Neurotoxicity Research

, Volume 1, Issue 3, pp 181–195 | Cite as

Intraneuronal dopamine-quinone synthesis: A review

Article

Abstract

Dopamine-quinone is synthesized by oxidation of the catechol ring of dopamine. If this occurs within the neuronal cytosol, the quinone may react with cytosolic components, particularly cysteine residues. In contrast, if quinone is produced within neuronal lysosomes it may provide the fundamental building block for neuromelanin. Since the population of neurons that die in Parkinson’s disease are those that display obvious intralysosomal neuromelanin and since cytosolic dopamine-dependent oxyradical formation may underlie methamphetamine toxicity and other specific forms of neurodegeneration in dopaminergic neurons, it is important to elucidate the pathways leading to dopamine-quinone. Here we review pathways by which intracellular catechols may be oxidized to quinones, either enzymatically or via reduction of ferric iron or other metals. These metabolites can be adduced by cysteine, could underlie aberrant metabolism and ubiquitination pathways, may induce Lewy body formation, and mediate the synthesis of hydroxyl radical and oxyradical species. Finally, we suggest that by accumulating excess cytosolic catecholamine, neuromelanin synthesis may safely sequester quinones that would otherwise be produced in neuronal cytosol.

Keywords

Neuromelanin Parkinson’s disease Lewy bodies Methamphetamine Oxidative stress VMAT Substantia nigra Tyrosinase 

Abbreviations

AD

Alzheimer’s disease

BDNF

brain-derived neurotrophic factor

CNS

central nervous system

DA

dopamine

DAT

dopamine transporter (plasma membrane)

