Neurotoxicity Research

, Volume 6, Issue 3, pp 233–244 | Cite as

Plasticity at hippocampal to prefrontal cortex synapses is impaired by loss of dopamine and stress: Importance for psychiatric diseases

  • Thérèse M. JayEmail author
  • Cyril Rocher
  • Maïté Hotte
  • Laurent Naudon
  • Hirac Gurden
  • Michael Spedding


The direct hippocampal to prefrontal cortex pathway and its changes in synaptic plasticity is a useful framework for investigating the functional operations of hippocampal-prefrontal cortex communication in cognitive functions. Synapses on this pathway are modifiable and synaptic strength can be turned up or down depending on specific patterns of activity in the pathway. The objective of this review will be to summarize the different studies carried out on this topic including very recent data and to underline the importance of animal models for the development of new and effective medications in psychiatric diseases. We have shown that long-term potentiation (LTP) of hippocampal-pre-frontal synapses is driven by the level of mesocortical dopaminergic (DA) activity and more recently that stress is also an environmental determinant of LTP at these cortical synapses. Stimulation of the ventral tegmental area at a frequency known to evoke DA overflow in the prefrontal cortex produces a long-lasting enhancement of the magnitude of hippocampal-prefrontal cortex LTP whereas a depletion of cortical DA levels generates a dramatic decrease in this LTP. Moreover, hippocampal stimulation induces a transient but significant increase in DA release in the prefrontal cortex, and an optimal level of D1 receptor activation is essential for LTP expression. We recently investigated the impact of stress on hippocampal-prefrontal LTP and demonstrated that exposure to an acute stress causes a remarkable and long-lasting inhibition of LTP. Furthermore, we demonstrated that tianeptine, an antidepressant which has a unique mode of action, and clozapine, an atypical antipsychotic when administered at doses normally used in human testing, are able to reverse the impairment in LTP. Stressful life events have a substantial causal association with psychiatric disorders like schizophrenia and depression and recent imaging studies have shown an important role of the limbic-cortical circuit in the pathophysiology of these illnesses. Therefore, we proposed that agents capable of reversing the impairment of plasticity at hippocampal to prefrontal cortex synapses have the potential of becoming new therapeutic classes of antidepressant or antipsychotic drugs.


Synaptic plasticity Stress Depression Schizophrenia Tianeptine Clozapine 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albert KA, HC Hemmings Jr, AI Adamo, SG Potkin, S Akbarian, CA Sandman, CW Cotman, WE Bunney Jr and P Greengard (2002) Evidence for decreased DARPP-32 in the prefrontal cortex of patients with schizophrenia.Arch. Gen. Psychiatry 59, 705–712.PubMedCrossRefGoogle Scholar
  2. Ariano MA, J Wang, KL Noblett, ER Larson and DR Sibley (1997) Cellular distribution of the rat D1B receptor in central nervous system using anti-receptor antisera.Brain Res. 746, 141–150.PubMedCrossRefGoogle Scholar
  3. Bannerman DM, M Grubb, RM Deacon, BK Yee, J Feldon and JN Rawlins (2003) Ventral hippocampal lesions affect anxiety but not spatial learning.Behav. Brain Res. 139, 197–213.PubMedCrossRefGoogle Scholar
