ribbon synapse.J. Neurosci. 18, 8614–8624.PubMedGoogle Scholar
  78. Sam, E.E. and Verbeke, N. (1995) Free radical scavenging properties of apomorphine enantiomers and dopamine: possible implication in their mechaism of action in Parkinsonism.J. Neural Trans. [Parkinson’s disease and Dementia section]10, 115–127.CrossRefGoogle Scholar
  79. Sassoe-Pognetto, M., Cantino, D., Panzanelli, P., Verdun di Cantogno, L., Giustetto, M., Margolis, E, De Biasi, L. and Fasolo, A. (1993) Presynaptic co-localization of carnosine and glutamate in olfactory neurons.NeuroReport 5, 7–10.PubMedGoogle Scholar
  80. Sawada, H., Ibi, M., Kihara, T., Urushitani, M., Akaike, A., Kimura, J. and Shimohama, S. (1998) Dopamine D2-type agonists protect mesencephalic neurons from glutamate neurotoxicity: mechanisms of neuroprotective treatment against oxidative stress.Ann. Neurol. 44, 110–119.PubMedCrossRefGoogle Scholar
  81. Schapira, A.H.V., Mann, V.M., Cooper, J.M., Krige, D., Jenner, P.J. and Marsden, CD. (1992) Mitochondrial function in Parkinson’s disease.Ann. Neurol. 32, S116-S124.PubMedCrossRefGoogle Scholar
  82. Schipper, H.M., Liberman, A. and Stopa, E.G. (1998) Neural heme oxygenase-1 expression in ideopathic Parkinson’s disease.Exp. Neurol. 150, 60–68.PubMedCrossRefGoogle Scholar
  83. Schultz, W. (1997) Dopamine neurons and their role in reward mechanisms.Curr. Op. Neurobiol. 7, 191–197.PubMedCrossRefGoogle Scholar
  84. Schwartz, B.E., Sem-Jacobsen, C. and Petersen, M.C. (1956a) Effects of mescaline, LSD-25 and adrenochrome on depths electrograms in man.Arch. Neurol. Psychiatr. 75, 579–587.Google Scholar
  85. Schwartz, B.E., Wakim, K.G. and Bickford, R. (1956b) Behavioral and electroencephalographic effects of hallucinogenic drugs: changes in cats on intraventricular injection.Arch. Neurol. Psychiatr. 75, 83–90.Google Scholar
  86. Seitz, G., Gebhardt, S., Beck, J.F., Böhm, W., Lode, H.N., Niethammer, D. and Bruchelt, G. (1998) Ascorbic acid stimulates DOPA synthesis and tyrosine hydroxylase gene expression in the human neuroblastoma cell line SK-N-SH.Neurosci. Lett. 244, 33–36.PubMedCrossRefGoogle Scholar
  87. Sesack, S.R., Hawrylak, V.A., Matus, C., Guido, M.A. and Levey, A.I. (1998) Dopamine axon varicosities in the pre-limbic division of the rat prefrontal cortex exhibit sparse immunoreactivity for the dopamine transporter.J. Neurosci. 18, 2697–2708.PubMedGoogle Scholar
  88. Shen, X.-M. and Dryhurst, G. (1996) Oxidation chemistry of (-) norepinephrine in the presence of L-cysteine.J. Med. Chem. 39, 2018–2029.PubMedCrossRefGoogle Scholar
  89. Skarpen, E., Johannessen, L.E., Bjerk, K., Fasteng, H., Guren, T.K., Lindeman, B., Thoresen, G.H., Christoffersen, T., Stang, E., Huitfeldt, H.S. and Madshus, I.H. (1998) Endocytosed epidermal growth factor (EGF) receptors contribute to the EGF-mediated growth arrest in A431 cells by inducing a sustained release of p21/CIPl.Exp. Cell. Res. 243, 161–172.PubMedCrossRefGoogle Scholar
  90. Smythies, J.R. (1996) On the function of neuromelanin.Proc. R. Soc. Lond. B. 263, 487–489.CrossRefGoogle Scholar
  91. Smythies, J.R. (1997) The biochemical basis of synaptic plasticity and neurocomputation: a new theory.Proc. R. Soc. Lond. B. 264, 575–579.CrossRefGoogle Scholar
  92. Smythies, J.R., Gottfries, C.-G. and Regland, B. (1997) Disturbances of one-carbon metabolism in neuropsychiatry disorders: a review.Biol. Psychiat. 41, 230–233.PubMedCrossRefGoogle Scholar