DHBT

dihydrobenzothiazine

DLBD

diffuse Lewy body disease

DOPAC

dihydroxyphenylacetic acid

GDNF

glial-derived neurotrophic factor

HPETE

arachidonic acid hydroperoxide

LBs

Lewy bodies

L-NAC

L-n-acetylcysteine

L-DOPA

L-3,4-dihydroxyphenylalanine

mRNA

messenger RNA

METH

methamphetamine

MPTP

l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine

NE

norepinephrine

NM

neuromelanin

PD

Parkinson’s Disease

PKC

protein kinase C

RT-PCR

reverse transcription polymerase chain reaction

SN

substantia nigra

SNC

substantia nigra pars compacta

SOD

superoxide dismutase

TH

tyrosine hydroxylase

VMAT1

peripheral vesicular monoamine transporter

VMAT2

central vesicular monoamine transporter

VTA

ventral tegmental area

6-OHDA

6-hydroxydopamine

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Baba, M., Nakajo, S., Tu, P., Tomita, T., Nakaya, K., Lee, V., Trojanowski, J. and Iwatsubo, T. (1998). Aggregation of alpha-synuclein in Lewy bodies of sporadic Parkinson’s disease and dementia with Lewy bodies.Am. J. Pathol. 152, 879–884.PubMedGoogle Scholar
  2. Bancher, C., Lassmann, H., Budka, H., Jellinger, K., Grundke-Iqbal, I., Iqbal, Kv Wiche, G., Seitelberger, F. and Wisniewski, H.M. (1989). An antigenic profile of Lewy bodies: immunocytochemical indication for protein phosphorylation and ubiquitination.J. Neuropathol. Exp. Neurol. 48, 81–93.PubMedGoogle Scholar
  3. Barden, H. (1970). Relationship of golgi thiaminepyrosphosphatase and lysosomal acid phosphatase to neuromelanin and lipofusin in crebral neurons of the aging rhesus monkey.J. Neuropathol. Exp. Neurol. 29, 225–240.PubMedGoogle Scholar
  4. Baumeister, W. and Lupas, A. (1997). The proteasome.Curr. Opinion Struct. Biol. 7, 273–278.Google Scholar
  5. Ben-Shachar, D., Zuk, R. and Glinka, Y. (1995). Dopamine neurotoxicity: inhibition of mitochondrial respiration.J. Neurochem. 64, 718–723.PubMedGoogle Scholar
  6. Bertrand, E., Lechowicz, W., Szpak, G.M. and Dymecki, J. (1997). Qualitative and quantitative analysis of locus coeruleus neurons in Parkinson’s disease.Folia Neuropathologica 35, 80–86.PubMedGoogle Scholar
  7. Blarzino, C., Mosca, L., Foppoli, C., Coccia, R., De Marco, C. and Rosei, M.A. (1999). Lipoxygenase/H202-catalyzed oxidation of dihdroxyindoles: synthesis of melanin pigments and study of their antioxidant properties.Free Radio. Biol. Med. 26, 446–453.Google Scholar
  8. Brion, J.P. and Couck, A.M. (1995). Cortical and brainstem-type Lewy bodies are immunoreactive for the cyclin-dependent kinase 5.Am. J. Pathol. 147, 1465–1476.PubMedGoogle Scholar
  9. Bruns, D. and Jahn, R. (1995). Real-time measurement of transmitter release from single synaptic vesicles.Nature 377, 62–65.PubMedGoogle Scholar
  10. Cadet, J.L., Sheng, P., Ali, S., Rothman, R., Carlson, E. and Epstein, C. (1994). Attenuation of methamphetamineinduced neurotoxicity in copper/zinc superoxide dismutase transgenic mice.J. Neurochem. 62, 380–383.PubMedGoogle Scholar
  11. Carstam, R., Brinck, C, Hindemith-Augustsson, A., Rorsman, H. and Rosengren, E. (1991). The neuromelanin of the human substantia nigra.Biochim. Biophys. Acta 1097, 152–160.PubMedGoogle Scholar
  12. Castellani, R., Smith, M.A., Richey, PL. and Perry, G. (1996). Glycoxidation and oxidative stress in Parkinson disease and diffuse Lewy body disease.Brain Res. 737, 195–200.PubMedGoogle Scholar
  13. Ciolkowski, EX., Maness, K.M., Cahill, PS., Wightman, R.M., Evans, D.H., Fosset, B. and Amatore, C. (1994). Disproportionation during electrooxidation of catecholamines at carbon-fiber microelectrodes.Anal. Chem. 66, 3611–3617.Google Scholar
  14. Conconi, M. and Friguet, B. (1997). Proteasome inactivation upon aging and on oxidation effect of HSP 90.Molec. Biol. Reports 24, 45–50.Google Scholar
  15. Crippa, R., Wang, Q.J., Eisner, M., Moss, S.C, Zecca, L., Zschack, P. and Gog, T. (1996). Structure of human neuromelanin by X-Ray diffraction: comparison with synthetics.Pigment Cell. Res. 5, 72.Google Scholar
  16. Cubells, J.F., Rayport, S., Rajendran, G. and Sulzer, D. (1994). Methamphetamine neurotoxicity involves vacuolation of endocytic organelles and dopamine-dependent intracellular oxidative stress.J. Neurosci. 14, 2260–2271.PubMedGoogle Scholar
