Advertisement

Neurotoxicity Research

, Volume 1, Issue 3, pp 197–233 | Cite as

Reactive oxygen species and reactive nitrogen species: Relevance to cyto(neuro)toxic events and neurologic disorders. An overview

  • Diana Metodiewa
  • Czesław Kośka
Article

Abstract

Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are formed under physiological conditions in the human body and are removed by cellular antioxidant defense systems. During oxidative stress their increased formation leads to tissue damage and cell death. This process may be especially important in the central nervous system (CNS) which is vulnerable to ROS and RNS damage as the result of high O2 consumption, high lipid content and the relatively low antioxidant defenses in brain, compared with other tissues.

Recently there has been an increased number of reports suggesting the involvement of free radicals and their non-radical derivatives in a variety of pathological events and multistage disorders including neurotoxicity, apoptotic death of neurons, and neural disorders: Alzheimer’s (AD), Parkinson’s disease (PD) and schizophrenia. Taking into consideration the basic molecular chemistry of ROS and RNS, their overall generation and location, in order to control or supress their action it is essential to understand the fundamental aspects of this problem. In this presentation we review and summarize the basics of all the recently known and important properties, mechanisms, molecular targets, possible involvement in cellular (neural) degeneration and apoptotic death and in pathogenesis of AD, PD and schizophrenia.

The aim of this article is to provide an overview of our current knowledge of this problem and to inspire experimental strategies for the evaluation of optimum innovative therapeutic trials. Another purpose of this work is to shed some light on one of the most exciting recent advances in our understanding of the CNS: the realisation that RNS pathway is highly relevant to normal brain metabolism and to neurologic disorders as well. The interactions of RNS and ROS, their interconversions and the ratio of RNS/ROS could be an important neural tissue injury mechanism(s) involved into etiology and pathogenesis of AD, PD and schizophrenia.

It might be possible to direct therapeutic efforts at oxidative events in the pathway of neuronal degeneration and apoptotic death. From reviewed data, no single substance can be recommended for use in human studies. Some of the recent therapeutic strategies and neuroprotective trials need further development particularly those of antioxidants enhancement. Such an approach should also consider using combinations of radical(s) scavengers rather than a single substance.