  4. Barbas H and GJ Blatt (1995) Topographically specific hippocam-pal projections target functionally distinct prefrontal areas in the rhesus monkey.Hippocampus 5, 511–533.PubMedCrossRefGoogle Scholar
  5. Berger B, P Gaspar and C Verney (1991) Dopaminergic innervation of the cerebral cortex: unexpected differences between rodents and primates.Trends Neurosci. 14, 21–27.PubMedCrossRefGoogle Scholar
  6. Bergson C, L Mrzljak, JF Smiley, M Pappy, R Levenson and PS Goldman-Rakic (1995) Regional, cellular and subcellular variations in the distribution of D1 and D5 dopamine receptors in primate brain.J. Neurosci. 15, 7821–7836.PubMedGoogle Scholar
  7. Berman KF, RF Zec and DR Weinberger (1986) Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia. II. Role of neuroleptic treatment, attention and mental effort.Arch. Gen. Psychiatry 43, 126–135.PubMedGoogle Scholar
  8. Bremner JD, M Vythilingam, E Vermetten, A Nazeer, J Adil, S Khan, LH Staib and DS Charney (2002) Reduced volume of orbitofrontal cortex in major depression.Biol. Psychiatry 51, 273–279.PubMedCrossRefGoogle Scholar
  9. Burette F, TM Jay and S Laroche (1997) Reversal of LTP in the hippocampal afferent fiber system to the prefrontal cortexin vivo with low-frequency patterns of stimulation that do not produce LTD.J. Neurophysiol. 78, 1155–1160.PubMedGoogle Scholar
  10. Carmichael ST and JL Price (1995) Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys.J. Comp. Neurol. 363, 615–641.PubMedCrossRefGoogle Scholar
  11. Carr DB and SR Sesack (1996) Hippocampal afferents to the rat prefrontal cortex: synaptic targets and relation to dopamine terminals.J. Comp. Neurol. 369, 1–15.PubMedCrossRefGoogle Scholar
  12. Cassell MD and DJ Wright (1986) Topography of projections from the medial prefrontal cortex to the amygdala in the rat.Brain Res. Bull. 17, 321–333.PubMedCrossRefGoogle Scholar
  13. Czeh B, T Michaelis, T Watanabe, J Frahm, G de Biurrun, M van Kampen, A Bartolomucci and E Fuchs (2001) Stress-induced changes in cerebral metabolites, hippocampal volume and cell proliferation are prevented by antidepressant treatment with tianeptine.Proc. Natl. Acad. Sci. USA 98, 12796–12801.PubMedCrossRefGoogle Scholar
  14. Degenetais E, AM Thierry, J Glowinski and Y Gioanni (2003) Synaptic influence of hippocampus on pyramidal cells of the rat prefrontal cortex: anin vivo intracellular recording study.Cereb. Cortex 13, 782–792.PubMedCrossRefGoogle Scholar
  15. Delbende C, D Tranchand Bunel, G Tarozzo, M Grino, C Oliver, E Mocaer and H Vaudry (1994) Effect of chronic treatment with the antidepressant tianeptine on the hypothalamo-pituitary-adrenal axis.Eur. J. Pharmacol. 251, 245–251.PubMedCrossRefGoogle Scholar
  16. Diamond DM, MC Bennett, M Fleshner and GM Rose (1992) Inverted-U relationship between the level of peripheral corticos-terone and the magnitude of hippocampal primed burst potentia-tion.Hippocampus 2, 421–430.PubMedCrossRefGoogle Scholar
  17. Diorio D, V Viau and MJ Meaney (1993) The role of the medial prefrontal cortex (cingulate gyrus) in the regulation of hypothal- amic-pituitary-adrenal responses to stress.J. Neurosci. 13, 3839–3847.PubMedGoogle Scholar
  18. Dowlatshahi D, GM MacQueen, JF Wang and LT Young (1998) Increased temporal cortex CREB concentrations and antidepres-sant treatment in major depression.Lancet 352, 1754–1755.PubMedCrossRefGoogle Scholar