  17. D’Amato, R.J., Alexander, G.M., Schwartzman, R.J., Kitt, C.A., Price, D.L. and Snyder, S.H. (1987). Neuromelanin: a role in MPTP-induced neurotoxicity.Life Sci. 40, 705–712.PubMedGoogle Scholar
  18. D’Amato, R.J., Lipman, Z.P and Snyder, S.H. (1986). Selectivity of the parkinsonian neurotoxin MPTP: toxic metabolite MPP+ binds to neuromelanin.Science 231, 987–989.PubMedGoogle Scholar
  19. D’lschia, M., Costantini, C. and Prota, G. (1996). Lipofuscin like pigments by autoxidation of polyunsaturated fatty acids in the presence of amine neurotransmitters: the role of malondialdehyde.Biochim. Biophys. Acta 1290, 319–326.Google Scholar
  20. D’lschia, M. and Prota, G. (1997). Biosynthesis, structure, and function of neuromelanin and its relation to Parkinson’s Disease: a critical update.Pigment Cell. Res. 10, 370–376.Google Scholar
  21. Daveu, C, Servy, C, Dendane, M., Marin, P. and Ducrocq, C. (1997). Oxidation and nitration of catecholamines by nitrogen oxides derived from nitric oxide.Nitric Oxide 1, 234–243.PubMedGoogle Scholar
  22. Duffy, RE. and Tennyson, V.M. (1965). Phase and electron microscopic observations of Lewy bodies and melanin granules in the substantia nigra and locus coeruleus in Parkinson’s disease.J. Neuropathol. Exp. Neurol. 24, 398–414.Google Scholar
  23. El-Ayaan, U., Herlinger, E., Jameson, R.F. and Linert, W. (1997). Anaerobic oxidation of dopamine by iron(III).J. Chem. Soc, Dalton Trans. 1997, 2813–2818.Google Scholar
  24. El-Ayaan, U., Jameson, R.F. and Linert, W. (1998). A kinetic study of the reaction between noradrenaline and iron(III): an example of parallel inner- and outer-sphere electron transfer.J. Chem. Soc, Dalton Trans. 1998, 1315–1319.Google Scholar
  25. Fahn, S. and Cohen, G. (1992). The oxidant stress hypothesis in Parkinson’s disease: evidence supporting it.Ann. Neurol. 32, 804–812.PubMedGoogle Scholar
  26. Fergusson, J., Landon, M., Lowe, J., Dawson, S.P., Layfield, R., Hanger, D.P. and Mayer, R.J. (1996). Pathological lesions of Alzheimer’s disease and dementia with Lewy bodies brains exhibit immunoreactivity to an ATPase that is a regulatory subunit of the 26S proteasome.Neurosci. Lett. 219, 167–170.PubMedGoogle Scholar
  27. Figueiredo-Pereira, M.E., Yakushin, S. and Cohen, G. (1997). Accumulation of ubiquitinated proteins in mouse neuronal cells induced by oxidative stress.Molec. Biol. Reports 24, 35–38.Google Scholar
  28. Foley, J.M. and Baxter, D. (1958). On the nature of pigment granules in the cell of the locus coeruleus and substantia nigra.J. Neuropathol. Exp. Neurol. 7, 586–598.Google Scholar
  29. Foppoli, C, Coccia, R., Cini, C. and Rosei, M.A. (1997). Catecholamines oxidation by xanthine oxidase.Biochim. Biophys. Acta 1334, 200–206.PubMedGoogle Scholar
  30. Fornstedt, B., Brun, A., Rosengren, E. and Carlsson, A. (1989). The apparent autoxidation rate of catechols in dopaminerich regions of human brains increases with degree of depigmentaion of substantia nigra.J. Neural. Trans. 1, 299–295.Google Scholar
  31. Fukuda, T., Tanaka, J., Watabe, K., Numoto, R.T. and Minamitani, M. (1993). Immunohistochemistry of neuronal inclusions in the cerebral cortex and brain-stem in Lewy body disease.Acta Pathologica Japonica 43, 545–551.PubMedGoogle Scholar
  32. Fumagalli, E, Gainetdinov, R.R., Wang, Y.-M., Valenzano, K.J., Miller, G.W. and Caron, M.G. (1999). Increased methamphetamine neurotoxicity in heterozygous vesicular monoamine transporter 2 knock-out mice.J. Neurosci. 19, 2424–2431.PubMedGoogle Scholar
  33. Gai, W.P., Blumbergs, PC. and Blessing, W.W. (1996). Microtubule associated protein 5 is a component of Lewy bodies and Lewy neurites in the brainstem and forebrain regions affected in Parkinson’s disease.Acta Neuropathologica 91, 78–81.PubMedGoogle Scholar
  34. Galvin, J.E., Lee, V.M., Baba, M., Mann, D.M., Dickson, D.W., Yamaguchi, H., Schmidt, M.L., Iwatsubo, T. and Trojanowski, J.Q. (1997). Monoclonal antibodies to purified cortical Lewy bodies recognize the mid size neurofilament subunit.Ann. Neurol. 42, 595–603.PubMedGoogle Scholar
  35. Goldberg, A.L., Akopian, T.N., Kisselev, A.F, Lee, D.H. and Rohrwild, M. (1997). New insights into the mechanisms and importance of the proteasome in intracellular protein degradation.Biol. Chem. 378, 131–140.PubMedGoogle Scholar