Keywords

ROS RNS Oxidative stress Neurologic disorders Therapeutic strategies 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Abdalla, D.S.P., Monteiro, H.P., Oliveira, J.A.C. and Bechara, E.J. (1986) Activities of superoxide dismutase and glutathione peroxidase in schozofrenic and manicdepressive patients.Clin. Chem. 32, 805–807.PubMedGoogle Scholar
  2. Allen, A.O. and Bielski, B.H.J. (1982) Formation and disapearance of superoxide radicals in aqueous solutions. In Oberley, L.W. (Ed.),Superoxide Dismutase (CRC Press, Boca Raton), pp. 125–141.Google Scholar
  3. Alzheimer, A. (1907) Uber eine eigenartige Erkrankung der Himride.Allg. A. Psychiatr. 64, 146–148.Google Scholar
  4. Baksi, K. (1996) Hydroxyl radical formation during apoptosis induced by 2’-methyl-MPTP in PC12 cells.FASEB J. 10, A 1089.Google Scholar
  5. Balazy, M., Kaminski, P.M., Mao, K.Y., Tan, J.Z. and Wolin, M.S. (1998) S-nitroglutathione, a product of the reaction between peroxynitrite and glutathione that generates nitric oxide.J. Biol. Chem. 273, 32009–32015.PubMedCrossRefGoogle Scholar
  6. Barclay, L.R.C., Locce, S.J. and MacVeil, J.M. (1985) Antioxidation in micelles.Can. J. Chem. 63, 366–374.CrossRefGoogle Scholar
  7. Bartlett, D., Church, D.F., Bounds, PL. and Koppenol, W.H. (1995) The kinetics of the oxidation of L-ascorbic acid by peroxynitrite.Free Rad. Biol Med. 18, 85–92.PubMedCrossRefGoogle Scholar
  8. Beckman, J.S. (1991) The double edged role of nitric oxide in brain function and superoxide-mediated injury.J. Dev. Physiol. 15, 53–59.PubMedGoogle Scholar
  9. Beckman, J.S. and Koppenol, W.H. (1996) Nitric oxide, superoxide and peroxynitrite: the good, the bad and ugly.Amer. J. Physiol. 271, C1424-C1437.PubMedGoogle Scholar
  10. Beckman, J.S., Chen, J., Ischiropoulos, H. and Crow, J.B. (1994) Oxidative chemistry of peroxynitrite.Meth. Enzymol. 233, 229–240.PubMedCrossRefGoogle Scholar
  11. Bensaudon, J.C., Mirochnitchenko, O., Inouye, M., Aebischer, P. and Zum, A.D. (1998) Attenuation of 6-OHDA-induced neurotoxicity in glutathione peroxidase transgenic mice.Eur. J. Neurosci. 10, 3231–3236.CrossRefGoogle Scholar
  12. Bentue-Ferrer, D., Menard, G. and Allain, H. (1996) Monoamine oxidase B inhibitors. Current status and future potential.CNS Drugs 6, 217–236.Google Scholar
  13. Berman, S.B., Zigmond, M.J. and Hastings, T.G. (1996) Modification of dopamine transporter function: effect of reactive oxygen species and dopamine.J. Neurochem. 67, 593–600.PubMedGoogle Scholar
  14. Bielski, B.H.J, and Allen, A.O. (1977) Mechanism of the disproportionation of superoxide radicals.J. Phys. Chem. 81, 1048–1050.CrossRefGoogle Scholar
  15. Bielski, B.H.J, and Cabelli, D.E. (1991) Highlights of current research involving O2 •- and perhydroxyl radicals in aqueous solution.Int. J. Rad. Biol. 59, 291–319.PubMedCrossRefGoogle Scholar
  16. Bielski, B.H.J., Cabelli, D.E. and Arudi, R.L. (1985) Reactivity of HO2/O•- radicals ion aqueous in solution.J. Phys. Chem. Ref. Data 14, 1041–1100.Google Scholar
  17. Bindoli, A., Rigobello, M.P. and Deeble, D.J. (1992) Biochemical and toxicological properties of the oxidative products of catecholamines.Free Rad. Biol. Med. 13, 391–405.PubMedCrossRefGoogle Scholar
  18. Bors, W., Saran, M., Lengfelder, E., Spoettl, R. and Michel, C. (1974) The relevance of the superoxide anion radical in biological systems.Curr. Top. Radiat. Res. Quart. 9, 247–309.Google Scholar
  19. Bredt, D.S. and Snyder, S.H. (1992) Nitric oxide a novel neuronal messenger.Neuron 8, 3–11.PubMedCrossRefGoogle Scholar
  20. Brown, A.S., Moro, M.A., Masse, J.M., Cramer, E.M., Radomski, M. and Darley Ushmar, V. (1998) Nitric oxidedependent and independent effects on human platelets treated with peroxynitrite.Cardiovas. Res. 40, 380–388.CrossRefGoogle Scholar
  21. Brune, B., Sandau, K. and vonKnethen, A. (1998) Apoptotic cell death and nitric oxide: activating and antagonistic transducing pathways.Biochemistry (Moscow)63, 817–825.Google Scholar
  22. Buettner, G.R., (1993) The pecking order of free radicals and antioxidants: lipid peroxidation, a-tocopherol and ascorbate.Arch. Biochem. Biophys. 300, 535–543.PubMedCrossRefGoogle Scholar
  23. Butler, A.R., Flitney, F.W. and Williams, D.L.H. (1995) NO, nitrosonium ions, nitroxide ions, nitrosothiols and ironnitrosyls in biology: a chemist’s perspective.Trends Pharmacol. Sci. 16, 18–22.PubMedCrossRefGoogle Scholar
  24. Butler, J., Hoey, B.M. and Swallow, A.J. (1989) Radiation chemistry. InAnnual Reports C (The Royal Soc. Chem. Cambridge), pp. 49–93.Google Scholar
  25. Buttke, T.M. (1994) Oxidative stress as a mediator of apoptosis.Immunol. Today 15, 7–10.PubMedCrossRefGoogle Scholar
  26. Cadet, J.L. and Kahler, L.A. (1994) Free radical mechanisms in schizophrenia and tardive dyskinesia.Neurosci Biobehav. Rev. 18, 457–467.PubMedCrossRefGoogle Scholar
  27. Cadet, J.L. and Lohr, J.B. (1987) Free radicals and the developmental pathobiology of schizophrenic burnout.Integr. Psychiatry 51, 40–48.Google Scholar
  28. Candeias, L.P., Foekes, L.K. and Wardman, P. (1995) Is Fenton Chemistry that important? In Harder, D. (Ed.)Congress Lectures, Vol.2, pp. 1–4.Google Scholar
  29. Castro, L.A., Robalinho, R.L., Cayota, A., Meneghini, R. and Radi, R. (1998) Nitric oxide and peroxynitrite-dependent aconitase inactivation and iron-regulatory protein-1 activation in mammalian fibroblasts.Arch. Biochem. Biophys. 359, 215–224.PubMedCrossRefGoogle Scholar
  30. Chance, B., Sies, H. and Boveris, A. (1979) Hydrogen peroxide metabolism in mammalian organs.Physiol. Rev. 59, 527–605.PubMedGoogle Scholar
  31. Chiaqui, C.A. and Petkau (1987) Chemical reactivity and biological effects of superoxide radicals.Radiat. Phys. Chem. 30, 365–373.Google Scholar
  32. Choi, D.W. (1993) Nitric oxide: foe or friend to the injured brain.Proc. Natl. Acad. Sci. USA 90, 9741–9743.PubMedCrossRefGoogle Scholar
  33. Cohen, G. (1983) The pathobiology of Parkinson’s disease: biochemical aspects of dopamine neuron senescence.J. Neural Transm. 19 (Suppl.) 89–103.Google Scholar
  34. Cohen, G. (1984) Oxyradicals toxicity in catecholamine neurons.Neurotoxicology 5, 77–82.PubMedGoogle Scholar
  35. Cohen, G. and Werner, P. (1994) Free radicals, oxidative stress and neurodegeneration. In Calne, D.B. (Ed.),Neurodegenerative Diseases (WB Sanders Co., Philadelphia:), pp. 139–161.Google Scholar
  36. Collier, J. and Valance, P. (1991) Physiological importance of nitric oxide.Br. Med. J. 302, 1289–1290.CrossRefGoogle Scholar
  37. Collier, J. and Valance, P. (1989) Second messenger role for NO• widens to nervous and immune systems.Trends Pharmacol. Sci. 10, 535–560.CrossRefGoogle Scholar
  38. Colton, C, Yao, I., Grossman, Y. and Gilbert, D. (1991) The effect of xanthine/xanthine oxidase generated reactive oxygen species on synaptic transmission.Free Rad. Res. Commun. 14, 385–393.CrossRefGoogle Scholar
  39. Cook, J.A., Wink, D.A., Blout, V.et al. (1996) Role of antioxidants in the nitric oxide-elicited inhibition of dopamine uptake in mesencephalic neurons. Insight into potential mechanisms of nitric oxide-mediated neurotoxicity.Neurochem. Int. 28, 609–617.PubMedCrossRefGoogle Scholar