  19. Duman RS, GR Heninger and EJ Nestler (1997) A molecular and cellular theory of depression.Arch. Gen. Psychiatry 54, 597–606.PubMedGoogle Scholar
  20. Floresco SB, JK Seamans and AG Phillips (1997) Selective roles for hippocampal, prefrontal cortical and ventral striatal circuits in radial-arm maze tasks with or without a delay.J. Neurosci. 17, 1880–1890.PubMedGoogle Scholar
  21. Gabbott P, A Headlam and S Busby (2002) Morphological evidence that CA1 hippocampal afferents monosynaptically innervate PV-containing neurons and NADPH-diaphorase reactive cells in the medial prefrontal cortex (Areas 25/32) of the rat.Brain Res. 946, 314–322.PubMedCrossRefGoogle Scholar
  22. Garcia R (2001) Stress, hippocampal plasticity and spatial learning.Synapse 40, 180–183.PubMedCrossRefGoogle Scholar
  23. Garris PA, LB Collins, SR Jones and RM Wightman (1993) Evoked extracellular dopaminein vivo in the medial prefrontal cortex.J. Neurochem. 61, 637–647.PubMedCrossRefGoogle Scholar
  24. Gaspar P, B Bloch and C Le Moine (1995) D1 and D2 receptor gene expression in the rat frontal cortex: cellular localization in different classes of efferent neurons.Eur. J. Neurosci. 7, 1050–1063.PubMedCrossRefGoogle Scholar
  25. Gerber DJ, D Hall, T Miyakawa, S Demars, JA Gogos, M Karayiorgou and S Tonegawa (2003) Evidence for association of schizophrenia with genetic variation in the 8p21.3 gene, PPP3CC, encoding the calcineurin gamma subunit.Proc. Natl. Acad. Sci. USA 100, 8993–8998.PubMedCrossRefGoogle Scholar
  26. Goldapple K, Z Segal, C Garson, M Lau, P Bieling, S Kennedy and H Mayberg (2004) Modulation of cortical-limbic pathways in major depression: treatment-specific effects of cognitive behavior therapy.Arch. Gen. Psychiatry 61, 34–41.PubMedCrossRefGoogle Scholar
  27. Goldman-Rakic PS, EC Muly 3rd and GV Williams (2000) D(1) receptors in prefrontal cells and circuits.Brain Res. Brain Res. Rev. 31, 295–301.PubMedCrossRefGoogle Scholar
  28. Gonzalez-Islas C and JJ Hablitz (2003) Dopamine enhances EPSCs in layer II-III pyramidal neurons in rat prefrontal cortex.J. Neurosci. 23, 867–875.PubMedGoogle Scholar
  29. Gurden H, JP Tassin and TM Jay (1999) Integrity of the mesocorti-cal dopaminergic system is necessary for complete expression ofin vivo hippocampal-prefrontal cortex long-term potentiation.Neuroscience 94, 1019–1027.PubMedCrossRefGoogle Scholar
  30. Gurden H, M Takita and TM Jay (2000) Essential role of D1 but not D2 receptors in the NMDA receptor-dependent long-term poten-tiation at hippocampal-prefrontal cortex synapsesin vivo.J. Neurosci. 20, RC106, 1–5.Google Scholar
  31. Harrison PJ (2002) The neuropathology of primary mood disorder.Brain 125, 1428–1449.PubMedCrossRefGoogle Scholar
  32. Hastings RS, RV Parsey, MA Oquendo, V Arango and JJ Mann (2004) Volumetric analysis of the prefrontal cortex, amygdala and hippocampus in major depression.Neuropsychopharmacol-ogy 29, 952–959.CrossRefGoogle Scholar
  33. Heckers S, SL Rauch, D Goff, CR Savage, DL Schacter, AJ Fischman and NM Alpert (1998) Impaired recruitment of the hippocampus during conscious recollection in schizophrenia.Nat. Neurosci. 1, 318–323.PubMedCrossRefGoogle Scholar
  34. Heidbreder CA and HJ Groenewegen (2003) The medial prefrontal cortex in the rat: evidence for a dorso-ventral distinction based upon functional and anatomical characteristics.Neurosci. Biobehav. Rev. 27, 555–579.PubMedCrossRefGoogle Scholar