  36. Goldman, J.E., Yen, S.H., Chiu, EC. and Peress, N.S. (1983). Lewy bodies of Parkinson’s disease contain neurofilament antigens.Science 221, 1082–1084.PubMedGoogle Scholar
  37. Gou, J.P. and Leterrier, J.F. (1995). Possible involvement of ubiquitination in neurofilament degradation.Biochem. Biophys. Res. Commun. 217, 529–538.PubMedGoogle Scholar
  38. Graham, D.G. (1978). Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic quinones.Molec. Pharmacol. 14, 633–643.Google Scholar
  39. Graham, D.G. (1984). Catecholamine toxicity: a proposal for the molecular pathogenesis of manganese neurotoxicity and Parkinson’s disease.Neurotoxicol. 5, 83–96.Google Scholar
  40. Gregori, L., Fuchs, C, Figueiredo-Pereira, M.E., Van Nostrand, W.E. and Goldgaber, D. (1995). Amyloid beta protein inhibits ubiquitin dependent protein degradation in vitro.J. Biol. Chem. 270, 19702–19708.PubMedGoogle Scholar
  41. Grune, T, Reinheckel, T. and Davies, K.J. (1997). Degradation of oxidized proteins in mammalian cells.FASEB J. 11, 526–534.PubMedGoogle Scholar
  42. Haavik, J. (1997). L-DOPA is a substrate for tyrosine hydroxylase.J. Neurochem. 69, 1720–1728.PubMedGoogle Scholar
  43. Hastings, T.G. (1995). Enzymatic oxidation of dopamine: the role of prostoglandin H synthase.J. Neurochem. 64, 919–924.PubMedGoogle Scholar
  44. Hastings, T.G. and Zigmond, M.J. (1994). Identification of catechol-protein conjugates in neostriatal slices incubated with [3H]dopamine: impact of ascorbic acid and glutathione.J. Neurochem. 63, 1126–1132.PubMedGoogle Scholar
  45. Hayashida, K., Oyanagi, S., Mizutani, Y. and Yokochi, M. (1993). An early cytoplasmic change before Lewy body maturation: an ultrastructural study of the substantia nigra from an autopsy case of juvenile parkinsonism.Acta Neuropathologica 85, 445–448.PubMedGoogle Scholar
  46. Hirsch, E.C., Mouatt, A., Faucheux, B., Bonnet, A.-M., Javoy-Agid, F, Graybiel, A.M. and Agid, Y. (1992). Dopamine, tremor, and Parkinson’s disease.Lancet 340, 125–126.PubMedGoogle Scholar
  47. Holtzman, E. (1992). Membrane trafficking in neurons.Curr. Opin. Neurobiol. 2, 607–612.PubMedGoogle Scholar
  48. Irizarry, M.C., Growdon, W., Gomez-Isla, T, Newell, K., George, J.M., Clayton, D.F and Hyman, B.T. (1998). Nigral and cortical Lewy bodies and dystrophic nigral neurites in Parkinson’s disease and cortical Lewy body disease contain alpha-synuclein immunoreactivity.J. Neuropathol. Exp. Neurol. 57, 334–337.PubMedGoogle Scholar
  49. It, K., Ito, H., Tanaka, K. and Hirano, A. (1997). Immunocytochemical co-localization of the proteasome in ubiquitinated structures in neurodegenerative diseases and the elderly.J. Neuropathol. Exp. Neurol. 56, 125–131.Google Scholar
  50. Ito, S., Kato, T. and Fujita, K. (1988). Covalent binding of catechols to proteins through the sulphydryl group.Biochem. Pharmacol. 37, 1707–1710.PubMedGoogle Scholar
  51. Jenner, P. and Olanow, C.W. (1996). Oxidative stress and the pathogenesis of Parkinson’s disease.Neurology 47(6 Suppl. 3), S161-S170.PubMedGoogle Scholar
  52. Johnson, R.G. (1988). Accumulation of biological amines into chromaffin granules: a model for hormone and neurotransmitter transport.Physiol. Rev. 68, 232–307.PubMedGoogle Scholar
  53. Kato, S., Oda, M., Hayashi, H., Shimizu, T, Hayashi, M., Kawata, A. and Tanabe, H., (1995). Decrease of medullary catecholaminergic neurons in multiple system atrophy and Parkinson’s disease and their preservation in amyotrophic lateral sclerosis.J. Neurol. Sci. 132, 216–221.PubMedGoogle Scholar
  54. Kitada, T., Asakawa, S., Hattori, N., Matsumine, H., Yamamura, Y, Minoshima, S., Yokochi, M., Mizuno, Y. and Simizu, N. (1998). Mutations in theparkin gene cause autosomal recessive juvenile parkinsonism.Nature 392, 605–608.PubMedGoogle Scholar
  55. Klegeris, A., Korkina, L.G. and Greenfield, S.A. (1995). Autoxidation of dopamine: a comparison of luminescent and spectrophotometric detection in basic solutions.Free Radic. Biol. Med. 18, 215–222.PubMedGoogle Scholar