  40. Costa, C, Bertazzo, A., Allegri, G.et al. (1992) Melanin biosynthesis from dopamine. II. A mass spectrometric and collisional spectroscopic investigation.Pigment Cell Res. 5, 122–131.PubMedCrossRefGoogle Scholar
  41. Coyle, J.T. (1996) How neurons die.Biol. Psychiatry 39, 611–619.CrossRefGoogle Scholar
  42. Crapper, M.C., Lachlan, D.R., Dalton, A.J.et al. (1991) Intramuscular desferroxamine in patients with Alzheimer’s disease.Lancet 337, 1304–1308.CrossRefGoogle Scholar
  43. Czapski, G. and Goldstein, S. (1995) The role of the reactions of NO• with superoxide and oxygen in biological systems: a kinetic approach.Free Rad. Biol. Med. 19, 785–794.PubMedCrossRefGoogle Scholar
  44. Czapski, G., Goldstein, S. and Meyerstein, D. (1988) What is unique about O2 toxicity as compared to other biological reductants.Free Rad. Res. Commun. 4, 231–236.CrossRefGoogle Scholar
  45. Darley-Usmar, V, Wisemar, H. and Halliwell, B. (1995) Nitric oxide and oxygen radicals: a question of balance.FEBS Lett. 369, 131–135.PubMedCrossRefGoogle Scholar
  46. Dawson, T.M., Bredt, D., Fotuhi, H., Hwang, P.M. and Snyder, S.A. (1991a) Nitric oxide synthase and neuronal NADPH diaphorase are identical in brain and peripheral tissues.Proc. Natl. Acad. Sci. USA 88, 7797–7801.PubMedCrossRefGoogle Scholar
  47. Dawson, V.L., Dawson, T.M., London, E.D., Bredt, D. and Snyder, S.H. (1991b) Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures.Proc. Natl. Acad. Sci. USA 88, 63–68-63-72.CrossRefGoogle Scholar
  48. De Groot, H. (1994) Reactive oxygen species in tissue injury.Hepato-Gastroenter. 41, 328–332.Google Scholar
  49. Desjardins, P. and Ledoux, S. (1998) The role of apoptosis in neurodegenerative diseases.Metab. Brain Dis. 13, 79–96.PubMedCrossRefGoogle Scholar
  50. Dizdaroglu, M. (1991) Chemical determination of freeradical induced damage to DNA.Free Rad. Biol. Med. 10, 225–242.PubMedCrossRefGoogle Scholar
  51. Dringen, R. and Hamprecht, B. (1998) Glutathione as indicator for cellular metabolism of astroglial cells.Dev. Neurosci. 20, 401–407.PubMedCrossRefGoogle Scholar
  52. Duke, R.C., Chrvenak, R. and Cohen, J.J. (1983) Endogenous endonuclease-induced DNA fragmentation: an early event in cell-mediated cytolysis.Proc. Natl. Acad. Sci. USA 80, 6361–6365.PubMedCrossRefGoogle Scholar
  53. Ehringer, H. and Hornykiewicz, O. (1960) Verteilung vor Noradrenalin und Dopamin (3-hydroxytyramin) in Gehrin des Menschen und ihr Verhalten by Erkrankungen des Extrapyramidalen Systems.Klin. Wochenschr. 38, 1236–1239.PubMedCrossRefGoogle Scholar
  54. Factor, S.A., Sanchez-Ramos, J.R. and Weiner, W. (1990) Vitamin E therapy in Parkinson’s disease.Adv. Neurol. 53, 457–461.PubMedGoogle Scholar
  55. Fahn, S. (1989) The endogenous toxin hypothesis in the etiology of Parkinson’s disease and a pilot trial of high dosage antioxidants in an attempt to slow the progression of the illness.Ann. NY Acad. Sci. 570, 186–196.PubMedCrossRefGoogle Scholar
  56. Fahn, S. and Cohen, G. (1992) The oxidant stress hypothesis in Parkison’s disease: evidence supporting it.Ann. Neurol. 32, 804–812.PubMedCrossRefGoogle Scholar
  57. Farhatazizn, N. and Ross, A.B. (1977) NSRDS-NBS 59, U.S. Department of Commerce, Washington, DC.Google Scholar
  58. Fee, J.A. and Valentine, J.S. (1977) Chemical and physical properties of superoxide. In Michelson, A.M., McCord, J.M. and Fridovich, I. (Eds.),Superoxide and Superoxide Dismutase (Academic Press, New York), pp. 19–60.Google Scholar
  59. Finch, C.E. and Cohen, D.M. (1997) Aging, metabolism and Alzheimer disease: review and hypotheses.Exper. Neurology 143, 82–102.CrossRefGoogle Scholar
  60. Finkel, M.S., Laghrissithode, F, Pollock, B.G. and Rong, J. (1996) Paroxetine is a novel nitric oxide inhibitor.Psychofarmacol. Bull. 32, 653–658.Google Scholar
  61. Floyd, R.A. (1993) Basic free radical biochemistry. In Yu, B.P. (Ed.),Free Radicals in Aging (CRC Press, Inc., Boca Raton), pp. 39–55.Google Scholar
  62. Foote, C.S., Shook, F.C. and Abakerli, R.B. (1984) Characterization of singlet oxygen.Meth. Enzymol. 105, 36–46.PubMedCrossRefGoogle Scholar
  63. Fridovich, I. (1978) The biology of oxygen radicals.Science 201, 875–880.PubMedCrossRefGoogle Scholar
  64. Fu, S., Gebicki, S., Jessup, W., Gebicki, J.M. and Dean, R.T. (1995) Biological fate of amino acid, peptide and protein hydroperoxides.Biochem. J. 311, 821–827.PubMedGoogle Scholar
  65. Fu, W.M., Luo, H., Parthasarathy, S. and Mattson, M.P (1998) Catecholamines potentiate amyloid-peptide neurotoxicity: involvement of oxidative stress.Neurobiol. Dis. 5, 229–243.PubMedCrossRefGoogle Scholar
  66. Gabbita, S.P, Lovell, M.A. and Markesbery, W.R. (1998) Increased nuclear DNA oxidation in the brain in Alzheimer’s disease.J. Neurochem. 71, 2034–2040.PubMedGoogle Scholar
  67. Gardner, A.M., Xu, F.-H., Fady, C, Jakoby, F.J., Duffey, D.C., Tu, Y and Lichtenstein, A. (1997) Apoptotic vs nonapoptotic cytotoxicity induced by hydrogen peroxide.Free Rad. Biol. Med. 22, 73–83.PubMedCrossRefGoogle Scholar
  68. Gartwaite, J. (1991) Glutamate, nitric oxide and cell-signaling in the nervous system.Trends Neurosci. 14, 60–67.CrossRefGoogle Scholar
  69. Garvey, E.P., Oplinger, J., Furfine, E.S.et al. (1997) 1400 W is a slow, tight binding and highly selective inhibitor of inducible nitric oxide synthasein vitro and in vivo. J. Biol. Client.272, 4959–4963.Google Scholar
  70. Gibson, A. and Lilley, E. (1997) Superoxide anions, free radical scavengers and nitrergic neurotransmission.Review. Gen. Pharmacol. 28, 490–493.Google Scholar
  71. Gibson, A., Babbedge, R., Brave, S.R.et al. (1992). An investigation of some S-nitrosothiols and of hydroxy-arginine on the mouse anococcygeus.Br. J. Pharmacol. 107, 715–721.PubMedGoogle Scholar
  72. Gieseg, S.P., Simpson, J.A., Charlton, T.S., Duncan, M.W. and Dean, R.T. (1993) Protein-bound, 3-4-dihydroxyphenylalanine is a major reductant formed during hydroxyl radical damage to proteins.Biochemistry 32, 4780–4786.PubMedCrossRefGoogle Scholar
  73. Goldstein, S. and Czapski, G. (1995) The reaction of NO with O2 and H2: a pulse radiolysis studies.Free Rad. Biol. Med. 19, 505–510.PubMedCrossRefGoogle Scholar
  74. Goldstein, S., Squadrito, G.L., Pryor, W.A. and Czapski, G. (1996) Direct and indirect oxidations by peroxynitrite, neither involving the hydroxyl radical.Free Rad. Biol. Med. 21, 965–974.PubMedCrossRefGoogle Scholar
  75. Good, P.F., Werner, P., Hsu, A., Olanow, C.W. and Perl, D.P (1996) Evidence for neuronal oxidative damage in Alzheimer’s disease.Am. J. Pathol. 149, 21–28.PubMedGoogle Scholar
  76. Greenlund, L.J.S., Deckwert, T.L. and Johnson Jr., E.M. (1995) SOD delayes neuronal apoptosis: a role of reactive oxygen species in programmed neuronal death.Neuron 14, 303–315.PubMedCrossRefGoogle Scholar
  77. Greenstock, C.L. (1984) Oxy-radicals and the radiobiological oxygen effect.Israel J. Chem. 24, 1–10.Google Scholar
  78. Gsell, W., Conrad, R., Hickethier, M. et al. (1995) Decreased catalase activity but unchanged superoxide dismutase activity in brains of patients with dementia of Alzheimer type.J. Neurochem. 64, 1216–1223.PubMedCrossRefGoogle Scholar
  79. Halliwell, B. (1989) Oxidants and the central nervous system: some fundamental questions. Is oxidant damage relevant to Parkinson’s disease, Alzheimer’s disease, traumatic injury or stroke?Acta Neurol. Scand. 126, 23–33.CrossRefGoogle Scholar