  35. Holcomb HH, AC Lahti, DR Medoff, M Weiler, RF Dannals and CA Tamminga (2000) Brain activation patterns in schizophrenic and comparison volunteers during a matched-performance auditory recognition task.Am. J. Psychiatry 157, 1634–1645.PubMedCrossRefGoogle Scholar
  36. Jay TM (2003) Dopamine: a potential substrate for synaptic plasticity and memory mechanisms.Prog. Neurobiol. 69, 375–390.PubMedCrossRefGoogle Scholar
  37. Jay TM and MP Witter (1991) Distribution of hippocampal CA1 and subicular efferents in the prefrontal cortex of the rat studied by means of anterograde transport ofPhaseolus vulgaris-leuco-agglutinin. J. Comp. Neurol.313, 574–586.PubMedCrossRefGoogle Scholar
  38. Jay TM, J Glowinski and AM Thierry (1989) Selectivity of the hip-pocampal projection to the prelimbic area of the prefrontal cortex in the rat.Brain Res. 505, 337–340.PubMedCrossRefGoogle Scholar
  39. Jay TM, AM Thierry, L Wiklund and J Glowinski (1992) Excitatory amino acid pathway from the hippocampus to the prefrontal cortex. Contribution of AMPA receptors in hippocampo-prefrontal cortex transmission.Eur. J. Neurosci. 4, 1285–1295.PubMedCrossRefGoogle Scholar
  40. Jay TM, F Burette and S Laroche (1995a) NMDA receptor-dependent long-term potentiation in the hippocampal afferent fibre system to the prefrontal cortex in the rat.Eur. J. Neurosci. 7, 247–250.PubMedCrossRefGoogle Scholar
  41. Jay TM, J Glowinski and AM Thierry (1995b) Inhibition of hip-pocampo-prefrontal cortex excitatory responses by the mesocor-tical DA system.Neuroreport 6, 1845–1848.PubMedCrossRefGoogle Scholar
  42. Jay TM, F Burette and S Laroche (1996a) Plasticity of the hip-pocampal-prefrontal cortex synapses.J. Physiol. Paris 90, 361–366.PubMedCrossRefGoogle Scholar
  43. Jay TM, F Burette and S Laroche (1996b) Dopaminergic modulation of long-term potentiation in the hippocampal-prefrontal cortex pathway.Society for Neuroscience Abstr. 22: 322.Google Scholar
  44. Jay TM, H Gurden and T Yamaguchi (1998) Rapid increase in PKA activity during long-term potentiation in the hippocampal afferent fibre system to the prefrontal cortexin vivo. Eur. J. Neurosci. 10, 3302–3306.CrossRefGoogle Scholar
  45. Jay TM, H Gurden, C Rocher, M Hotte and M Spedding (2004) Up and down regulation of synaptic strength at hippocampal to pre-frontal cortex synapses. In:The Prefrontal Cortex: From Synapse to Cognition (Otani S, Ed.) (Kluwer: City). pp 107–130.CrossRefGoogle Scholar
  46. Kennedy SH, KR Evans, S Kruger, HS Mayberg, JH Meyer, S McCann, AI Arifuzzman, S Houle and FJ Vaccarino (2001) Changes in regional brain glucose metabolism measured with positron emission tomography after paroxetine treatment of major depression.Am. J. Psychiatry 158, 899–905.PubMedGoogle Scholar
  47. Khan ZU, A Gutierrez, R Martin, A Penafiel, A Rivera and A de la Calle (2000) Dopamine D5 receptors of rat and human brain.Neuroscience 100, 689–699.PubMedCrossRefGoogle Scholar
  48. Kjelstrup KG, FA Tuvnes, HA Steffenach, R Murison, EI Moser and MB Moser (2002) Reduced fear expression after lesions of the ventral hippocampus.Proc. Natl. Acad. Sci. USA 99, 10825–10830.PubMedCrossRefGoogle Scholar