  56. Korytowski, W., Sarna, T., Kalyanaraman, B. and Sealy, R.C. (1987). Tyrosinase-catalyzed oxidation of dopa and related catechol(amine)s: a kinetic electron spin resonance investigation using spin-stabilization and spin label oximetry.Biochim. Biophys. Acta 924, 383–392.PubMedGoogle Scholar
  57. Kruger, R., Kuhn, W., Muller, T., Woitalla, D., Graeber, M., Kosel, S., Przuntek, H., Epplen, J.T., Schols, L. and Riess, O. (1998). Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease.Nature Genetics 18, 106–108.PubMedGoogle Scholar
  58. Larsen, C.N., Price, J.S. and Wilkinson, K.D. (1996). Substrate binding and catalysis by ubiquitin C-terminal hydrolases: identification of two active site residues.Biochem. 35, 6735–6744.Google Scholar
  59. La Voie, M.J. and Hastings, T.G. (1999). Dopamine quinone formation and protein modification associated with the striatal neurotoxicity of methamphetamine: evidence against a role for extracellular dopamine.J. Neurosci. 19, 1484–1491.Google Scholar
  60. Li, H. and Dryhurst, G. (1997). Irreversible inhibition of mitochondrial complex I by 7-(2-aminoethyD-3,4-dihydro-5-hydroxy-2H-l,4-benzothiazine-3-carboxylic acid (DHBT-1): a putative nigral endotoxin of relevance to Parkinson’s disease.J. Neurochem. 69, 1530–1541.PubMedGoogle Scholar
  61. Lindquist, N.G., Larsson, B.S. and Lyden-Sokolowski, A. (1988). Autoradiography of [14C]paraquat or [14C]diquat in frogs and mice: accumulation in neuromelanin.Neurosci. Lett. 93, 1–6.PubMedGoogle Scholar
  62. Liu, Y, Schweitzer, E.S., Nirenberg, M.J., Pickel, V.M., Evans, C.J. and Edwards, R.H. (1994). Preferential localization of a vesicular monoamine transporter to dense core vesicles in PC12 cells.J. Cell Biol. 127, 1419–1433.PubMedGoogle Scholar
  63. Lloyd, R.V. (1995). Mechanism of the manganese-catalyzed autoxidation of dopamine.Chem. Res. Toxicol. 8, 111–116.PubMedGoogle Scholar
  64. Lowe, J., Mayer, R.J. and Landon, M. (1993). Ubiquitin in neurodegenerative diseases.Brain Pathol. 3, 55–65.PubMedGoogle Scholar
  65. Lowe, J., McDermott, H., Landon, M., Mayer, R.J. and Wilkinson, K.D. (1990). Ubiquitin carboxyl terminal hydrolase (PGP 9.5) is selectively present in ubiquitinated inclusion bodies characteristic of human neurodegenerative diseases.J. Pathol. 161, 153–160.PubMedGoogle Scholar
  66. Marinho, C.R. and Manso, C.F. (1993). [O2 generation during neuromelanin synthesis. The action of manganese] in Portuguese.Acta Medica Portuguesa 6, 547–554.PubMedGoogle Scholar
  67. Masaki, T., Ishiura, S., Sugita, H. and Kwak, S. (1994). Multicatalytic proteinase is associated with characteristic oval structures in cortical Lewy bodies: an immunocytochemical study with light and electron microscopy.J. Neurol. Sci. 122, 127–134.PubMedGoogle Scholar
  68. Mather, K., Watts, F.Z., Carroll, M., Whitehead, P., Swash, M., Cairn, N. and Burke, J. (1993). Antibody to an abnormal protein in amyotrophic lateral sclerosis identifies Lewy body like inclusions in ALS and Lewy bodies in Parkinson’s disease.Neurosci. Lett. 160, 13–16.PubMedGoogle Scholar
  69. Mattammal, M.B., Strong, R., Lakshmi, V.M., Chung, H.D. and Stephenson, A.H. (1995). Prostaglandin H synthetasemediated metabolism of dopamine: implication for Parkinson’s Disease.J. Neurochem. 64, 1645–1654.PubMedGoogle Scholar
  70. Mayer, R.J., Tipler, C, Arnold, J., Laszlo, L., Al-Khedhairy, A., Lowe, J. and Landon, M. (1996). Endosome lysosomes, ubiquitin and neurodegeneration.Adv. Exp. Med. Biol. 389, 261–269.PubMedGoogle Scholar
  71. McRitchie, D.A., Cartwright, H.R. and Halliday, G.M. (1997). Specific A10 dopaminergic nuclei in the midbrain degenerate in Parkinson’s disease.Exp. Neurol. 144, 202–213.PubMedGoogle Scholar
  72. Mena, M.A., Khan, U., Togasaki, D.M., Sulzer, D., Epstein, C.J. and Przedborski, S. (1997). Effects of wild-type and mutated copper/zinc superoxide dismutase on neuronal survival and L-DOPA-induced toxicity in postnatal midbrain culture.J. Neurochem. 69, 21–33.PubMedGoogle Scholar
  73. Merad-Boudia, M., Nicole, A., Santiard-Baron, D., Saille, C. and Ceballos-Picot, I. (1998). Mitochondrial impairment as an early event in the process of apoptosis induced by glutathione depletion in neuronal cells: relevance to Parkinson’s disease.Biochem. Pharmacol. 56, 645–655.PubMedGoogle Scholar