  80. Halliwell, B. (1992) Reactive oxygen species and the central nervous system.J. Neurochem. 59, 1609–1623.PubMedCrossRefGoogle Scholar
  81. Halliwell, B. (1995) Antioxidant characterization. Methodology and mechanism.Biochem. Pharmac. 49, 1341–1348.CrossRefGoogle Scholar
  82. Halliwell, B. (1996) Commentary. Oxidative stress, nutrition and health. Experimental strategies for optimization of nutritional antioxidant intake in humans.Free Rad. Res. 25, 57–74.CrossRefGoogle Scholar
  83. Halliwell, B. and Gutteridge, J.M. (1986) Oxygen free radical and iron in relation to biology and medicine: some problems and conception.Arch. Biochem. Biophys. 246, 501–514.PubMedCrossRefGoogle Scholar
  84. Hastings, T.G. (1995) Enzymatic oxidation of dopamine: the role of prostaglandin H synthetase.J. Neurochem. 64, 919–924.PubMedCrossRefGoogle Scholar
  85. Heinzel, B., John, M., Klaft, P., Bohne, E. and Mayer, B. (1992) Ca2+ calmodulin-dependent formation of hydrogen peroxide by brain nitric oxide synthase.Biochem. J. 281, 627–630.PubMedGoogle Scholar
  86. Helberg, C.B., Boggs, S.E. and Lapetina, E.G. (1998) Phosphatidylinositol 3-kinase is a target for protein tyrosine nitration.Biochem. Biophys. Res. Comm. 252, 313–317.CrossRefGoogle Scholar
  87. Hensley, K., Madit, M.L., Yu, Z.Q., Sang, H., Markesbery, W.R. and Floyd, R.A. (1998) Electrochemical analysis of protein nitrotyrosine and dityrosine in the Alzheimer brain indicates region-specific accumulation.J. Neurosci 18, 8126–8132.PubMedGoogle Scholar
  88. Herold, S. (1998) Kinetic and spectroscopic characterization of an intermediate peroxynitrite complex in the nitrogen monoxide induced oxidation of oxyhemoglobin.FEBS Lett. 439, 85–88.PubMedCrossRefGoogle Scholar
  89. Hirsch, E.C. (1993) Does oxidative stress participate in nerve cell death in Parkinson’s disease.Eur. Neurol. 33 (Suppl. 1), 52–59.PubMedCrossRefGoogle Scholar
  90. Hirsch, E.C, Graybiel, A.M. and Agid, Y. (1988) Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson’s disease.Nature 334, 345–348.PubMedCrossRefGoogle Scholar
  91. Hirsch, E.C, Hunot, S., Damier, P. and Faucheux, B. (1998) Glial cells and inflammation in Parkinson’s disease: a role in neurodegeneration?Ann. Neurol. 44, S115-S120.PubMedGoogle Scholar
  92. Hochman, A., Sternin, H., Gorodin, S., Korsmeyer, S., Ziv, I., Melamed, E. and Offen, D. (1998) Enhanced oxidative stress and altered antioxidants in brains of Bcl-2 deficient mice.J. Neurochem. 71, 741–748.PubMedGoogle Scholar
  93. Hockenbery, D.M., Nunez, G., Millman, C, Schreiber, R.D. and Korsmeyer, S.J. (1990) Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death.Nature (London)348, 334–336.CrossRefGoogle Scholar
  94. Hockenbery, D.M., Oltavai, Z.N., Yin, X.-M, Millman, C.L. and Korsmeyer, S.J. (1993) Bcl-2 functions in an antioxidant pathway to prevent apoptosis.Cell 75, 241–251.PubMedCrossRefGoogle Scholar
  95. Hogg, N. and Kalyanaraman, B. (1998) Nitric oxide and low-density lipoprotein oxidation.Free Rad. Res. 28, 593–600.CrossRefGoogle Scholar
  96. Hogg, N., Singh, R.J., Joseph, J., Neese, F. and Kalyanaraman, B. (1995) Reactions of nitric oxide with nitronyl nitroxides and oxygen: prediction of nitrite and nitrate formation by kinetic simulation.Free Rad. Res. 22, 47–56.CrossRefGoogle Scholar
  97. Hoyer, S. (1993) Brain oxidative energy and related metabolism, neuronal stress and Alzheimer’s disease. A speculative synthesis.J. Geriatr. Psych. Neurol. 6, 3–13.Google Scholar
  98. Huggins, T.G., Wells-Knecht, M.C., Detoire, N.A.et al. (1993) Formation of o-tyrosine and dityrosine in proteins during radiolytic and metal-catalyzed oxidation.J. Biol. Chem. 268, 12341–12347.PubMedGoogle Scholar
  99. Hutchins, J.B. and Barger, J.B. (1998) Why neurons die: cell death in the nervous system.Anatom. Rec. 253, 79–90.CrossRefGoogle Scholar
  100. Ignarro, L.J. (1996) Physiology and pathophysiology of nitric oxide.Kidney Int. suppl. 55, S2-S5.PubMedGoogle Scholar
  101. Imlay, J.A., Chin, S.M. and Linn, S. (1988) Toxic DNA damage by hydrogen peroxide through the Fentonin vivo andin vitro. Science240, 640–642.PubMedCrossRefGoogle Scholar
  102. Imlay, Y.A. and Linn, S. (1988) DNA damage and oxygen radical toxicity.Science 240, 1302–1304.PubMedCrossRefGoogle Scholar
  103. Iravani, M.M., Millar, J. and Kruk, Z.L. (1998) Differential release of dopamine by nitric oxide in subregions of rat caudate putamen slices.J. Neurochem. 71, 1969–1977.PubMedGoogle Scholar
  104. Ischiropoulos, A., Beers, M.F., Ohnishi, S.T., Fisher, D., Garner, S.E. and Thorn, S.R. (1996) Nitric oxide production and perivascular tyrosine nitration in brain after carbon monoxide poisoning in the rat.J. Clin. Invest. 97, 2260–2267.PubMedCrossRefGoogle Scholar
  105. Itzhak, Y. and Ali, S.F. (1996) The neuronal nitric oxide synthase inhibitor, 7-nitroindazole.J. Neurochem. 67, 1770–1773.PubMedCrossRefGoogle Scholar
  106. Jenner, P. and Olanow, C.W. (1996) Oxidative stress and pathogenesis of Parkinson’s disease.Neurology 17, 161–170.Google Scholar
  107. Jenner, P. and Olanow, C.W. (1998) Understanding cell death in Parkinson’s disease.Ann. Neurol. 44, S72-S84.PubMedGoogle Scholar
  108. Jesaitis, A.J., Quinn, M.T., Mukhergee, G., Ward, PA. and Dratz, E.A. (1991) Death by oxygen: radical views.N. Biologist 3, 651–659.Google Scholar
  109. Jin, F., Leitich, J. and von Sonntag, C. (1993) The superoxide radical reacts with tyrosine-derived phenoxyl radical by addition rather than by electron transfer.J. Chem. Soc. Perkin Trans. 2, 1583–1588.Google Scholar
  110. Kane, D.J., Sarafian, T.A., Anton, R., Hahn, H., Gralla, E.B., Valentine, J.S., Ord, T. and Bredesen, D.E. (1993) Bcl-2 inhibition of neural death: decreased generation of ROS.Science 262, 1274–1277.PubMedCrossRefGoogle Scholar
  111. Kanner, J., Harel, S. and Grant, R. (1991) Nitric oxide as an antioxidant.Arch. Biochem. Biophys. 289, 130–136.PubMedCrossRefGoogle Scholar
  112. Kashiba-Iwatsuki, M., Kitoh, K., Kasahara, E., Yu, H., Nisikawa, M., Matsuo, M. and Inoue, M. (1997) Ascorbic acid and reducing agents regulate the fates and functions of S-nitrosothiols.J. Biochem. 122, 1208–1214.PubMedGoogle Scholar
  113. Kearns, D.R. (1971) Physical and chemical properties of singlet molecular oxygen.Chem. Res. 71, 395–427.Google Scholar
  114. Khan, A.U. and Wilson, T. (1995) Oxygen radicals acting as chemical messenger.Chem. Biol. 2, 437–445.PubMedCrossRefGoogle Scholar
  115. Kharitonov, V.G., Sundaquist, A.R. and Sharma, VS. (1994) Kinetic of nitric oxide autoxidation in aqueous solution.J. Biol. Chem. 269, 5881–5883.PubMedGoogle Scholar
  116. Kharitonov, V.G., Sundquist, A.R. and Sharma, VS. (1995) Kinetics of nitrosation of thiols by nitric oxide in the presence of oxygen.J. Biol. Chem. 270, 28158–28164.PubMedCrossRefGoogle Scholar
  117. Kish, S.J., Morito, C. and Hornykieiwcz, O. (1985) Glutathione peroxidase activity in PD brain.Neurosci Lett. 58, 343–345.PubMedCrossRefGoogle Scholar
  118. Knowles, R.G., Palacious, M., Palmer, R.M.J, and Moncada, S. (1989) Formation of nitric oxide from L-arginine in the central nervous system: a transduction mechanism for stimulation of soluble guanylate cyclase.Proc. Natl. Acad. Sci. USA86, 51–59.CrossRefGoogle Scholar