  49. Krebs MO, O Guillin, MC Bourdell, JC Schwartz, JP Olie, MF Poirier and P Sokoloff (2000) Brain derived neurotrophic factor (BDNF) gene variants association with age at onset and therapeutic response in schizophrenia.Mol. Psychiatry 5, 558–562.PubMedCrossRefGoogle Scholar
  50. Lahti AC, HH Holcomb, MA Weiler, DR Medoff, KN Frey, M Hardin and CA Tamminga. (2004) Clozapine but not haloperidol re-establishes normal task-activated rCBF patterns in schizophrenia within the anterior cingulate cortex.Neuropsychopharm-acology 29, 171–178.CrossRefGoogle Scholar
  51. Laroche S, TM Jay and AM Thierry (1990) Long-term potentiation in the prefrontal cortex following stimulation of the hippocampal CA1/subicular region.Neurosci. Lett. 114, 184–190.PubMedCrossRefGoogle Scholar
  52. Lee H, FI Tarazi, M Chakos, H Wu, M Redmond, JM Alvir, BJ Kinon, R Bilder, I Creese and JA Lieberman (1999) Effects of chronic treatment with typical and atypical antipsychotic drugs on the rat striatum.Life Sci. 64, 1595–1602.PubMedCrossRefGoogle Scholar
  53. Lu XY, L Churchill and PW Kalivas (1997) Expression of D1 receptor mRNA in projections from the forebrain to the ventral tegmental area.Synapse 25, 205–214.PubMedCrossRefGoogle Scholar
  54. Lupien SJ, M de Leon, S de Santi, A Convit, C Tarshish, NP Nair, M Thakur, BS McEwen, RL Hauger and MJ Meaney (1998) Cortisol levels during human aging predict hippocampal atrophy and memory deficits.Nat. Neurosci. 1, 69–73.PubMedCrossRefGoogle Scholar
  55. Magarinos AM, BS McEwen, G Flugge and E Fuchs (1996) Chronic psychosocial stress causes apical dendritic atrophy of hippocampal CA3 pyramidal neurons in subordinate tree shrews.J. Neurosci. 16, 3534–3540.PubMedGoogle Scholar
  56. Magarinos AM, A Deslandes and BS McEwen (1999) Effects of antidepressants and benzodiazepine treatments on the dendritic structure of CA3 pyramidal neurons after chronic stress.Eur. J. Pharmacol. 371, 113–122.PubMedCrossRefGoogle Scholar
  57. Manji HK, WC Drevets and DS Charney (2001) The cellular neu-robiology of depression.Nat. Med. 7, 541–547.PubMedCrossRefGoogle Scholar
  58. Manji HK, II Gottesman and TD Gould (2003) Signal transduction and genes-to-behaviors pathways in psychiatric diseases.Sci. STKE, pe49.Google Scholar
  59. Maroun M and G Richter-Levin (2003) Exposure to acute stress blocks the induction of long-term potentiation of the amygdala-prefrontal cortex pathwayin vivo. J. Neurosci.23, 4406–4409.PubMedGoogle Scholar
  60. Mayberg HS (1997) Limbic-cortical dysregulation: a proposed model of depression.J. Neuropsychiatry Clin. Neurosci. 9, 471–478..PubMedGoogle Scholar
  61. Mayberg HS, SK Brannan, JL Tekell, JA Silva, RK Mahurin, S McGinnis and PA Jerabek (2000) Regional metabolic effects of fluoxetine in major depression: serial changes and relationship to clinical response.Biol. Psychiatry 48, 830–843.PubMedCrossRefGoogle Scholar
  62. McEwen BS (1999) Stress and hippocampal plasticity.Annu. Rev. Neurosci. 22, 105–122.PubMedCrossRefGoogle Scholar
  63. McEwen BS (2000) Allostasis and allostatic load: implications for neuropsychopharmacology.Neuropsychopharmacology 22, 108–124.PubMedCrossRefGoogle Scholar
  64. Meltzer HY and SR McGurk (1999) The effects of clozapine, risperidone and olanzapine on cognitive function in schizophrenia.Schizophr. Bull. 25, 233–255.PubMedGoogle Scholar
  65. Mizoguchi K, M Yuzurihara, A Ishige, H Sasaki, DH Chui and T Tabira (2000) Chronic stress induces impairment of spatial working memory because of prefrontal dopaminergic dysfunction.J. Neurosci. 20, 1568–1574.PubMedGoogle Scholar
