Pathology Oncology Research

, Volume 7, Issue 2, pp 107–110 | Cite as

The hepatic glycogenoreticular system

  • Gábor Bánhegyi
  • József Mandl


One of the major liver functions is the ability of hepatocytes to store glucose in the form of glycogen for various purposes. Beside glucose production and secretion, the synthesis of glucuronides and ascorbate has been reported to be dependent on the extent of the glycogen stores and on the rate of glycogenolysis in the liver. It is common that the final steps of these pathways are catalysed by intraluminially orientated enzymes of the endoplasmic reticulum, which are supported by transporters for the permeation of substrates and products. On the basis of the close morphological and functional proximity of glycogen, glycogen-dependent pathways and the (smooth) endoplasmic reticulum we propose to use the term “glycogenoreticular system” for the description of this export-orientated hepatocyte-specific metabolic unit.


glycogen glycogenolysis endoplasmic reticulum glucuronidation ascorbate glucose-6-phosphatase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. l.2
    Subcellular Biochemistry, Volume 21. Endoplasmic reticulum. (Eds. Borgese M and Harris JR), Plenum Press, New York and London, 1993.Google Scholar
  2. 2.2
    Nordlie RC, Jorgenson RA: Glucose-6-phosphatase. In: The Enzymes of Biological Membranes (Ed: Martonosi A), Plenum Press, New York, 1976, Vol. 2., pp. 465–491.Google Scholar
  3. 3.2
    Chen YT, Burchell A: Glycogen storage diseases. In: The metabolic basis of inherited disease. (Eds. Scriver CR, Beaudet AL, Sly WS, Valle D) McGraw-Hill, New York, 1995, pp. 935–965.Google Scholar
  4. 4.2
    Thurman RG, Kauffman FC: Factors regulating drug metabolism in intact hepatocytes. Pharmacol Rev 31:229–251, 1980.Google Scholar
  5. 5.2
    Bánhegyi G, Garzó T, Antoni F, et al: Glycogenolysis and not gluconeogenesis is the source of UDP-glucuronic acid for glucuronidation. Biochim Biophys Acta 967:429–435, 1988.PubMedGoogle Scholar
  6. 6.2
    Braun L, Garzó T, Mandl J, et al: Ascorbic acid synthesis is stimulated by enhanced glycogenolysis in murine liver. FEBS Lett. 352:4–6, 1994.PubMedCrossRefGoogle Scholar
  7. 7.2
    Bánhegyi G, Puskás R, Garzó T, et al: High amounts of glucose and insulin inhibit p-nitrophenol conjugation in mouse hepatocytes. Biochem Pharmacol 42:1299–1302, 1991.PubMedCrossRefGoogle Scholar
  8. 8.2
    Mandl J, Bánhegyi G, Kalapos MP, et al: Increased oxidation and decreased conjugation of drugs in the liver caused by starvation. (review) Chem-Biol Interact 96:87–101, 1995.PubMedCrossRefGoogle Scholar
  9. 9.2
    Ziegler DM: Role of reversible oxidation-reduction of enzyme thiols-disulfides in metabolic regulation. Ann Rev Biochem 54:305–329, 1985.PubMedGoogle Scholar
  10. 10.2
    Braun L, Puskás F, Csala M, et al: Regulation of glucuronidation by glutathione redox state through the alteration of UDP-glucose supple originating from glycogen metabolism. Arch Biochem Biophys 348:169–173, 1997.PubMedCrossRefGoogle Scholar
  11. 11.2
    Braun L, Csala M, Poussu A, et al: Glutathione depletion induces glycogenolysis dependent ascorbic acid synthesis in isolated murine hepatocytes. FEBS Lett 388:173–176, 1996.PubMedCrossRefGoogle Scholar
  12. 12.2
    Bánhegyi G, Braun L, Csala M, et al: Ascorbate metabolism and its regulation in animals. Free Radic Biol Med 23:793–803, 1997.PubMedCrossRefGoogle Scholar
  13. 13.2
    Bánhegyi G, Garzó T, Fulceri R, et al: Latency is the major determinant of UDP-glucuronosyl-transferase activity in isolated hepatocytes. FEBS Lett 328:149–152, 1993.PubMedCrossRefGoogle Scholar
  14. 14.2
    Kalant N, Parniak M, Lemieux M: Compartmentation of glucose 6-phosphate in hepatocytes. Biochem J 248:927–931, 1987.PubMedGoogle Scholar
  15. 15.2
    Christ B, Jungermann K: Sub-compartmentation of the ‘cytosolic’ glucose 6-phosphate pool in cultured rat hepatocytes. FEBS Lett 221:375–380, 1987.PubMedCrossRefGoogle Scholar
  16. 16.2
    Burchell B, Coughtrie MW UDP-glucuronosyltransferases. Pharmacol Ther 43:261–289, 1989.PubMedCrossRefGoogle Scholar