  119. Kooy, N.W. and Lewis, S.J. (1996) Nitrotyrosine attenuates the hemodynamic effect of adrenoreceptor agonistsin vivo: relevance to the pathophysiology of peroxynitrite.Eur. J. Pharmacol. 310, 155–164.PubMedCrossRefGoogle Scholar
  120. Landsberg, C.R. and Vollgraf, U. (1998) Mode of cell injury and death after hydrogen peroxide exposure in cultured oligodendroglia cells.Exp. Cell Res. 244, 218–229.CrossRefGoogle Scholar
  121. Lange, K.W., Youdim, M.B.H. and Riederer, P. (1992) Neurotoxicity and neuroprotection in Parkinson’s disease.J. Neural Transm. 38 (Suppl.), 27–44.Google Scholar
  122. Leist, M., Volbracht, C, Fava, E. and Nicotera, P. (1998) l-methyl-4-phenylpyridinium induces autocrine excitotoxicity, protease activation and neuronal apoptosis.Mol. Pharmacol. 54, 789–801.PubMedGoogle Scholar
  123. Lenaz, G. (1998) Role of mitochondria in oxidative stress and ageing.Biochim. Biophys. Acta 1366, 53–67.PubMedCrossRefGoogle Scholar
  124. Leonardo, M.J. and Baltimore, D. (1989) NF-kB: a pleiotropic mediator of inducible and tissue-specific gene control.Cell 42, 227–229.CrossRefGoogle Scholar
  125. Liochev, S. and Fridovich, J. (1994) The role of O2 in the production of HO:in vitro and in vivo. Free Rad. Biol. Med.16, 29–33.PubMedCrossRefGoogle Scholar
  126. Lippe, G., Comelli, M., Mazzilis, D., Sala, F.D. and Mavelli, J. (1991) The inactivation of mitochondrial F1 ATPase by H202 is mediated by iron ions not tightly bound in the protein.Biochem. Biophys. Res. Commun. 181, 764–769.PubMedCrossRefGoogle Scholar
  127. Lipton, S.A., Choi, Y.-B., Pan, Z.-H., Lei, S.Z.et al. (1993) A redox — based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitrosocompounds.Nature (London)364, 626–632.CrossRefGoogle Scholar
  128. Lloyd, R.V., Hanna, P.M. and Mason, R.P (1997) The origin of the hydroxyl radical oxygen in the Fenton reaction.Free Rad. Biol. Med. 22, 885–888.PubMedCrossRefGoogle Scholar
  129. Logager, T. and Sehested, K. (1993) Formation and decay of peroxynitric acid: a pulse radiolysis study.J. Phys. Chem. 97, 10047–10052.CrossRefGoogle Scholar
  130. Lohr, J.B. (1991) Oxygen radicals and neuropsychiatria illness. Some speculations.Arch. Gen. Psychiatry 48, 1097–1106.PubMedGoogle Scholar
  131. Lohr, J.B. and Browning, J. A. (1995) Free radical involvement in neuropsychiatric illness.Psychopharm. Bull. 31, 159–165.Google Scholar
  132. Lonnrot, K., Metsa-Ketala, T., Molnar, G.et al. (1996) The effect of ascorbate and ubiquinone supplementation on plasma and CSF total antioxidant capacity.Free Rad. Biol. Med. 21, 211–217.PubMedCrossRefGoogle Scholar
  133. Lovell, M.A., Ehmann, W.D., Butler, S.M. and Markesbery, W.R. (1995) Elevated thiobarbituric acid-reactive substances and antioxidant enzyme activity in the brain in Alzheimer’s disease.Neurology,55, 342–345.Google Scholar
  134. Maeda, H. and Akaike, T. (1998) Nitric oxide and oxygen radicals in infection, inflammation and cancer.Biochemistry (Moscow)63, 854–865.Google Scholar
  135. Mahadik, S.P. and Mukherjee, S. (1996) Free radical pathology and antioxidant defense in schizophrenia: a review.Schizophrenia Res. 19, 1–17.CrossRefGoogle Scholar
  136. Malyshev, I.Y. and Manukhina, E.B. (1998) Stress, adaptation and nitric oxide.Biochemistry (Moscow)63, 840–853.Google Scholar
  137. Marcetti, P., Decaudin, D., Macho, A., Zamzami, N., Hirsch, T., Susin, S.A. and Kroemer, G. (1997) Redox regulation of apoptosis: impact of thiol oxidation status on mitochondrial function.Eur. J. Immunol. 27, 289–296.CrossRefGoogle Scholar
  138. Maren, S. (1998) Effects of 7-nitrozole, a neural nitric oxide synthase (nNOS) inhibitor, on locomotor activity and contextual fear conditioning in rats.Brain Res. 804, 155–158.PubMedCrossRefGoogle Scholar
  139. Markesbery, W.R. (1997) Oxidative stress hypothesis in Alzheimer’s disease.Free Rad. Biol. Med. 23, 134–147.PubMedCrossRefGoogle Scholar
  140. Matkovics, B., Varga, J. Sz., Hai Do, Quy and Fekete, E. (1996) Nitric oxide (NO): a new, but nowadays very popular free radical.Curr. Topics Biophys. 20 (Suppl.), 102–106.Google Scholar
  141. Mattammal, M.B., Strong, R., Laksmi, V.M.et al. (1995) Prostaglandin H synthetase-mediated metabolism of dopamine: implication for Parkinson’s disease.J. Neurochem. 64, 1645–1654.PubMedCrossRefGoogle Scholar
  142. Mattson, M.P., Keller, J.N. and Begley, J.G. (1998) Evidence for synaptic apoptosis.Exper. Neurol. 153, 35–48.CrossRefGoogle Scholar
  143. Mecocci, P., Cherubini, A., Polidori, M.C., Cecchetti, R., Chionne, F. and Senin, U. (1998) Oxidative stress and lymphocytes in Alzheimer disease.Arch. Geront. Geriatrics (Suppl. 6), 313–316.Google Scholar
  144. Menconi, M.J., Unno, N., Smith, M., Aquirre, D.E. and Fink, M.P. (1998) Nitric oxide donor-induced hypermeability of cultured intestinal epithelial monolayers: role of superoxide radical, hydroxyl radical and peroxynitrite.Biochim. Biophys. Acta 1425, 189–203.PubMedGoogle Scholar
  145. Merad Boudia, M., Nicole, A., Santiard Baron, D., Saille, C. and Ceballos, P.I. (1998) Mitochondrial impairment as an early event in the process of apoptosis induced by glutathione depletion in neuronal cells: relevance to Parkinson’s disease.Biochem. Pharmacol. 56, 645–655.PubMedCrossRefGoogle Scholar
  146. Metodiewa, D. (1998) Molecular mechanisms of cellular injury produced by neurotoxic amino acids that generate reactive oxygen species.Amino Acids 14, 181–187.PubMedCrossRefGoogle Scholar
  147. Metodiewa, D. and Dunford, H.B. (1993) Medical aspects and techniques for peroxidases and catalases. In Scott, G. (Ed.),Atmospheric Oxidation and Antioxidants (Elsevier, Amsterdam), pp. 287–232.Google Scholar
  148. Miller, D.M., Buetner, G.R. and Aust, S.D. (1990) Transition metals as catalyst of ‘autoxidation’ reactions.Free Rad. Biol. Med. 8, 95–108.PubMedCrossRefGoogle Scholar
  149. Minotti, G. and Aust, S.D. (1987) The requirement for iron(III) in the initiation of lipid peroxidation by iron(II) and hydrogen peroxide.J. Biol. Chem. 262, 1098–1104.PubMedGoogle Scholar
  150. Mizuno, Y, Hattori, N. and Matsumine, H. (1998) Neurochemical and neurogenetic correlates of Parkinson’s disease.J. Neurochem. 71, 893–902.PubMedCrossRefGoogle Scholar
  151. Mohanakumar, K.P., Hanbauer, I. and Chiueh, C.C. (1998) Neuroprotection by nitric oxide against hydroxyl radical-induced nigral neurotoxicity.J. Chem. Neuroanatomy 14, 195–205.CrossRefGoogle Scholar
  152. Mollina, Y, Vedia, L., McDonald, B., Reep, B., Brune, B., Di Silvio, M., Milliar, T.R. and Lapetina, E.G. (1992) Nitric oxide-induced A-nitrosylation of glyceraldehyde-3-phos-phate dehydrogenase inhibits enzymatic activity and increases endogenous ADP-ribosylation.J. Biol. Chem. 267, 24929–24932.Google Scholar
  153. Moore, P.K., Oluyomi, A.O., Babbedge, R.C., Wallace, P. and Hart, S.L. (1991) L-NG-nitro arginine methyl ester exhibits antinociceptive activity in the mouse.Br. J. Pharmacol. 102, 198–202.PubMedGoogle Scholar
  154. Napolitano, A., Pezzella, A., Misuraca, G. and Prota, G. (1998) New directions in Parkinson’s research and treatment.Expert Opinion in Ther. Patents 8, 1251–1268.CrossRefGoogle Scholar