  66. Montague PR, P Dayan and TJ Sejnowski (1996) A framework for mesencephalic dopamine systems based on predictive Hebbian learning.J. Neurosci. 16, 1936–1947.PubMedGoogle Scholar
  67. Ongur D and JL Price (2000) The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans.Cereb. Cortex 10, 206–219.PubMedCrossRefGoogle Scholar
  68. Pavlides C, S Ogawa, A Kimura and BS McEwen (1996) Role of adrenal steroid mineralocorticoid and glucocorticoid receptors in long-term potentiation in the CA1 field of hippocampal slices.Brain Res. 738, 229–235.PubMedCrossRefGoogle Scholar
  69. Phillips AG, S Ahn and SB Floresco (2004) Magnitude of dopamine release in medial prefrontal cortex predicts accuracy of memory on a delayed response task.J. Neurosci. 24, 547–553.PubMedCrossRefGoogle Scholar
  70. Rajkowska G, JJ Miguel-Hidalgo, J Wei, G Dilley, SD Pittman, HY Meltzer, JC Overholser, BL Roth and CA Stockmeier (1999) Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression.Biol. Psychiatry 45, 1085–1098.PubMedCrossRefGoogle Scholar
  71. Richmond MA, BK Yee, B Pouzet, L Veenman, JN Rawlins, J Feldon and DM Bannerman (1999) Dissociating context and space within the hippocampus: effects of complete, dorsal and ventral excitotoxic hippocampal lesions on conditioned freezing and spatial learning.Behav. Neurosci. 113, 1189–1203.PubMedCrossRefGoogle Scholar
  72. Rocher C, M Spedding and TM Jay (2003) Acute low dose of clozapine prevents stress-induced impairment of synaptic plasticity at hippocampal to prefrontal cortex synapses.Society for Neuroscience Abstr.848: 5.Google Scholar
  73. Rocher C, M Spedding, C Munoz and TM Jay (2004) Acute stress-induced changes in hippocampal/prefrontal circuits in rats: effects of antidepressants.Cereb. Cortex 14, 224–229.PubMedCrossRefGoogle Scholar
  74. Rosene DL and GW Van Hoesen (1977) Hippocampal efferents reach widespread areas of cerebral cortex and amygdala in the rhesus monkey.Science 198, 315–317.PubMedCrossRefGoogle Scholar
  75. Seamans JK, SB Floresco and AG Phillips (1998) D1 receptor modulation of hippocampal-prefrontal cortical circuits integrating spatial memory with executive functions in the rat.J. Neurosci. 18, 1613–1621.PubMedGoogle Scholar
  76. Seamans JK, D Durstewitz, BR Christie, CF Stevens and TJ Sejnowski (2001) Dopamine D1/D5 receptor modulation of excitatory synaptic inputs to layer V prefrontal cortex neurons.Proc. Natl. Acad. Sci. USA 98, 301–306.PubMedCrossRefGoogle Scholar
  77. Sesack SR, AY Deutch, RH Roth and BS Bunney (1989) Topographical organization of the efferent projections of the medial prefrontal cortex in the rat: an anterograde tract-tracing study with Phaseolus vulgaris leucoagglutinin.J. Comp. Neurol. 290, 213–242.PubMedCrossRefGoogle Scholar
  78. Sesack SR, CL Snyder and DA Lewis (1995) Axon terminals immunolabeled for dopamine or tyrosine hydroxylase synapse on GABA-immunoreactive dendrites in rat and monkey cortex.J. Comp. Neurol. 363, 264–280.PubMedCrossRefGoogle Scholar
  79. Shakesby AC, R Anwyl and MJ Rowan (2002) Overcoming the effects of stress on synaptic plasticity in the intact hippocampus: rapid actions of serotonergic and antidepressant agents.J. Neurosci. 22, 3638–3644.PubMedGoogle Scholar