  93. Sorensen, S.D., Linseman, D.A., McEwan, EX., Heacock, A.M. and Fisher, S.K. (1998) A role for a wortmannin-sensitive phosphatidylinositol-4-kinase in the endocytosis of muscarinic cholinergic receptors.Mol. Pharmacol. 53, 827–836.PubMedGoogle Scholar
  94. Szekeres, P.G., Koenig, J.A. and Edw’ardson, J.M. (1998) The relationship between agonist intrinsic activity and the rate of endocytosis of muscarinic receptors in a human neuroblastoma line.Mol. Pharmacol. 53, 759–763.PubMedGoogle Scholar
  95. Taber, M.T. and Fibiger, H.C. (1997) Feeding-evoked dopamine release in the nucleus accumbens: regulation by glutamatergic mechanism.Neuroscience 76, 1105–1112.PubMedCrossRefGoogle Scholar
  96. Taubman, G. and Jantz, H. (1957) Untersuchung über die dem adrenochrom zugeschrieben psychotoxischen wirkungen.Nervenartz 28, 1957.Google Scholar
  97. Toffa, S., Kunikowska, G.M., Zeng, B-Y, Jenner, P. and Marsden, CD. (1997) Glutathione depletion in rat brain does not cause nigrostriatal pathway degeneration.J. Neural. Trans. 104, 67–75.CrossRefGoogle Scholar
  98. Vandenbulcke, F., Nouel, D., Vincent, J.R and Beaudet, A. (1998) Differential intracellular trafficking of neurotensin and of its receptor in COS-7 transfected cells.Abst. Soc. Neurosci. 24, 1592.Google Scholar
  99. Vickery, R.G., Christine, C. and von Zastrow, M. (1998) Subtype-specific differences in dopamine receptor endocytosis.Abst. Soc. Neurosci. 24, 23.Google Scholar
  100. von Zastrow, M. and Kobilka, B.K. (1994) Antagonist-dependent and independent steps in the mechanism of adrenergic receptor internalization.J. Biol. Chem. 269, 18,448–18,452.Google Scholar
  101. Vyoral, D. and Petr’ak, J. (1998) Iron transport in K562 cells: a kinetic study using native gel electrophoresis and59Fe autoradiography.Biochim. Biophys. Acta 1403, 179–188.PubMedCrossRefGoogle Scholar
  102. White, H.L. and Wu, J.C (1975) Properties of catechl O-methyl transferases from brain and liver of rat and human.Biochem. J. 145, 135–143.PubMedGoogle Scholar
  103. Wolfe, L.S., Pappius, H.M. and Marion, J. (1976) The biosynthesis of prostaglandins by brain tissuein vitro.Adv. Prostaglandin Thromboxane Res. 1, 345–355.PubMedGoogle Scholar
  104. Yao, J.K., Reddy, R.D., van Kammen, D.P., McElhiney, L.G. and Korbanic, C.W. (1998) Reduced level of the antioxidant proteins in schizophrenia.Biol. Psychiat. 43, 123S.Google Scholar
  105. Yen, G.C and Hsieh, C.C. (1997) Antioxidant effects of dopamine and related compounds.Biosci. Biotech. Biochem. 61, 1646–1649.CrossRefGoogle Scholar
  106. Zapf-Colby, A. and Olefsky, J.M. (1998) Nerve growth factor processing and trafficking events following Trk-A-mediated endocytosis.Endocrinology 139, 3232–3240.PubMedCrossRefGoogle Scholar
  107. Zhang, J., Price, J.O., Graham, D.G. and Montine, T.J. (1998) Secondary excitotoxicity contributes to dopamine-induced apoptosis of dopaminergic neuronal cultures.Biochem. Biophys. Res. Com. 248, 812–816.PubMedCrossRefGoogle Scholar
  108. Zhao, Z.S., Khan, S. and O’Brien, P.J. (1998) Catecholic iron complexes as cytoprotective superoxide scavengers against hypoxia: reoxygenation injury in isolated hepatocytes.Biochem. Pharmacol. 56, 825–830.PubMedCrossRefGoogle Scholar

Copyright information

© OPA (Overseas Publishers Association) N.V 1999

Authors and Affiliations

  1. 1.Center for Brain and Cognition, Department of PsychologyUCSDLa JollaUSA
  2. 2.Department of NeuropsychiatryInstitute of NeurologyLondonUK

Personalised recommendations