  155. Neta, P., Huie, R.E. and Ross, A.B. (1990) Rate constant for reactions of peroxyl radicals in fluid solutions.J. Phys. Chem. ReJ. Data 19, 413–513.CrossRefGoogle Scholar
  156. Niki, E. (1988) Active oxygen, free radicals and peroxidation. In Tsuchiya, M.et al. (Eds.),Free Radicals in Digestive Diseases (Elsevier Sci. Publisher. B.V., Biomedical Division), pp. 15–25.Google Scholar
  157. Offen, D., Ziv, J., Sternin, H.et al. (1996) Prevention of dopamine-induced cell death by thiol antioxidants: possible implications for treatment of Parkinson’s disease.Exp. Neurol. 141, 32–39.PubMedCrossRefGoogle Scholar
  158. Okada, S. (1996) Iron-induced tissue damage and cancer: the role of reactive oxygen species — free radicals.Pathol. Int. 46, 311–332.PubMedCrossRefGoogle Scholar
  159. Olanow, C.W. (1993) A radical hypothesis for neurodegeneration.Trends in Neurosci.16, 439–444.CrossRefGoogle Scholar
  160. Olney, J.W. and Farber, N.B. (1995) Glutamate receptor dysfunction an schizophrenia.Arch. Gen. Psychiatry 52, 998–1007.PubMedGoogle Scholar
  161. Pardo, C.V., DelRio, M.J. and Lopera, F. (1998) Familiae Alzheimer’s disease: oxidative stress, beta amyloid, presenilins and cell death.General Pharmac.31, 675–681.Google Scholar
  162. Parkinson Study Group (1993) Effect of deprenyl and tocopherol on the progression of disability in early Parkinson’s disease.N. Engl. J. Med. 328, 176–183.CrossRefGoogle Scholar
  163. Pasinetti, G.M. (1998) Cyclooxygenase and inflammation in Alzheimer’s disease: experimental approaches and clinical interventions.J. Neurosci. Res. 54, 1–6.PubMedCrossRefGoogle Scholar
  164. Pasquet, J.P.E.E., Zou, M.H. and Ulrich, V. (1996) Peroxynitrite inhibition of nitric oxide synthases.Biochimie 78, 785–791.PubMedCrossRefGoogle Scholar
  165. Pfeiffer, S. and Mayer, B. (1998) Lack of tyrosine nitration by peroxynitrite generated at physiological pH.J. Biol. Chem. 273, 27280–27285.PubMedCrossRefGoogle Scholar
  166. Pfeiffer, S., Gorren, A.C.F., Schmidt, K., Werner, E.R., Hansert, B., Bohle, D.S. and Mayer, B. (1997) Metabolic fate of peroxynitrite in aqueous solution. Reaction with nitrogen oxide and pH-dependent decomposition to nitrite and oxygen in a 2:1 stoichiometry.J. Biol. Chem. 272, 3465–3470.PubMedCrossRefGoogle Scholar
  167. Pfeilschifter, J., Eberhardt, W., Himmel, R.et al. (1996) Therapeutic strategies for the inhibition of inducible nitric oxide synthase. Potential for a novel class of anti-inflammatory agents.Cell Biol. Int. 20, 51–58.PubMedCrossRefGoogle Scholar
  168. Philbert, M.A., Waters, D.K. and Lownders, H.E. (1990) Cellular distribution of GSH in the nervous system.Free Rad. Biol. Med. 9, 20–24.CrossRefGoogle Scholar
  169. Pichorner, H., Metodiewa, D. and Winterbourn, C.C. (1995) Generation of superoxide and tyrosine peroxide as a result of tyrosyl radical scavenging by glutathione.Arch. Biochem. Biophys. 323, 429–437.PubMedCrossRefGoogle Scholar
  170. Pogun, S., Baumann, M.H. and Kuhar, M.J. (1994) Nitric oxide inhibits [3H] dopamine uptake.Brain Res. 641, 81–91.CrossRefGoogle Scholar
  171. Powchik, P., Davidson, M., Haroutunian, V., Gabriel, S.M.et al., (1998) Postmortem studies in schizophrenia.Schizophrenia Bull. 24, 325–341.Google Scholar
  172. Pryor, W.A. (1986) Oxy radicals and related species: their formation, lifetimes and reactions.Ann. Rev. Physiol. 48, 657–667.CrossRefGoogle Scholar
  173. Rabinovic, A.D. and Hastings, T.G. (1998) Role of endogenous glutathione in the oxidation of dopamine.J. Neurochem. 71, 2071–2078.PubMedCrossRefGoogle Scholar
  174. Radi, R., Beckamn, J.S., Bush, K.M. and Freeman, B.A. (1991) Peroxynitrite-induced membrane peroxidation: the cytotoxic potential of superoxide and nitric oxide.Arch. Biochem. Biophys. 288, 481–487.PubMedCrossRefGoogle Scholar
  175. Radi, R., Beckman, J.S., Bush, K.M. and Freeman, B.A. (1991) Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide.J. Biol. Chem. 266, 4244–4250.PubMedGoogle Scholar
  176. Rauhala, P., Khaldi, A., Mohanakumar, K.P. and Chiuech, C.C. (1998a) Apparent role of hydroxyl radicals in oxidative brain injury induced by sodium nitroprusside.Free Rad. Biol. Med. 24, 1065–1073.PubMedCrossRefGoogle Scholar
  177. Rauhala, P., Lin, A.M.-Y. and Chiueh, C.C. (1998b) Neuroprotection by S-nitrosoglutathione of brain dopamine neurons from oxidative stress.FASEB J. 165–173.Google Scholar
  178. Rauhala, P., Sziraki, I. and Chiueh, C.C. (1996) Peroxidation of brain lipids in vitro: nitric oxide versus hydroxyl radical.Free Rad. Biol. Med. 21, 391–394.PubMedCrossRefGoogle Scholar
  179. Reddy, R.D. and Yao, J.K. (1996) Free radical pathology in schizophrenia: a review.Prostagi. Leu. Essent. Fatty Acids 55, 33–43.CrossRefGoogle Scholar
  180. Reddy, R.D., Sahebarao, MR, Mukherjee, S.et al. (1991) Enzymes of the antioxidant defense system in chronic schizophrenia patients. Biol.Psychiatry 30, 409–412.Google Scholar
  181. Rich, J.B., Rasmusson, D.X., Folstein, M.F.et al. (1995) Nonsteroidal anti-inflammatory drugs in Alzheimer’s disease.Neurology 45, 51–55.PubMedGoogle Scholar
  182. Richardson, J.S. (1993) Free radicals in the genesis of Alzheimer’s disease.Ann. NY Acad. Sci. 695, 73–76.PubMedCrossRefGoogle Scholar
  183. Riley, PA. (1994) Free radicals in biology: oxidative stress and the effects of ionizing radiation.Int. J. Rad. Biol. 65, 27–33.PubMedCrossRefGoogle Scholar
  184. Romero, F.J., Morell, B.F, Romero, M.J., Jareno, E.J., Romero, B., Marin, N. and Roma, J. (1998) Lipid peroxidation products and antioxidants in human disease.Environ. Health Perspect. 106 (Suppl. 5), 1229–1234.PubMedCrossRefGoogle Scholar
  185. Roots, R. and Okada, S. (1975) Estimator of life times and diffusion distances of radicals involved in X-ray induced DNA strand breaks of killing of mammalian cells.Radiat. Res. 64, 306–320.PubMedCrossRefGoogle Scholar
  186. Ross, A.B., Mallard, W.G., Hellman, W.P., Bielski, B.H.J, and Buxton, G.V. (1992) NDRL — NIST Solution Kinetic Database Ver 1, Nat. Inst. Standards Technol., Gattesburg, MD, USA.Google Scholar
  187. Rothstein, J.D., Bristol, L.A., Hosier, B.et al. (1994) Chronic inhibition of superoxide dismutase produces apoptotic death of spinal neurons.Proc. Natl. Acad. Sci. USA 91, 4155–4159.PubMedCrossRefGoogle Scholar
  188. Rubbo, H., Radi, M., Trujillo, M.et al. (1994). Nitric oxide regulation of superoxide and peroxynitrite-dependent lipid peroxidation.J. Biol. Chem. 269, 26066–26075.PubMedGoogle Scholar
  189. Saggu, H., Cooksey, J., Dexter, D.et al. (1989) A selective increase in particulate SOD activity in Parkinsonian substantia nigra.J. Neurochem. 53, 692–697.PubMedCrossRefGoogle Scholar
  190. Salvemini, D. and Masferrer, J.L. (1996) Interactions of nitric oxide with cyclooxygenase:in vitro, ex vivo andin vivo studies.Meth. Enzymol. 269, 12–25.PubMedCrossRefGoogle Scholar
  191. Samuni, A., Aronovich, I., Godinger, D., Chevion, M. and Czapski, G. (1983) On the toxicity of vitamin C and metal ions: A site specific Fenton mechanism.Eur. J. Biochem. 137, 119–124.PubMedCrossRefGoogle Scholar
  192. Saran, M. and Bors, W. (1990) Radical reactionsin vivo — an overview.Radiat. Environ. Biophys. 29, 249–262.PubMedCrossRefGoogle Scholar