  80. Sheline YI, M Sanghavi, MA Mintun and MH Gado (1999) Depression duration but not age predicts hippocampal volume loss in medically healthy women with recurrent major depression.J. Neurosci. 19, 5034–5043.PubMedGoogle Scholar
  81. Smiley JF, AI Levey, BJ Ciliax and PS Goldman-Rakic (1994) D1 dopamine receptor immunoreactivity in human and monkey cerebral cortex: predominant and extrasynaptic localization in dendritic spines.Proc. Natl. Acad. Sci. USA 91, 5720–5724.PubMedCrossRefGoogle Scholar
  82. Sullivan RM and A Gratton (2002) Prefrontal cortical regulation of hypothalamic-pituitary-adrenal function in the rat and implications for psychopathology: side matters.Psychoneuroendocrin-ology 27, 99–114.CrossRefGoogle Scholar
  83. Suri RE and W Schultz (1999) A neural network model with dopamine-like reinforcement signal that learns a spatial delayed response task.Neuroscience 91, 871–890.PubMedCrossRefGoogle Scholar
  84. Swanson LW (1981) A direct projection from Ammon’s horn to pre-frontal cortex in the rat.Brain Res. 217, 150–154.PubMedCrossRefGoogle Scholar
  85. Szeszko PR, RD Strous, RS Goldman, M Ashtari, KH Knuth, JA Lieberman and RM Bilder (2002) Neuropsychological correlates of hippocampal volumes in patients experiencing a first episode of schizophrenia.Am. J. Psychiatry 159, 217–226.PubMedCrossRefGoogle Scholar
  86. Szeszko PR, E Goldberg, H Gunduz-Bruce, M Ashtari, D Robinson, AK Malhotra, T Lencz, J Bates, DT Crandall, JM Kane and RM Bilder (2003) Smaller anterior hippocampal formation volume in antipsychotic-naive patients with first-episode schizophrenia.Am. J. Psychiatry 160, 2190–2197.PubMedCrossRefGoogle Scholar
  87. Taepavarapruk P and AG Phillips (2001) Role of the prefrontal cortex and ventral tegmental area in mediating release of dopamine in the nucleus accumbens evoked by stimulation of the ventral subiculum, In:Monitoring Molecules in Neuroscience. Proceedingsings of the 9th International Conference on in vivo Methods (O’Connor WT, JP Lowry, JJ O’Connor and RD O’Neill, Eds.) (University College of Dublin: Dublin, Ireland), pp 223–224.Google Scholar
  88. Takahashi M, O Shirakawa, K Toyooka, N Kitamura, T Hashimoto, K Maeda, S Koizumi, K Wakabayashi, H Takahashi, T Someya and H Nawa (2000) Abnormal expression of brain-derived neu-rotrophic factor and its receptor in the corticolimbic system of schizophrenic patients.Mol. Psychiatry 5, 293–300.PubMedCrossRefGoogle Scholar
  89. Takita M, Y Izaki, TM Jay, H Kaneko and SS Suzuki (1999) Induction of stable long-term depressionin vivo in the hip-pocampal-prefrontal cortex pathway.Eur. J. Neurosci. 11, 4145–4148.PubMedCrossRefGoogle Scholar
  90. Tamamaki N and Y Nojyo (1995) Preservation of topography in the connections between the subiculum, field CA1 and the entorhi-nal cortex in rats.J. Comp. Neurol. 353, 379–390.PubMedCrossRefGoogle Scholar
  91. Tamminga C and DR Medoff (2002) Studies in schizophrenia: pathophysiology and treatment.Dialogues Clin. Neurosci. 4, 432–437.Google Scholar
  92. Trentani A, SD Kuipers, GJ Ter Horst and JA Den Boer (2002) Selective chronic stress-inducedin vivo ERK1/2 hyperphospho-rylation in medial prefrontocortical dendrites: implications for stress-related cortical pathology?Eur. J. Neurosci. 15, 1681–1691.PubMedCrossRefGoogle Scholar
  93. Van Eden CG, EM Hoorneman, RM Buijs, MA Matthijssen, M Geffard and HB Uylings (1987) Immunocytochemical localization of dopamine in the prefrontal cortex of the rat at the light and electron microscopical level.Neuroscience 22, 849–862.PubMedCrossRefGoogle Scholar