  74. Michel, P.P. and Hefti, F. (1990). Toxicity of 6-hydroxydopamine and dopamine for dopaminergic neurons in culture.J. Neurosci. Res. 26, 428–435.PubMedGoogle Scholar
  75. Miller, J.W., Selhub, J. and Joseph, J.A. (1996). Oxidative damage caused by free radicals produced during catecholamine autoxidation: protective effects of O-methylation and melatonin.Free Radic. Biol. Med. 21, 241–249.PubMedGoogle Scholar
  76. Montine, T.J., Farris, D.B. and Graham, D.G. (1995). Covalent crosslinking of neurofilament proteins by oxidized catechols as a potential mechanism of Lewy body formation.J. Neuropathol. Exp. Neurol. 54, 311–319.PubMedGoogle Scholar
  77. Mosca, L., Blarzino, C, Coccia, R., Foppoli, C. and Rosei, M.A. (1998). Melanins from tetrahydroisoquinolines: spectroscopic characteristics, scavenging activity and redox transfer properties.Free Radic. Biol. Med. 24, 161–167.PubMedGoogle Scholar
  78. Mosca, L., Foppoli, C, Coccia, R. and Rosei, M.A. (1996). Pheomelanin production by the lipoxygenase-catalyzed oxidation of 5-S-cysteinyldopa and 5-S-cysteinyldopa-mine.Pigment Cell. Res. 9, 117–125.PubMedGoogle Scholar
  79. Mouatt-Prigent, A., Karlsson, J.O., Agid, Y. and Hirsch, E.C. (1996). Increased M calpain expression in the mesencephalon of patients with Parkinson’s disease but not in other neurodegenerative disorders involving the mesencephalon: a role in nerve cell death?Neurosci. 73, 979–987.Google Scholar
  80. Murphy Jr., G.M., Forno, L.S., Higgins, L., Scardina, J.M., Eng, L.F. and Cordell, B. (1994). Development of a monoclonal antibody specific for the COOH terminal of beta amyloid 1 42 and its immunohistochemical reactivity in Alzheimer’s disease and related disorders.Am. J. Pathol. 144, 1082–1088.PubMedGoogle Scholar
  81. Nakamura, S., Kawamoto, Y, Nakano, S., Akiguchi, I. and Kimura, J. (1997). p35nck5a and cyclin-dependent kinase 5 colocalize in Lewy bodies of brains Parkinson’s disease.Acta Neuropathologica 94, 153–157.PubMedGoogle Scholar
  82. Nakashima, S. and Ikuta, F. (1984). Tyrosine hydroxylase protein in Lewy bodies of parkinsonian and senile brains.J. Neurol. Sci. 66, 91–96.PubMedGoogle Scholar
  83. Napolitano, A., Crescenzi, O., Pezzella, A. and Prota, G. (1995). Generation of the neurotoxin 6-hydroxydopamine by peroxidase /H2O2 oxidation of dopamine.J. Med. Chem. 38, 917–922.PubMedGoogle Scholar
  84. Nappi, A.J. and Vass, E. (1998). Hydroxyl radical formation via iron-mediated Fenton chemistry is inhibited by methylated catechols.Biochim. Biophys. Acta 1425, 159–167.PubMedGoogle Scholar
  85. Nishimura, M., Tomimoto, H., Suenaga, T., Nakamura, S., Namba, Y, Ikeda, K., Akiguchi, I. and Kumura, J. (1994). Synaptophysin and chromogranin A immunoreactivities of Lewy bodies in Parkinson’s disease brains.Brain Res. 634, 339–344.PubMedGoogle Scholar
  86. Nishiyama, K., Murayama, S., Shimizu, J., Ohya, Y, Kwak, S., Asayama, K. and Kanazawa, I. (1995). Cu/Zn superoxide dismutase like immunoreactivity is present in Lewy bodies from Parkinson disease: a light and electron microscopic immunocytochemical study.Acta Neuropathologica 89, 471–474.PubMedGoogle Scholar
  87. Palumbo, A., d’lschia, M., Misuraca, G., De Martino, L. and Prota, G. (1995). Iron- and peroxide-dependent conjugation of dopamine with cysteine: oxidative routes to the novel brain metabolite 5-S-cysteinyldopamine.Biochim. Biophys. Acta 1245, 255–261.PubMedGoogle Scholar
  88. Pearse, A.G.E. (1985).Histochemistry: Theoretical and Applied, 4th edn., Vol. 2 (Edinburgh: Churchill Livingstone).Google Scholar
  89. Pezzella, A., d’Ischia, M., Napolitano, A., Misuraca, G. and Prota, G. (1997). Iron-mediated generation of the neurotoxin 6-hydroxydopamine quinone by reaction of fatty acid hydroperoxides with dopamine: a possible contributory mechanism for neuronal degeneration in Parkinson’s disease.J. Med. Chem. 40, 2211–2216.PubMedGoogle Scholar
  90. Pollanen, M.S., Bergeron, C. and Weyer, L. (1993). Deposition of detergent resistant neurofilaments into Lewy body fibrils.Brain Res. 603, 121–124.PubMedGoogle Scholar