  193. Saran, M. and Bors, W. (1989) Oxygen radicals acting as chemical messengers: a hypothesis.Free Rad. Res. Commun. 7, 213–220.CrossRefGoogle Scholar
  194. Saran, M., Michel, C. and Bors, W. (1988) Reactivities of free radicals. In Schulte-Hostede, S., Darrall, N.M., Blank, L.W. and Wellburn, A.R. (Eds.)Air Pollution and Plant Metabolism (Elsevier Appl. Sci., London), pp. 76–93.Google Scholar
  195. Sawyer, D.T. and Valentine, J.S. (1981) How super is superoxide?Ace. Chem. Res. 14, 393–400.CrossRefGoogle Scholar
  196. Scharfstein, J.S., Keaney, J.F., Slivka, A., Welch, G.N.et al. (1994)In vivo transfer of nitric oxide between a plasma-protein bound reservoir of low-molecular weight thiols.J. Clin. Invest. 94, 1432–1439.PubMedCrossRefGoogle Scholar
  197. Schreck, R.K., Alberman, K. and Bauerle, PA. (1992) Nuclear factor kappaB and oxidative stress-responsive transcription factor of eucaryotic cells: a review.Free Rad. Res. Commun. 17, 221–237.CrossRefGoogle Scholar
  198. Searle, J., Kerr, J.F.R. and Bishop, C.J. (1982) Necrosis and apoptosis: distinct modes of cell death with fundamentally different significance.Pathol Annu. 17, 229–259.PubMedGoogle Scholar
  199. Segura-Aguilar, J., Metodiewa, D. and Welch, C. (1998) Metabolic activation of dopamineo-quinones too-semiqui-none by NADPH cytochrome P450 reductase may play an important role in oxidative stress and apoptotic effects.Biochim. Biophys. Acta 1381, 1–6.PubMedGoogle Scholar
  200. Shapira, A.H.V., Mann, V.M., Cooper, J.M., Dexter, D., Daniel, S.E., Jenner, P., Clark, J. and Marsden, CD. (1990) Anatomical and disease specifity of NADHCoQ reductase (complex I) deficiency in PD.J. Neurochem. 55, 2114–2149.Google Scholar
  201. Sharpe, M.K. and Cooper, C.E. (1998) Interaction of peroxynitrite with mitochondrial cytochrome oxidase — catalytic production of nitric oxide and irreversible inhibition of enzyme activity.J. Biol. Chem. 273, 30961–30972.PubMedCrossRefGoogle Scholar
  202. Shibuta, S., Mashimo, T., Zhang, P., Ohara, A. and Yoshiya, I. (1996) A new nitric oxide donor, NOC-18, exhibits a nociceptive effect in the rat formalin model.J. Neurol. Sci. 141, 1–5.PubMedCrossRefGoogle Scholar
  203. Sies, H. (1993) Strategies of antioxidant defense.Eur. J. Biochem. 215, 213–219.PubMedCrossRefGoogle Scholar
  204. Simic, M.G. (1988) Mechanisms of inhibition of free-radical processes in mutagenesis and carcinogenesis.Mutation Res. 202, 377–386.PubMedGoogle Scholar
  205. Simonson, W. (1998) Promising agents for treating Alzheimer’s disease.Amer. J. Health 55 (Suppl. 2), S11-S16.Google Scholar
  206. Singh, A., Antonsen, S.A., Koroll, G.W., Kremers, W. and Singh, H. (1984) Radiolysis and photolysis of aqueous aerated tryptophan solutions. In Bors, W., Saran, M. and Tait, D. (Eds.)Oxygen Radicals in Chemistry and Biology (W. Gruyter and Co, Berlin-New York), pp. 491–494.Google Scholar
  207. Singh, R.J., Hogg, N., Josepj, J. and Kalyanaraman, B. (1996) Mechanism of nitric oxide release form S-nitrosothiols.J. Biol. Chem. 271, 18596–18603.PubMedCrossRefGoogle Scholar
  208. Slivka, A., Spina, M.B. and Cohen, G. (1987) Reduced and oxidized glutathione in human and monkey brain.Neurosci Lett. 67, 269–274.Google Scholar
  209. Smith, M.A., Perry, G., Richey, PL., Sayre, L.M., Anderson, V.E., Beal, M.F. and Kowall, N. (1996) Oxidative damage in Alzheimer’s.Nature 382, 120–121.PubMedCrossRefGoogle Scholar
  210. Smith, M.A., Vasak, M., Knipp, M., Castellani, R.J. and Perry, G. (1998) Dimethylargininase, a nitric oxide regulatory protein, in Alzheimer disease.Free Rad. Biol. Med. 25, 898–902.PubMedCrossRefGoogle Scholar
  211. Smythies, J.R. (1996) On the function of neuromelanin.Proc. Roy. Soc. London B263, 491–496.Google Scholar
  212. Smythies, J.R. (1997) Oxidative reactions and schizophrenia: a review-discussion.Schizophrenia Res. 24, 357–364.CrossRefGoogle Scholar
  213. Smythies, J.R., Gottfries, C.-G. and Regland, R. (1997) Disturbances of one-carbon metabolism in neuropsychiatric disorders: a review.Biol. Psychiatry 41, 230–233.PubMedCrossRefGoogle Scholar
  214. Sofic, E., Lange, K.W., Jellinger, K. and Reiderer, P. (1992) Reduced and oxidized glutathione in the substantia nigra of patients with PD.Neurosci. Lett. 142, 128–130.PubMedCrossRefGoogle Scholar
  215. Spencer, J.P.E., Jenner, P., Daniel, S.E., Less, S.E., Marsden, D.C. and Halliwell, B. (1998) Conjugates of catecholamines with cysteine and GSH in Parkinson’s disease: possible mechanisms of formation involving reactive oxygen species.J. Neurochem. 71, 2112–2122.PubMedCrossRefGoogle Scholar
  216. Spina, M.B. and Cohen, G. (1988) Dopamine turnover and glutathione oxidation: implications for Parkinson’s disease.Proc. Natl. Acad. Sci. USA 80, 1398–1400.Google Scholar
  217. Squadrito, G.L., Jin, X. and Pryor, W.A. (1995) Stopped-flow kinetics study of the reaction of ascrobic acid with peroxynitrite.Arch. Biochem. Biophys. 322, 53–59.PubMedCrossRefGoogle Scholar
  218. Stadtman, E.R. (1990) Metal ion-catalyzed oxidation of proteins: biochemical mechanism and biological consequences.Free Rad. Biol. Med. 9, 315–329.PubMedCrossRefGoogle Scholar
  219. Stadtman, E.R. and Oliver, C.N. (1991) Metal-catalyzed oxidations of proteins. Physiological consequences.J. Biol. Chem. 266, 2005–2008.PubMedGoogle Scholar
  220. Steenken, S. and Jovanovic, S.V. (1997) How easily oxidizable is DNA? One-reduction potential of adenosine and guano-sine radicals in aqueous solution.J. Amer. Chem. Soc. 119, 617–618.CrossRefGoogle Scholar
  221. Strijbos, P.J.L.M. (1998) Nitric oxide in cerebral ischemic neurodegeneration and excitoxicity.Critical Rev. Neurobiology 12, 223–243.Google Scholar
  222. Subramaniam, R., Koppal, T., Green, M., Yatin, S., Jordan, B., Drake, J. and Butterfield, D.A. (1998) The free radical antioxidant vitamin E protect cortical synaptosomal membranes from amyloid beta peptide (25–35) toxicity but not from hydroxynonenal toxicity: relevance to the free radical hypothesis of Alzheimer’s disease.Neurochem. Res. 23, 1403–1410.PubMedCrossRefGoogle Scholar
  223. Sun, Y. (1990) Free radicals, antioxidant enzymes and carcinogenesis.Free Rad. Biol. Med. 8, 583–599.PubMedCrossRefGoogle Scholar
  224. Sutor, B. and Ten Bruggencate, G. (1990) Ascorbic acid: a useful reductant to avoid oxidation of catecholamines in electrophysiological experimentsin vitro. Nerosci. Lett.116, 287–292.CrossRefGoogle Scholar
  225. Suzuki, Y.J., Forman, H.J. and Sevanian, A. (1997) Oxidants as stimulator of signal transduction.Free Rad. Biol. Med. 22, 269–285.PubMedCrossRefGoogle Scholar
  226. Sziraki, I., Mohanakumar, K.P., Rauchala, P., Kim, H.G., Yeh, K.J. and Chiueh, C.C. (1998) Manganese: a transition metal protects nigrostratial neurons from oxidative stress in the iron-induced animal model of Parkinsonism.Neuroscience 85, 1101–1111.PubMedCrossRefGoogle Scholar
  227. Tagami, M., Yamagata, K., Ikeda, K., Nara, Y, Fujino, H., Kubota, A., Numano, F. and Yamori, Y (1998) Vitamin E prevents apoptosis in cortical neurons during hypoxia and oxygen reperfusion.Lab. Invest. 78, 1415–1429.PubMedGoogle Scholar
  228. Taglialatela, G., PerezPolo, J.R. and Rassin, D.K. (1998) Induction of apoptosis in the CNS during development by the combination of hyperoxia and inhibition of glutathione synthesis.Free Rad. Biol. Med. 25, 936–942.PubMedCrossRefGoogle Scholar