  94. Vermetten E and JD Bremner (2002) Circuits and systems in stress. I. Preclinical studies.Depress. Anxiety 15, 126–147.PubMedCrossRefGoogle Scholar
  95. Wang J and P O’Donnell (2001) D(1) dopamine receptors potentiate nmda-mediated excitability increase in layer V prefrontal cortical pyramidal neurons.Cereb. Cortex 11, 452–462.PubMedCrossRefGoogle Scholar
  96. Wang M, S Vijayraghavan and PS Goldman-Rakic (2004) Selective D2 receptor actions on the functional circuitry of working memory.Science 303, 853–856.PubMedCrossRefGoogle Scholar
  97. Watanabe Y, E Gould and BS McEwen (1992) Stress induces atrophy of apical dendrites of hippocampal CA3 pyramidal neurons.Brain Res. 588, 341–345.PubMedCrossRefGoogle Scholar
  98. Weickert CS, TM Hyde, BK Lipska, MM Herman, DR Weinberger and JE Kleinman (2003) Reduced brain-derived neurotrophic factor in prefrontal cortex of patients with schizophrenia.Mol. Psychiatry 8, 592–610.PubMedCrossRefGoogle Scholar
  99. Weinberger DR, KF Berman, R Suddath and EF Torrey (1992) Evidence of dysfunction of a prefrontal-limbic network in schizophrenia: a magnetic resonance imaging and regional cerebral blood flow study of discordant monozygotic twins.Am. J. Psychiatry 149, 890–897.PubMedGoogle Scholar
  100. Wellman CL (2001) Dendritic reorganization in pyramidal neurons in medial prefrontal cortex after chronic corticosterone administration.J. Neurobiol. 49, 245–253.PubMedCrossRefGoogle Scholar
  101. Williams GV and PS Goldman-Rakic (1995) Modulation of memory fields by dopamine D1 receptors in prefrontal cortex.Nature 376, 572–575.PubMedCrossRefGoogle Scholar
  102. Witter MP, HJ Groenewegen, FH Lopes da Silva and AH Lohman (1989) Functional organization of the extrinsic and intrinsic circuitry of the parahippocampal region.Prog. Neurobiol. 33, 161–253.PubMedCrossRefGoogle Scholar
  103. Witter MP, PA Naber, T Van Haeften, WCM Machielsen, SARB Rombouts, Barkhof, Scheltens and FH Lopes da Silva (2000) Cortico-hippocampal communication by way of parallel parahip-pocampal-subicular pathways.Hippocampus 10, 398–410.PubMedCrossRefGoogle Scholar
  104. Woodson JC, D Macintosh, M Fleshner and DM Diamond (2003) Emotion-induced amnesia in rats: working memory-specific impairment, corticosterone-memory correlation and fear versus arousal effects on memory.Learn. Mem. 10, 326–336.PubMedCrossRefGoogle Scholar
  105. Xu L, C Holscher, R Anwyl and MJ Rowan (1998) Glucocorticoid receptor and protein/RNA synthesis-dependent mechanisms underlie the control of synaptic plasticity by stress.Proc. Natl. Acad. Sci. USA 95, 3204–3208.PubMedCrossRefGoogle Scholar
  106. Zahrt J, JR Taylor, RG Mathew and AF Arnsten (1997) Supranormal stimulation of D1 dopamine receptors in the rodent prefrontal cortex impairs spatial working memory performance.J. Neurosci. 17, 8528–8535.PubMedGoogle Scholar

Copyright information

© Springer 2004

Authors and Affiliations

  • Thérèse M. Jay
    • 1
    Email author
  • Cyril Rocher
    • 1
  • Maïté Hotte
    • 1
  • Laurent Naudon
    • 1
  • Hirac Gurden
    • 1
  • Michael Spedding
    • 2
  1. 1.Physiopathologie des Maladies Psychiatriques, Centre Paul BrocaINSERM E 0117ParisFrance
  2. 2.I.R.I.SERVIERNeuilly sur Seine CedexFrance

Personalised recommendations