  17. 17.2
    Kiuchi K, Nishikimi M, Yagi K: Purification and characterization of L-gulonolactone oxidase from chicken kidney microsomes. Biochemistry 21:5076–5082, 1982.PubMedCrossRefGoogle Scholar
  18. 18.2
    Fawcett DW: Observations on the cytology and electron microscopy of hepatic cells. J Natl Cancer Inst 15:1475–1503, 1955.PubMedGoogle Scholar
  19. 19.2
    Cardell RR Jr: Smooth endoplasmic reticulum in rat hepatocytes during glycogen deposition and depletion. Int Rev Cytol 48:221–279, 1977.PubMedCrossRefGoogle Scholar
  20. 20.2
    Babcock MB, Cardell RR Jr. Fine structure of hepatocytes from fasted and fed rats. Am J Anat 143:399–438, 1975.PubMedCrossRefGoogle Scholar
  21. 21.2
    Leskes A, Siekevitz P, Palade GE: Differentiation of endoplasmic reticulum in hepatocytes. I. Glucose-6-phosphatase distribution in situ. J Cell Biol 49:264–287, 1971.CrossRefGoogle Scholar
  22. 22.2
    Clarke DJ, Burchell B: Conjugation-Deconjugation Reactions in Drug Metabolism and Toxicity. (1994) In: Handbook of Experimental Pharmacology, Vol. 112 (Ed. Kauffman FC) Springer Verlag, Budapest, 1994, pp. 3–43.Google Scholar
  23. 23.2
    Girard J, Pégorier JP: An overview of early post-partum nutrition and metabolism. Biochem Soc Trans 26:69–74, 1998.PubMedGoogle Scholar
  24. 24.2
    Dallner G, Siekevitz P, Palade GE: Biogenesis of endoplasmic reticulum membranes. I. Structural and chemical differentiation in developing rat hepatocyte. J Cell Biol 30:73–96, 1966.PubMedCrossRefGoogle Scholar
  25. 25.2
    Babcock MB, Cardell RR Jr: Fine structure of hepatocytes from fasted and fed rats Am. J Anat 143:399–438, 1975.PubMedCrossRefGoogle Scholar
  26. 26.2
    Berry C, Hallinan T: Summary of a novel, three-component regulatory model for uridine diphosphate glucuronyltransferase. Biochem Soc Trans 4:650–652, 1976.PubMedGoogle Scholar
  27. 27.2
    Hemrika W, Wever R: A new model for the membrane topology of glucose-6-phosphatase: the enzyme involved in von Gierke disease. FEBS Lett 409:317–319, 1997.PubMedCrossRefGoogle Scholar
  28. 28.2
    Pan CJ, Lei KJ, Annabi B, et al: Transmembrane topology of glucose-6-phosphatase. J Biol Chem 273:6144–6148, 1998.PubMedCrossRefGoogle Scholar
  29. 29.2
    Bánhegyi G, Marcolongo P, Fulceri R, et al: Demonstration of a metabolically active glucose-6-phosphate pool in the lumen of liver microsomal vesicles. J Biol Chem 272:13584–13590, 1997.PubMedCrossRefGoogle Scholar
  30. 30.2
    Gerin I, Veiga da Cunha M, Achouri Y, et al: Sequence of a putative glucose 6-phosphate translocase, mutated in glycogen storage disease type Ib. FEBS Lett 419:235–238, 1998.CrossRefGoogle Scholar
  31. 31.2
    Bossuyt X, Blanckaert N: Mechanism of stimulation of microsomal UDP-glucuronosyltransferase by UDP-N-acetylglucosamine. Biochem J 305:321–328, 1995.PubMedGoogle Scholar
  32. 32.2
    Bánhegyi G, Braun L, Marcolongo P, et al: Evidence for an UDP-glucuronic acid phenol glucuronide antiport in rat liver microsomal vesicles. Biochem J 315:171–176, 1996.PubMedGoogle Scholar
  33. 33.2
    Puskás F, Braun L, Csala M, et al: Gulonolactone oxidase activity-dependent intravesicular glutathione oxidation in rat liver microsomes. FEBS Lett 430:293–296, 1998.PubMedCrossRefGoogle Scholar
  34. 34.2
    Guillam MT Burcelin R, Thorens B: Normal hepatic glucose production in the absence of GLUT2 reveals an alternative pathway for glucose release from hepatocytes. Proc Natl Acad Sci USA 95:12317–12321, 1998.PubMedCrossRefGoogle Scholar
  35. 35.2
    Upston JM, Karjalainen A, Bygrave FL: Efflux of hepatic ascorbate: a potential contributor to the maintenance of plasma vitamin C. Biochem J 342:49–56, 1999.PubMedCrossRefGoogle Scholar
  36. 36.2
    Bánhegyi G, Marcolongo P, Puskás F, et al: Dehydroascorbate and ascorbate transport in rat liver microsomal vesicles. J Biol Chem 273:2758–2762, 1998.PubMedCrossRefGoogle Scholar

Copyright information

© Arányi Lajos Foundation 2001

Authors and Affiliations

  1. 1.Department of Medical Chemistry, Molecular Biology and PathobiochemistrySemmelweis UniversityBudapestHungary

Personalised recommendations