  229. Thomas, T, McLendon, C. and Thomas, G. (1998) L-deprenyl: nitric oxide production and dilation of cerebral blood vessels.Neuroreport 9, 2595–2600.PubMedCrossRefGoogle Scholar
  230. Thompson, C.B. (1995) Apoptosis in the pathogenesis and treatment of disease.Science 267, 1456–1462.PubMedCrossRefGoogle Scholar
  231. Toyokuni, S. (1996) Iron-induced carcinogenesis: the role of redox regulation.Free Rad. Biol. Med. 20, 553–566.PubMedCrossRefGoogle Scholar
  232. Uppu, R.M., Lemercier, J.N., Squadrito, G.L., Zhang, H.W., Bolzan, R.M. and Pryor, W.A. (1998) Nitrosation by peroxynitrite: use of phenol as a probe.Arch. Biochem. Biophys. 358, 1–16.PubMedCrossRefGoogle Scholar
  233. van der Vliet, A., Hoen, P.A.C., Wong, P.S.Y., Bast, A. and Cross, C.E. (1998) Formation of S-nitrosothiols via direct nucleophilic nitrosation of thiols by peroxynitrite with elimination of hydrogen peroxide.J. Biol. Chem. 273, 30255–30262.PubMedCrossRefGoogle Scholar
  234. Vanin, A.F. (1998) Dinitrosyl iron complexes and S-nitrosothiols are two possible forms for stabilization and transport of nitric oxide in biological systems.Biochemistry (Moscow)63, 782–793.Google Scholar
  235. Volz, H.P. and Gleiter, C.H. (1998) Monoamine oxidase inhibitors: a perspective on their use in the elderly.Drugs and Aging 13, 341–355.PubMedCrossRefGoogle Scholar
  236. Wagner, G.C., Jarvis, M.F. and Carelli, R.M. (1985) Ascorbic acid reduces the dopamine depletion induced by MPTPNeuropharmacology 24, 1261–1262.PubMedCrossRefGoogle Scholar
  237. Wan Norby, S., Weyhenmeyer, J.A. and Clarkson, R.B. (1997) Simulation and inhibition of nitric oxide production in macrophages and neural cells as observed by spin trapping.Free Rad. Biol. Med. 22, 1–9.CrossRefGoogle Scholar
  238. Ward, J.F. (1994) The complexity of DNA damage: relevance to biological consequences.Int. J. Radiat. Biol. 66, 427–432.PubMedCrossRefGoogle Scholar
  239. Weindruch, R., Warner, H.R. and Starke-Reed, P.E. (1993) Future directions of free radical research in aging. In Yu, B.P. (Ed.),Free Radicals in Aging (CRC Press, Inc., Boca Raton), pp. 269–289.Google Scholar
  240. Wennmalm, A., Benthin, G., Jungersten, L., Edlung, A. and Petersson, A.S. (1994) Nitric oxide formation in man as reflected by plasma levels of nitrate, with special focus on kinetics, confounding factors and response to immunological challenge. In Moncada, S., Feelish, M., Busse, R. and Higgs, E.A. (Eds.)The Biology of Nitric Oxide (Portland Press) pp. 474–476.Google Scholar
  241. Wickelgren, I. (1998) Neurobiology — a new route to treating schizophrenia.Science 281, 1264–1265.PubMedCrossRefGoogle Scholar
  242. Wilson, R.J. (1986) Organic peroxy free radicals as ultimate agents in oxygen toxicity. In Sies, H. (Ed.),Oxidative stress (Academic Press, London), pp. 41–72.Google Scholar
  243. Wink, D.A. and Grisham, M.B. (1996) Modulation of superoxide-dependent oxidation and hydroxylation reactions by nitric oxide.J. Biol. Chem. 271, 40–47.PubMedCrossRefGoogle Scholar
  244. Wink, D.A., Hanbauer, J., Krishna, M.C., De Graff, W., Gamson, J. and Mitchell, J.B. (1993) Nitric oxide protects against cellular damage and cytotoxicity from reactive oxygen species.Proc. Natl. Acad. Sci. USA 90, 9813–9817.PubMedCrossRefGoogle Scholar
  245. Wink, D.A., Nims, R.W., Saavedra, J.E., Utermahlen Jr., W.E. and Ford, PC. (1994) The Fenton oxidation mechanism: reactivities of biologically relevant substrates with two oxidizing intermediates differ from those predicted for the hydroxyl radical.Proc. Natl. Acad. Sci. USA 91, 6604–6608.PubMedCrossRefGoogle Scholar
  246. Winterbourn, C.C. (1993) Superoxide as an intracellular sink.Free Rad. Biol. Med. 14, 85–90.PubMedCrossRefGoogle Scholar
  247. Winterbourn, C.C. and Metodiewa, D. (1994) The reaction of superoxide with reduced glutathione.Arch. Biochem. Biophys. 314, 284–290.PubMedCrossRefGoogle Scholar
  248. Winterbourn, C.C. and Metodiewa, D. (1995) The reaction of superoxide with thiols.Meth. Enzymol. 251 (Biothiols), 81–86.PubMedCrossRefGoogle Scholar
  249. Winterbourn, C.C. and Metodiewa, D. (1998) Reactivity of biologically relevant thiol compounds with superoxide and hydrogen peroxide.Free Rad. Biol. Med. (in press).Google Scholar
  250. Wood, J. and Garthwaite, J. (1994) Models of the diffusional spread of nitric oxide: implications for neural nitric oxide signaling and its pharmacological properties.Neuropharmacology 33, 1235–1244.PubMedCrossRefGoogle Scholar
  251. Xia, Y, Dawson, V.L., Dawson, T.M., Snyder, S.H. and Zweier, J.L. (1996) Nitric oxide synthase generates superoxide and nitric oxide in arginine — depleted cells leading to peroxynitrite — mediated cellular injury.Proc. Natl. Acad. Sci. USA 93, 6770–6774.PubMedCrossRefGoogle Scholar
  252. Yallampalli, S., Micci, M.A. and Taglialatela, G. (1998) Ascorbic acid prevents beta-amyloid-induced intracellular calcium increase and cell death in PC-12 cells.Neurosci. Lett. 251, 105–108.PubMedCrossRefGoogle Scholar
  253. Yao, J.K., Reddy, R. and van Kammen, D.P. (1998a) Reduced level of plasma antioxidant uric acid in schizophrenia.Psychiatry Res. 80, 29–39.PubMedCrossRefGoogle Scholar
  254. Yao, J.K., Reddy, R., McElhinny, L.G. and vanKammen, D.P. (1998b) Reduced status of plasma total antioxidant capacity in schizophrenia.Schizophrenia Res. 32, 1–8.CrossRefGoogle Scholar
  255. Ying, W. (1996) Deleterious network hypothesis of Alzheimer’s disease.Medical Hypotheses 46, 421–428.PubMedCrossRefGoogle Scholar
  256. Yu, B.P. (1994) Cellular defences against damage from reactive oxygen species.Physiol. Rev. 74, 139–155.PubMedGoogle Scholar
  257. Yum, H.Y, Dawson, V.L. and Dawson, V.L. (1997) Nitric oxide in health and disease of the nervous system.Mol. Psychiatr. 2, 300–310.CrossRefGoogle Scholar
  258. Zang, L.Y and Shi, X.L. (1995) Evidence for superoxide production in peroxynitrite decomposition.Biochem. Mol. Biol. Int. 37, 355–360.PubMedGoogle Scholar
  259. Zeller, E.A. (1938) Uber den enzymatischen abban von Histamine und Diamine.Helv. Chim. Acta 21, 880–890.CrossRefGoogle Scholar
  260. Zhang, F. and Dryhurst, G. (1994) Effect of L-cysteine on the oxidative chemistry of dopamine: new reaction pathways of potential relevance to ideopathic Parkinson’s disease.J. Med. Chem. 37, 1084–1098.PubMedCrossRefGoogle Scholar
  261. Zhang, Z., Naughton, D., Winyard, P.G., Benjamin, N., Blake, D.R. and Symons, M.C.R. (1998) Generation of nitric oxide by a nitrite reductase activity of xanthine oxidase: a potential pathway for nitric oxide formation in the absence of nitric oxide synthase activity.Biochem. Biophys. Res. Comm. 249, 767–772.PubMedCrossRefGoogle Scholar
  262. Zheng, W., Ren, S. and Graziano, J.H. (1998) Manganese inhibits mitochondrial aconitase: a mechanism of manganese neurotoxicity.Brain Res. 799, 334–342.PubMedCrossRefGoogle Scholar
  263. Zou, M.H. and Ulrich, V. (1996) Peroxynitrite inhibition of nitric oxide synthases.Biochemie 78, 785–791.CrossRefGoogle Scholar

Copyright information

© OPA (Overseas Publishers Association) N.V 2000

Authors and Affiliations

  1. 1.Institute of Applied Radiation ChemistryTechnical University of ŁódżŁódżPoland

Personalised recommendations