  91. Polymeropoulos, M.H., Lavedan, C, Leroy, E., Ide, S.E., Dehejia, A., Dutra, A., Pike, B., Root, H., Rubenstein, J., Boyer, R., Stenroos, E.S., Chandrasekharappa, S., Athanassiadou, A., Papapetropoulos, T., Johnson, W.G., Lazzarini, A.M., Duvoisin, R.C., Di Iorio, G., Golbe, L.I. and Nussbaum, R.L. (1997). Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease.Science 276.Google Scholar
  92. Pothos, E.N., Davila, V. and Sulzer, D. (1998). Presynaptic recording of quanta from midbrain dopamine neurons and modulation of the quantal size.J. Neurosci. 18, 4106–4118.PubMedGoogle Scholar
  93. Przedborski, S., Kostic, V, Jackson-Lewis, V., Naini, A.B., Simonetti, S., Fahn, S., Carlson, E., Epstein, C.J. and Cadet, J.L. (1992). Transgenic mice with increased Cu/Znsuperoxide dismutase activity are resistant to N-methyl-4-phenyl-l,2,3,6-tetrahydropyridine-induced neurotoxicity.J. Neurosci. 12, 1658–1667.PubMedGoogle Scholar
  94. Ratan, R.R., Lee, P.J. and Baraban, J.M. (1996). Serum deprivation inhibits glutathione depletion-induced death in embryonic cortical neurons: evidence against oxidative stress as a final common mediator of neuronal apoptosis.Neurochem. Int. 29, 153–157.PubMedGoogle Scholar
  95. Rosei, M.A., Blarzino, C, Coccia, R., Foppoli, C, Mosca, L. and Cini, C. (1998a). Production of melanin pigments by cytochrome c/H2O2 system.Int. J. Biochem. Cell Biol. 30, 457–463.PubMedGoogle Scholar
  96. Rosei, M.A., Foppoli, C, Wang, X.T., Coccia, R. and Mateescu, M.A. (1998b). Production of melanins by ceruloplasmin.Pigment Cell Res. 11, 98–102.PubMedGoogle Scholar
  97. Rosei, M.A., Blarzino, C, Foppoli, C, Mosca, L. and Coccia, R. (1994). Lipoxygenase-catalyzed oxidation of catecholamines.Biochem. Biophys. Res. Commun. 200, 344–350.PubMedGoogle Scholar
  98. Rosenberg, P.A. (1988). Catecholamine toxicity in cerebral cortex in dissociated cell culture.J. Neurosci. 8, 2887–2894.PubMedGoogle Scholar
  99. Rosengren, E.E., Linder-Eliasson, and Carlsoon, A. (1985). Detection of 5-S-cysteinyldopamine in human brain.J. Neural. Trans. 63, 247–253.Google Scholar
  100. Sanchez-Ferrer, A., Rodriguez-Lopez, J.N., Garcia-Canovas, F. and Garcia-Carmona, F (1995). Tyrosinase: a review of its mechanism.Biochem. Biophys. Acta 1247, 1–11.PubMedGoogle Scholar
  101. Seiden, L.S., Sabol, K.E. and Ricaurte, G.A. (1993). Amphetamine: Effects on catecholamine systems and behavior.Ann. Rev. Pharmacol. Toxicol. 32, 639–677.Google Scholar
  102. Shen, X.M. and Dryhurst, G. (1998). Iron- and manganesecatalyzed autoxidation of dopamine in the presence of L-cysteine: possible insights into iron- and manganesemediated dopaminergic neurotoxicity.Chem. Res. Toxicol. 11, 824–837.PubMedGoogle Scholar
  103. Shen, X.M., Zhang, F. and Dryhurst, G. (1997). Oxidation of dopamine in the presence of cysteine: characterization of new toxic products.Chem. Res. Toxicol. 10, 147–155.PubMedGoogle Scholar
  104. Shimohama, S., Perry, G., Richey, P., Takenawa, T, Whitehouse, P.J., Miyoshi, K., Suenaga, T., Matsumoto, S., Nishimura, M. and Kimura, J. (1993). Abnormal accumulation of phospholipase C delta in filamentous inclusions of human neurodegenerative diseases.Neurosci. Lett. 162, 183–186.PubMedGoogle Scholar
  105. Simantov, R., Blinder, E., Ratovitski, T., Tauber, M., Gabbay, M. and Porat, S. (1996). Dopamine-induced apoptosis in human neuronal cells: inhibition by nucleic acids antisense to the dopamine transporter.Neurosci. 74, 39–50.Google Scholar
  106. Smythies, J. (1996). On the function of neuromelanin.Peoc. R Soc. Lond. B 263, 487–489.Google Scholar
  107. Spillantini, M.G., Schmidt, M.L., Lee, V.M.Y., Trojanowski, J.Q., Jakes, R. and Goedert, M. (1997). Alpha-synuclein in Lewy bodies.Nature 388, 839–840.PubMedGoogle Scholar
  108. Spina, M.B., Squinto, S.P., Miller, J., Lindsay, R.M. and Hyman, C. (1992). Brain-derived neurotrophic factor protects dopamine neurons against 6-hydroxydopamine and N-methyl-4-phenylpyridinium ion toxicity: involvement of the glutathione system.J. Neurochem. 59, 99–106.PubMedGoogle Scholar
  109. Stokes, A.H., Brown, B.G., Lee, C.K., Doolitle, D.J. and Vrana, K.E. (1996). Tyrosinase enhances the covalent modificiation of DNA by dopamine.Mol. Brain Res. 42, 167–170.PubMedGoogle Scholar
  110. Stokes, A.H., Hastings, T.G. and Vrana, K.E. (1999). Cytotoxic and genotoxic potential of dopamine.J. Neurosci. Res. 55, 659–665.PubMedGoogle Scholar
  111. Sulzer, D., Chen, T.K., Lau, Y.Y., Kristensen, H., Rayport, S. and Ewing, A. (1995). Amphetamine redistributes dopamine from synaptic vesicles to the cytosol and promotes reverse transport.J. Neurosci. 15, 4102–4108.PubMedGoogle Scholar
  112. Sulzer, D. and Rayport, S. (1990). Amphetamine and other psychostimulants reduce pH gradients in midbrain dopaminergic neurons and chromaffin granules: a mechanism of action.Neuron. 5, 797–808.PubMedGoogle Scholar
  113. Takeda, A., Mallory, M., Sundsmo, M., Honer, W., Hansen, L. and Masliah, E. (1998). Abnormal accumulation of NACP/ alpha-synuclein in neurodegenerative disorders.Am. J. Pathol. 152, 367–372.PubMedGoogle Scholar
  114. Tief, K., Schmidt, A. and Beerman, F. (1998). New evidence for presence of tyrosinase in substantia nigra, forebrain, and midbrain.Molec. Brain Res. 53, 307–310.PubMedGoogle Scholar
  115. van Leeuwen, F.W., de Kleijn, D.P., van den Hurk, H.H., Neubauer, A., Sonnemans, M.A., Sluijs, J.A., Koycu, S., Ramdjielal, R.D.J., Salehi, A., Martens, G.J.M., Grosveld, EG., Peter, J., Burbach, H. and Hoi, E.M. (1998). Frameshift mutants of beta amyloid precursor protein and ubiquitin-B in Alzheimer’s and Down patients.Science 279, 242–247.PubMedGoogle Scholar
  116. Velez-Pardo, C, Del Rio, M.J., Ebinger, G. and Vauquelin, G. (1998). Monoamine and iron-related toxicity: from ‘serotonin-binding proteins’ to lipid peroxidation and apoptosis in PC12 cells.Gen. Pharmacol. 31, 19–24.PubMedGoogle Scholar
  117. Velez-Pardo, C, Jimenez Del Rio, M., Verschueren, H., Ebinger, G. and Vauquelin, G. (1997). Dopamine and iron induce apoptosis in PC12 cells.Pharmacol. Toxicol. 80, 76–84.PubMedGoogle Scholar
  118. Wakabayashi, K., Matsumoto, K., Takayama, K., Yoshimoto, M. and Takahashi, H. (1997). NACP, a presynaptic protein, immunoreactivity in Lewy bodies in Parkinson’s disease.Neurosci. Lett. 239, 45–48.PubMedGoogle Scholar
  119. Wakamatsu, K., Ito, S. and Nagatsu, T. (1991). Cysteinyl-dopamine is not incorporated into neuromelanin.Neurosci. Lett. 131, 57–60.PubMedGoogle Scholar
  120. Walkinshaw, G. and Waters, CM. (1995). Induction of apoptosis in catecholaminergic PC12 cells by L-DOPA. Implications for the treatment of Parkinson’s disease.J. Clinic. Inv. 95, 2458–2464.Google Scholar
  121. Welch, W.J. and Gambetti, P. (1998). Chaperoning brain diseases.Nature 392, 23–24.PubMedGoogle Scholar
  122. Xu, Y., Stokes, A.H., Freeman, W.M., Kumer, S.C., Vogt, B.A. and Vrana, K.E. (1997). Tyrosinase mRNA is expressed in human substantia nigra.Mol. Brain Res. 45, 159–162.PubMedGoogle Scholar
  123. Yamada, T. (1995). Further observations on MxA positive Lewy bodies in Parkinson’s disease brain tissues.Neurosci. Lett. 195, 41–44.PubMedGoogle Scholar
  124. Youdim, M.B. and Riederer, P. (1993). The role of iron in senescence of dopaminergic neurons in Parkinson’s disease.J. Neural. Trans. 40, 57–67.Google Scholar
  125. Zecca, L., Parati, E., Mecacci, C. and Seraglia, R. (1992). The chemical characterization of melanin contained in substantia nigra of human brain.Biochim. Biophys. Acta 1138, 6–10.PubMedGoogle Scholar
  126. Zecca, L., Pietra, R., Goj, C, Mecacci, C, Radice, D. and Sabbioni, E. (1994). Iron and other metals in neuromel-anin, substantia nigra, and putamen of human brain.J. Neurochem. 62, 1097–101.PubMedGoogle Scholar
  127. Zecca, L., Shima, T., Stroppolo, A., Goj, C., Battiston, G.A., Gerbasi, R., Sarna, T. and Swartz, H.M. (1996). Interaction of neuromelanin and iron in substantia nigra and other areas of human brain.Neurosci. 73, 407–415.Google Scholar
  128. Zhang, F. and Dryhurst, G. (1994). Effects of 1-cysteine on the oxidation chemistry of dopamine: new reaction pathways of potential relevance to idiopathic Parkinson’s Disease.J. Med. Chem. 37, 1084–1098.PubMedGoogle Scholar

Copyright information

© OPA (Overseas Publishers Association) N.V 2000

Authors and Affiliations

  1. 1.Department of Neurology and PsychiatryColumbia University, New York State Psychiatric InstituteNew YorkUSA
  2. 2.Department of NeuroscienceColumbia University, New York State Psychiatric InstituteNew YorkUSA
  3. 3.Institute of Advanced Biomedical TechnologiesCNRSegrateItaly

Personalised recommendations